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Abstract

Modelingof 3D objectsfromimage sequencets a chal-
lenging problemand has beena reseach topic for many
yeass. Importanttheotical and algorithmic resultswere
achievedthat allow to extract evencomple 3D scenamod-
elsfromimages. Onerecenteffort hasbeento reducethe
amountof calibration andto avoidrestrictionson the cam-
era motion. In this contribution an appmoad is described
which achievesthis goal by combiningstate-of-the-aral-
gorithmsfor uncalibrated projective reconstruction,self-
calibrationanddensecorrespondencmatding.

1. Intr oduction

Obtaining 3D modelsfrom objectsis an ongoingre-
searchtopic in computervision. A few yearsago the
main applicationswere robot guidanceand visual inspec-
tion. Nowadayshowever the emphasiss shifting. Thereis
moreandmoredemandor 3D modelsin computergraph-
ics, virtual reality and communication. This resultsin a
changen emphasigor therequirementsThevisualquality
become®neof the mainpointsof attention.

Theacquisitionconditionsandthetechnicalexpertiseof
theusersn thesenew applicationdomainscanoftennotbe
matchedwith the requirement®f existing systems.These
requireintricate calibrationprocedure®very time the sys-
temis used. Thereis animportantdemandfor flexibility
in acquisition. Calibrationprocedureshouldbe absentor
restrictedto a minimum.

Additionally, the existing systemsareoftenbuilt around
specializedhardvare (e.g. laserrangescanneror stereo
rigs) resultingin a high costfor thesesystems.Many new
applicationshowever require robust low cost acquisition
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systems. This stimulatesthe use of consumemphoto- or
videocameras.

Other researcherdiave presentedsystemsfor extract-
ing 3D shapeandtexture from image sequencescquired
with a freely moving camera.The approachof Tomasiand
Kanade[28] usedan affine factorizationmethodto extract
3D from imagesequencesAn importantrestrictionof this
systemis the assumptiorof orthographigrojection.

Debevec, Taylor and Malik [4] proposeda systemthat
startsfrom anapproximate8D modelandcamergosesand
refinesthe modelbasednimages.View dependentextur-
ing is usedto enhanceealism. The advantages thatonly
a restrictednumberof imagesare required. On the other
handa preliminarymodelmustbe availableandthe geom-
etry shouldnotbetoo complex.

In this paperwe presenta systemwhich retrievesa 3D
surfacemodelfrom a sequencef imagestaken with off-
the-shelfconsumercamerasThe useracquiregheimages
by freely moving the cameraaroundthe object.Neitherthe
cameramotion nor the camerasettingshave to be known.
The obtained3D modelis a scaledversionof the original
object(i.e. ametricreconstruction)andthe surfacetexture
is obtainedrom theimagesequencaswell.

Our systemusesfull perspectie camerasand doesnot
requireprior modelsnor calibration. Someprior versions
of this systemhave beenpresentegbreviously [20, 21, 22).

Someimportantenhancementbhave beenaddedto it.
The imagesare not only relatedto the previous and the
following imageof the sequencebut arerelatedto all the
imageswhich areclose. This allows a morestablecompu-
tation of the preliminaryreconstructiorand calibration. A
secondenhancementonsistof a generalizedectification
scheme. The traditional rectificationschemesare not us-
ablewhenthe motion of the cameracontainsanimportant
forwardcomponen(i.e. epipolesin theimages).The new
approactworksin all casesandadditionallyprovidesmin-
imal imagesizes.

The complete system combinesstate-of-the-artalgo-
rithmsof differentdomains:projectivereconstructionself-



calibrationanddensedepthestimation

Projective Reconstruction: It has been shovn by
Faugerad6] and Hartley [10] that a reconstructiorup to
anarbitraryprojective transformatiorwaspossiblefrom an
uncalibratedmagesequenceSincethena lot of effort has
beenputin reliably obtainingaccurateestimate®f the pro-
jective calibrationof animagesequenceRolustalgorithms
wereproposedo estimatehefundamentamatrix from im-
agepairs[29, 31]. Basedon this, an algorithmwhich se-
guentiallyretrievesthe projective calibrationof a complete
imagesequencéasbeendeveloped[1].

Self-Calibration: Sincea projective calibrationis not
sufficient for mary applications,researchersried to find
ways to automaticallyupgradeprojective calibrationsto
metric (i.e. Euclideanup to scale). Typically, it is as-
sumedthat the samecamerais usedthroughoutthe se-
guenceand that the intrinsic cameraparametersre con-
stant.This proveda difficult problemandmary researchers
have workedon it (e.g.[7, 11, 18, 30]). Oneof the main
problemsis that critical motion sequencesxist for which
self-calibratiordoesnotresultin auniquesolution[27]. We
proposeda more pragmaticapproach19] which assumes
thatsomeparameterare(approximatelyknown but which
allowsothersto vary. Thereforethisapproactcandealwith
zooming/focusingameras.

DenseDepth Estimation: Sincethe calibrationof the
imagesequenchasbeenestimatedve canusestereoscopic
triangulationtechniquedetweerimagecorrespondences
estimatedepth. The difficult partin stereoscopidepthes-
timationis to find densecorrespondencenapsbetweerthe
images. The correspondencproblemis facilitatedby ex-
ploiting constraintsderived from the calibrationand from
someassumption@boutthe scene. We use an approach
that combineslocal imagecorrelationmethodswith a dy-
namic programmingapproachto constrainthe correspon-
dencesearch[14]. This techniquewas first proposedby
Cox [3] andfurther developedby Koch [13] and Falken-
hagen5].

This paperis organizedasfollows: In section2 a gen-
eral overview of the systemis given. In the subsequent
sectionsthe different stepsare explainedin more detail;
projective reconstructior(section3), self-calibration(sec-
tion 4), densematching(section5) and model generation
(section6). Section7 concludeghe paper

2. Overview of the method

The presentedystemgraduallyretrievesmoreinforma-
tion aboutthe sceneand the camerasetup. The first step
is to relatethe differentimages. This is donepairwiseby
retrieving the epipolargeometry An initial reconstruction
is thenmadefor thefirst two imagesof the sequenceFor
the subsequenitmagesthe cameragposeis estimatedn the

projectveframedefinedby thefirst two cameraskFor every

additionalimagethatis processedt this stage theinterest
points correspondingo pointsin previousimagesarere-

constructedrefinedor corrected.Thereforeit is not neces-
sarythattheinitial pointsstayvisible throughouthe entire
sequence.For sequencesvherepoints can disappeaand

reappearit canne necessaryo matchthe imagesto other
imagesthanthe previous one. The algorithmwasadapted
to efficiently dealwith this. Theresultof this stepis are-

constructionof typically a few hundredto a few thousand
interestpointsandthe (projective) poseof thecamera.The

reconstructions only determinedup to a projective trans-
formation.

The next stepis to restrictthe ambiguity of the recon-
structionto a metricone. In a projective reconstructiomot
only the scenebut alsothe camerais distorted. Sincethe
algorithmdealswith unknavnscenesit hasnoway of iden-
tifying this distortionin the reconstruction.Although the
camerds alsoassumedo beunknowvn, someconstrainton
theintrinsic cameragparameterge.g. rectangulaor square
pixels, constantaspectratio, principal point in the middle
of theimage,...) canoftenstill be assumed.A distortion
onthecameramostlyresultsin theviolation of oneor more
of theseconstraints.A metricreconstruction/calibratiois
obtainedby transformingheprojective reconstructioruntil
all the constraintson the cameradntrinsic parametersre
satisfied.

At this point the systemeffectively disposesf a cali-
bratedimagesequence.The relative positionand orienta-
tion of thecameras known for all theviewpoints. This cal-
ibration facilitatesthe searchfor correspondingpointsand
allows usto usea sterecalgorithmthatwasdevelopedfor a
calibratedsystemandwhich allowsto find correspondences
for mostof the pixelsin theimages.

Fromthesecorrespondencekledistancerom thepoints
to the cameracentercanbe obtainedthroughtriangulation.
Theseresultsarerefinedand completedby combiningthe
correspondencdsom multiple images.

A denseametric3D surfacemodelis obtainedby approx-
imating the depthmapwith a triangularwireframe. The
texture is obtainedfrom the imagesand mappedonto the
surface.

In figure1 anoverview of thesystenis given. It consists
of independenioduleswvhich passon the necessarinfor-
mationto the next modules.Thefirst modulecomputeghe
projectie calibrationof thesequencéogethemwith asparse
reconstruction.In the next modulethe metric calibration
is computedfrom the projectve cameramatricesthrough
self-calibration. Thendensecorrespondencmapsare es-
timated. Finally all resultsareintegratedin a textured3D
surfacereconstructiorof the sceneunderconsideration.

Throughoutthe restof this paperthe different stepsof
the methodwill be explainedin moredetail. An imagese-
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Figure 1. Overview of the system: from the
image sequence (I(z,y)) the projective re-
construction is computed; the projection ma-
trices P are then passed on to the self-
calibration module which delivers a metric
calibration Pj4; the next module uses these to
compute dense depth maps D(z,y); all these
results are assembled in the last module to
yield a textured 3D surface model. On the
right side the results of the diff erent modules
are shown: the preliminar y reconstructions

(both projective and metric) are represented
by point clouds, the cameras are represented
by little pyramids, the results of the dense
matching are accumulated in dense depth
maps (light means close and dark means far).

Figure 2. First and last image of the Aren-
berg castle sequence . This sequence is used
throughout this paper to illustrate the diff er-
ent steps of the reconstruction system.

guenceof the Arenbeg castlein Leuvenwill be usedfor
illustration. Someimagesof this sequence&anbe seenin
Figure2. Thefull sequenceonsistf 24imagesrecorded
with avideocamera.

3. Projective reconstruction

At first the imagesare completelyunrelated. The only
assumptionis that the imagesform a sequencen which
consecutie imagesdo not differ too much. Thereforethe
local neighborhoodof image points originating from the
samescenepoint shouldlook similar if imagesare close
in the sequenceThis allows for automaticmatchingalgo-
rithmsto retrieve correspondenced he approachtakento
obtaina projective reconstructions very similar to theone
proposedy Beardslg etal. [1].

3.1 Relating the images

It is not feasibleto compareevery pixel of oneimage
with every pixel of the next image.lt is thereforenecessary
to reducethe combinatoriakcompleity. In additionnot all
pointsareequallywell suitedfor automaticmatching.The
localneighborhoodsef somepointscontainalot of intensity
variationandarethereforeeasyto differentiatefrom others.
TheHarriscornerdetectof9] is usedto selecta setof such
points. Correspondencdsetweertheseimagepointsneed
to beestablishedhrougha matchingprocedure.

Matches are determinedthrough normalized cross-
correlationof the intensity valuesof the local neighbor
hood. Sinceimagesare supposedot to differ too much,
correspondingpoints can be expectedto be found backin
the sameregion of theimage. Thereforeat first only inter-
estpointswhich have similar positionsare consideredor
matching. Whentwo pointsare mutual bestmatcheghey
areconsideredispotentialcorrespondences.

Sincethe epipolargeometrydescribegshe completege-
ometryrelatingtwo views, this is whatshouldberetrieved.
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Table 1. Robust estimation of the epipolar ge-
ometry from a set of matches containing out-
liers using RANSAC (Pgx indicates the prob-
ability that the epipolar geometry has been
correctl y estimated).

Computingt from thesetof potentiaimatcheghroughleast
squaresloesin generahot give satisfyingresultsdueto its
sensitvity to outliers. Thereforea robustapproachshould
be used. Several techniqueshave beenproposed29, 31]
basedon robust statistics[25]. Our systemincorporates
theRANSAC (RANdomSAmplingConsesugB] approach
usedby Torr etal. [29]. Tablel sketcheghistechnique.

Oncethe epipolargeometryhasbeenretrieved, onecan
startlooking for more matchego refinethis geometry In
this casethe searchregion is restrictedto a few pixels
aroundtheepipolarlines.

3.2 Initial reconstruction

The two first imagesof the sequenceare usedto deter
mine a referenceframe. The world frameis alignedwith
the first camera. The secondcamerais chosenso thatthe
epipolargeometrycorrespondso theretrievedF 5 (se€[1]
for moredetails).

P, = |
PQZ

I3><3 | 0 ] (1)
[ [e12]xFi2 +enl’ | e ]
where[e12]« indicatesthe vectorproductwith e15. Equa-
tion 1 is not completelydeterminedby the epipolargeom-
etry (i.e. F12 andeys), but has4 moredegreesof freedom
(i.e.lx,ly,lz,0). 1 = [Ixlylz]" determineghe position
of the planeat infinity and ¢ determineghe global scale
of the reconstruction.To avoid someproblemsduring the
reconstructior{dueto the violation of the quasi-Euclidean
assumption)it is recommendedb determind x,ly,lz in
suchawaythattheplaneatinfinity doesnotcrosshescene.
Our implementatiorusesan approactsimilar to the quasi-
Euclideanapproactproposedn [1], but thefocal lengthis
chosersothatmostof the pointsarereconstructeéh front
of the cameras. This approachwas inspiredby Hartley’'s

Figure 3.Image matches (my_1,my) are found
as described before. Since the image points,
my_1, relate to object points, My, the pose
for view k can be computed from the inferred
matc hes (M, mg).

cheirality [11] andthe orientedprojectve geometryintro-
ducedby Laveau[16]. Sincethereis noway to determine
theglobalscalefromtheimagesg canarbitrarilybechosen
tooc =1.

Once the camerashave been fully determinedthe
matchescan be reconstructedhroughtriangulation. The
optimal methodfor this is givenin [12]. This givesus a
preliminaryreconstruction.

3.3 Adding aview

For every additional view the pose towards the pre-
existing reconstructions determinedthenthe reconstruc-
tion is updated. This is illustratedin Figure 3. The first
stepsconsistof finding theepipolargeometryasdescribed
in Section3.1. Thenthe matcheswhich correspondo al-
readyreconstructeghointsareusedto computethe projec-
tion matrix P. Thisis doneusinga robustproceduresim-
ilar to the onelaid outin Table 1. In this casea minimal
sampleof 6 matchess neededo computeP;. OncePy,
hasbeendeterminedheprojectionof alreadyreconstructed
pointscanbepredicted.Thisallowsto find someadditional
matchego refinethe estimationof P,. This meanghatthe
searclspacds graduallyreducedrom thefull imageto the
epipolarline to thepredictedorojectionof thepoint. Thisis
illustratedin Figure4.

Oncethe camergprojectionmatrix hasbeendetermined
thereconstructions updated.This consistf refining,cor-
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Figure 4. (a) a priori search range, (b) search
rang e along the epipolar line and (c) search
range around the predicted position of the
point.

rectingor deletingalreadyreconstructeghointsandinitial-
izing new pointsfor new matches.

After thisprocedurdnasbeerrepeatedor all theimages,
onedispose®f cameraposesfor all the views andthere-
constructionof the interestpoints. In the further modules
mainly the cameracalibrationis used. The reconstruction
itself is usedto obtainanestimateof thedisparityrangefor
thedensestereamatching.

3.4. Relating to other views

The procedureto add a view describedn the previous
sectiononly relatesthe imageto the previousimage. In
factit is implicitly assumedhat oncea point getsout of
sight,it will notcomeback. Althoughthisis truefor mary
sequenceghis assumptiongloesnot always hold. When
the systemis usedto recordthe appearancef an object
from all around the cameras oftenmovedbackandforth.
In thiscasepointswill continuouslydisappeaandreappear

Althoughthis is true for mary sequencest is certainly
not always the case. For somehand-heldsequenceshe
cameracanbe usedto recordthe appearancef the object
from all around.Oftenthe camerawill be movedbackand
forth to scanthe viewing sphereof the object. With thetra-
ditional schemethis would imply thatnew 3D pointskeep
beinginstantiated. This will notimmediatelycauseprob-
lems,but sincefor the systenthesewo 3D pointsareunre-
latednothingenforcegheir positionto correspond.

This is especiallycrucial for longerimage sequences
wherethe errorsaccumulate.lt resultsin a degradedcal-
ibration or even causedhe failure of the algorithmaftera
certainnumberof views.

A possiblesolutionconsistsof relatingevery new view
with all previousviews usingthe procedureof Section3.1.
It is clearthatthis would requirea considerableomputa-
tional effort. We proposea morepragmaticapproachThis
approactworkedwell on somecasesve workedon.

Let P; betheinitial estimatenf thecamergoseobtained
asdescribedn theprevioussection.A criterionis thenused
to definewhichviews arecloseto theactualview. All these
closeviews arematchedwith the actualview (asdescribed
in Section3.1). For every closeview a setof potential2D-
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Figure 5. Sequential approach (left) and ex-
tended approach (right). In the traditional

scheme view 8 would be matched with view 7
and 9 only. A point M whic h would be visib le
in views 2,3,4,7,8,9,12,13 and 14 would there-
fore results in 3 independentl y reconstructed

points. With the extended approach only one
point will be instantiated. It is clear that this
results in a higher accuracy for the recon-
structed point while it also dramaticall y re-
duces the accum ulation of calibration errors.

3D correspondenceés obtained. Thesesetsarememgedand
the cameraprojectionmatrix P; is reestimatecdusing the
samerobustprocedureasdescribedn the previoussection.
Figure5 illustratesthis approach.

We applieda very simple criterion to decideif views
werecloseor not. It workedwell for theapplicationave had
in mind, but it could easilyberefinedif needed.The posi-
tion t; of the camerais extractedfrom P; andthe distance
d;; to all the other camerapositionsis computed. Close
views are selectedas views for which d;; < 1.6d;(;_1)-
Note that strictly speakingsuchmeasurés meaninglesn
projective space but sincea quasi-Euclidearnitialization
was carriedout andonly local qualitatve comparisonsre
madethe obtainedresultsare good. More detailson this
approactkcanbefoundin [15].

4. Upgrading the reconstructionto metric

Thereconstructiorbtainedasdescribedn theprevious
paragraphs only determinedup to an arbitrary projective
transformation.This might be sufiicient for somerobotics
or inspectionapplications,but certainly not for visualiza-
tion.

The systemusesthe self-calibrationmethoddescribed
in [19, 23 to restrictthe ambiguity on the reconstruction
to metric (i.e. Euclideanup to scale). This flexible self-
calibrationtechniqueallowstheintrinsiccamergarameters
to vary during the acquisition. This featureis especially
usefulwhenthe camerais equippedwith a zoom or with
auto-focus.

It is outsidethescopeof this paperto discusghismethod
in detail. The generalconceptconsistof translatingcon-
straintson theintrinsic camergarametero constrainton



S S
B B
LI TR " “
- - .
st )
. . Sy
L
"ﬂ'."'-!!-;
"N - g ] ll_ .
L L "Ia'l "!‘t'

fl‘ﬁ??.? bl

T i :%‘ign‘n:\:s Ao e
"ﬂ T

Figure 6. Reconstruction before (top) and af-
ter (bottom) self-calibration.
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the absoluteconic. Oncethis specialconicis identified, it
canbe usedasa calibrationpatternto upgradethe recon-
structionto metric.

Some reconstructions befoe and after the self-
calibrationstageareshovn. Thetop partof Figure6 gives
the reconstructiorbefore self-calibration. Thereforeit is
only determinedipto anarbitraryprojective transformation
andmetricpropertiesof thescenecannotbeobsenedfrom
this representationThe bottompart of Figure6 shovs the
resultafterself-calibration At this pointthereconstruction
hasbeenupgradedo metric.

5. Densedepth estimation

Only a few scenepoints are reconstructedrom fea-
ture tracking. Obtaininga densereconstructiorcould be
achievedby interpolation put in practicethis doesnotyield
satishctory results. Small surfacedetailswould never be
reconstructedn this way. Additionally, someimportant
featuresare often missedduring the cornermatchingand
would thereforenotappeain thereconstruction.

Theseproblemscan be avoided by using algorithms
which estimatecorrespondence®r almostevery point in
the images. Becausehe reconstructionwas upgradedto
metric,algorithmsthatweredevelopedfor calibratedstereo
rigs canbeused.

5.1 Rectification

Sincewe have computedhecalibrationbetweersucces-
sive imagepairswe canexploit the epipolarconstrainthat
restrictsthe correspondencsearchto a 1-D searchrange.
It is possibleto re-mapthe imagepair to standardyeome-
try with the epipolarlines coincidingwith the imagescan
lines[13]. The correspondencsearchis thenreducedo a
matchingof the imagepointsalongeachimagescan-line.
This resultsin a dramaticincreaseof the computationaef-
ficiengy of thealgorithmsby enablingsereraloptimizations
in thecomputations.

For somemotions(i.e. whentheepipoleis locatedin the
image)standardectificationbasedn planarhomographies
is not possibleand a more advancedprocedureshouldbe
used.RecentlyRoy, MeunierandCox [26] presenteduch
a method. Theideaof the methodis to rectify theimages
on a cylinder in steadof a plane. The methodis however
relatively complex andhassomedisadwantages.

Thesystemdescribedn this paperusesanew approach.
The methodcombinessimplicity with minimal imagesize
andworksfor all possiblemotions. Theideais to usepo-
lar coordinateswith the epipoleasorigin. Sincethe ambi-
guity for the location of matchingpointsin a pair of im-
agesis restrictedto half epipolarlines [16] we only have
to usepositive valuesfor thelongitudinalcoordinate Since
(half-)epipoladine transfeiis fully describedy anoriented
fundamentamatrix, thisis all our methodneeds.The nec-
essaryinformationis also easily extractedfrom (oriented)
camergrojectionmatrices.Theanglebetweertwo consec-
utive half-epipolarinesis computedo have theworstcase
pixels presere their area. This is doneindependentlyfor
every half-epipolarine. Thisthereforeresultsin aminimal
imagesize. A morecompletedescriptionof this methodis
givenin [24].

As an examplea rectifiedimagepair from the castleis
shawvn for boththe standardechniqueandour new general-
izedtechnique.Figure7 shaws the rectifiedimagepair for
bothmethods.

A secondexampleshaws thatthe methodsworks prop-
erly whenthe epipoleis in theimage. Figure8 shavs the
two original imageswhile Figure9 shows the two rectified
images. In this casethe standardrectificationprocedure
cannot deliver rectifiedimages. This rectifiedimagepair
wasusedwith succesdy our standardstereomatchingal-
gorithm.

5.2 Densestereomatching

In addition to the epipolar geometryother constraints
like preservingthe order of neighboringpixels, bidirec-
tional uniquenessf the match,anddetectionof occlusions
canbe exploited. Theseconstraintsare usedto guidethe



Figure 7. Rectified image pair for both meth-
ods: standard homograph y based method
(top), new method (bottom).

Figure 8. Image pair of a desk a few days be-
fore a deadline . The epipole is indicated by a
white dot (top-right of 'Y’ in 'VOLLEYBALL).

Figure 9. Rectified pair of images of the desk.
It can be verified visuall y that corresponding
points are located on corresponding image
rows. The right side of the images corre-
sponds to the epipole .



correspondencewardsthe mostprobablescan-linematch
usinga dynamicprogrammingschemd5].

For densecorrespondencmatchinga disparity estima-
tor basedon the dynamic programmingschemeof Cox
et al. [3], is employed that incorporateshe above men-
tioned constraints. It operateson rectified image pairs
(Ix, I;) wherethe epipolarlines coincidewith imagescan
lines. The matchersearchest eachpixel in image I}, for
maximumnormalizedcrosscorrelationin I; by shifting a
small measuremenvindow (kernelsize5x5 to 7x7 pixel)
along the correspondingscanline. The selectedsearch
stepsize AD (usually 1 pixel) determineshe searchres-
olution. Matching ambiguitiesare resolhed by exploiting
the ordering constraintin the dynamic programmingap-
proach(seeKoch[13]). Thealgorithmwasfurtheradapted
to employ extendedheighborhoodelationshipsanda pyra-
midal estimationschemeto reliably deal with very large
disparity rangesof over 50% of image size (seeFalken-
hagen[5]). This algorithmthatwas at first developedfor
calibratestereorigs (SeeKoch [13]) could easily be used
for our purposesinceatthis stagghenecessargalibration
informationhadalreadybeenretrievedfrom theimages.

5.3 Multi view matching

The pairwisedisparityestimatiorallows to computem-
ageto imagecorrespondendeetweeradjacentectifiedim-
agepairs,andindependentiepthestimategor eachcamera
viewpoint. An optimal joint estimateis achiesed by fus-
ing all independenestimatesnto a common3D model.
Thefusioncanbeperformedn aneconomicalvay through
controlledcorrespondenciénking. Theapproachutilizesa
flexible multi viewpointschemeavhich combinegheadvan-
tagesof smallbaselineandwide baselinestereo(seeKoch,
PollefeysandVan Gool[14]).

Theresultof this procedurds a very densedepthmap.
Mostocclusionproblemsareavoidedby linking correspon-
dencesfrom up and down the sequence.An example of
suchavery densedepthmapis givenin Figure10.

6. Building the model

The densedepthmapsas computedby the correspon-
dencdinking mustbeapproximatedyy a 3D surfacerepre-
sentatiorsuitablefor visualization.Sofar eachobjectpoint
wastreatedndependentlyTo achieve spatialcoherencéor
aconnecteasurface thedepthmapis spatiallyinterpolated
using a parametricsurfacemodel. The boundariesof the
objectsto bemodeledarecomputeadhroughdepthseggmen-
tation. In afirst step,an objectis definedasa connected
region in space. Simple morphologicalfiltering removes
spuriousandvery smallregions.Thena boundedhin plate
modelis employedwith asecondrdersplineto smooththe

Figure 10. Dense depth map (light means near
and dark means far).

surfaceandto interpolatesmallsurfacegapsin regionsthat
couldnotbemeasured.

The spatiallysmoothedsurfaceis thenapproximatedy
atriangularwire-framemeshto reducegeometriccomplex-
ity andto tailor the modelto the requirement®f computer
graphicsvisualizationsystemsThemeshtriangulationcur-
rently utilizes the referenceview only to build the model.
Thesurfacefusionfrom differentview pointsto completely
closethe modelsremainsto beimplemented Sometimest
is notpossibleto obtaina singlemetricframenork for large
objectslik e buildings sinceone may not be ableto record
imagescontinuouslyaroundit. In that casethe different
framenvorkshave to beregisteredo eachother This could
be doneusingavailablesurfaceregistrationscheme$2].

Texture mappingonto the wire-framemodelgreatlyen-
hancegherealismof themodels.As texturemaponecould
take thereferencemagetexturealoneandmapit to thesur
facemodel. However, this createsa bias towardsthe se-
lectedimage and imaging artifactslike sensornoise, un-
wantedspecularreflectionsor the shadingof the particu-
lar imageis directly transformedbnto the object. A better
choiceis to fuse the texture from the image sequencen
muchthe sameway asdepthfusion.

The viewpoint linking builds a controlledchainof cor-
respondencethat canbe usedfor texture enhancemerdas
well. The estimationof a robustmeantexturewill capture
the staticobjectonly andthe artifacts(e.g. speculareflec-
tionsor pedestrianpassingn front of a building) aresup-
pressed.The texture fusion could alsobe doneon a finer
grid, yielding a supermresolutiontexture[17].

An exampleof the resultingmodelcanbe seenin Fig-
urell. Somemoreviews of thereconstructioraregivenin
Figurel2.



Figure 11. 3D surface model obtained au-
tomaticall y from an uncalibrated image se-
guence, shaded (left), textured (right).

Figure 12. More views of the castle model.

7. Conclusion

An automatic3D scenemodeling techniquewas dis-
cussedhatis capableof building modelsfrom uncalibrated
imagesequencesThe techniqueis ableto extract metric
3D modelswithoutary prior knowledgeaboutthe sceneor
thecameraThe calibrationis obtainedby assumingarigid
sceneandsomeconstraint®n theintrinsic camergarame-
ters(e.g.squarepixels).

Work remainsto be doneto get morecompletemodels
by fusing the partial 3D reconstructionsThis will alsoin-
creasdheaccurag of themodelsandeliminateartifactsat
the occludingboundariesFor this we canrely on work al-
readydonefor calibratedsystems.
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