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Abstract

Modelingof 3D objectsfromimagesequencesis a chal-
lengingproblemand has beena research topic for many
years. Important theoretical and algorithmic resultswere
achievedthatallow to extract evencomplex 3D scenemod-
els from images. Onerecenteffort hasbeento reducethe
amountof calibrationandto avoidrestrictionson thecam-
era motion. In this contribution an approach is described
which achievesthis goal by combiningstate-of-the-artal-
gorithmsfor uncalibrated projective reconstruction,self-
calibrationanddensecorrespondencematching.

1. Intr oduction

Obtaining 3D models from objectsis an ongoing re-
searchtopic in computervision. A few yearsago the
main applicationswererobot guidanceandvisual inspec-
tion. Nowadayshowever theemphasisis shifting. Thereis
moreandmoredemandfor 3D modelsin computergraph-
ics, virtual reality and communication. This resultsin a
changein emphasisfor therequirements.Thevisualquality
becomesoneof themainpointsof attention.

Theacquisitionconditionsandthetechnicalexpertiseof
theusersin thesenew applicationdomainscanoftennotbe
matchedwith the requirementsof existing systems.These
requireintricatecalibrationproceduresevery time thesys-
tem is used. Thereis an importantdemandfor flexibility
in acquisition.Calibrationproceduresshouldbe absentor
restrictedto aminimum.

Additionally, theexisting systemsareoftenbuilt around
specializedhardware (e.g. laserrangescannersor stereo
rigs) resultingin a high costfor thesesystems.Many new
applicationshowever require robust low cost acquisition
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systems. This stimulatesthe use of consumerphoto- or
videocameras.

Other researchershave presentedsystemsfor extract-
ing 3D shapeandtexture from imagesequencesacquired
with a freely moving camera.Theapproachof Tomasiand
Kanade[28] usedanaffine factorizationmethodto extract
3D from imagesequences.An importantrestrictionof this
systemis theassumptionof orthographicprojection.

Debevec, Taylor andMalik [4] proposeda systemthat
startsfrom anapproximate3D modelandcameraposesand
refinesthemodelbasedon images.View dependenttextur-
ing is usedto enhancerealism.Theadvantageis thatonly
a restrictednumberof imagesare required. On the other
handa preliminarymodelmustbeavailableandthegeom-
etryshouldnotbetoocomplex.

In this paperwe presenta systemwhich retrievesa 3D
surfacemodel from a sequenceof imagestaken with off-
the-shelfconsumercameras.Theuseracquirestheimages
by freelymoving thecameraaroundtheobject.Neitherthe
cameramotion nor the camerasettingshave to be known.
The obtained3D model is a scaledversionof the original
object(i.e. a metricreconstruction),andthesurfacetexture
is obtainedfrom theimagesequenceaswell.

Our systemusesfull perspective camerasanddoesnot
requireprior modelsnor calibration. Someprior versions
of thissystemhavebeenpresentedpreviously [20, 21, 22].

Someimportantenhancementshave beenaddedto it.
The imagesare not only relatedto the previous and the
following imageof the sequence,but arerelatedto all the
imageswhich areclose.This allows a morestablecompu-
tationof thepreliminaryreconstructionandcalibration. A
secondenhancementconsistof a generalizedrectification
scheme.The traditional rectificationschemesarenot us-
ablewhenthemotionof thecameracontainsan important
forwardcomponent(i.e. epipolesin the images).Thenew
approachworksin all casesandadditionallyprovidesmin-
imal imagesizes.

The completesystemcombinesstate-of-the-artalgo-
rithmsof differentdomains:projectivereconstruction, self-



calibrationanddensedepthestimation.
Projective Reconstruction: It has been shown by

Faugeras[6] and Hartley [10] that a reconstructionup to
anarbitraryprojectivetransformationwaspossiblefrom an
uncalibratedimagesequence.Sincethena lot of effort has
beenput in reliablyobtainingaccurateestimatesof thepro-
jectivecalibrationof animagesequence.Robustalgorithms
wereproposedto estimatethefundamentalmatrix from im-
agepairs[29, 31]. Basedon this, an algorithmwhich se-
quentiallyretrievestheprojectivecalibrationof a complete
imagesequencehasbeendeveloped[1].

Self-Calibration: Sincea projective calibrationis not
sufficient for many applications,researcherstried to find
ways to automaticallyupgradeprojective calibrationsto
metric (i.e. Euclideanup to scale). Typically, it is as-
sumedthat the samecamerais used throughoutthe se-
quenceand that the intrinsic cameraparametersare con-
stant.Thisprovedadifficult problemandmany researchers
have worked on it (e.g. [7, 11, 18, 30]). Oneof the main
problemsis that critical motion sequencesexist for which
self-calibrationdoesnotresultin auniquesolution[27]. We
proposeda morepragmaticapproach[19] which assumes
thatsomeparametersare(approximately)known but which
allowsothersto vary. Thereforethisapproachcandealwith
zooming/focusingcameras.

DenseDepth Estimation: Sincethecalibrationof the
imagesequencehasbeenestimatedwecanusestereoscopic
triangulationtechniquesbetweenimagecorrespondencesto
estimatedepth.Thedifficult part in stereoscopicdepthes-
timationis to find densecorrespondencemapsbetweenthe
images.The correspondenceproblemis facilitatedby ex-
ploiting constraintsderived from the calibrationandfrom
someassumptionsaboutthe scene. We usean approach
that combineslocal imagecorrelationmethodswith a dy-
namicprogrammingapproachto constrainthe correspon-
dencesearch[14]. This techniquewas first proposedby
Cox [3] and further developedby Koch [13] and Falken-
hagen[5].

This paperis organizedasfollows: In section2 a gen-
eral overview of the systemis given. In the subsequent
sectionsthe different stepsare explained in more detail:
projective reconstruction(section3), self-calibration(sec-
tion 4), densematching(section5) andmodelgeneration
(section6). Section7 concludesthepaper.

2. Overview of the method

Thepresentedsystemgraduallyretrievesmoreinforma-
tion aboutthe sceneand the camerasetup. The first step
is to relatethe differentimages.This is donepairwiseby
retrieving the epipolargeometry. An initial reconstruction
is thenmadefor thefirst two imagesof thesequence.For
thesubsequentimagesthecameraposeis estimatedin the

projectiveframedefinedby thefirst two cameras.For every
additionalimagethat is processedat this stage,theinterest
points correspondingto points in previous imagesare re-
constructed,refinedor corrected.Thereforeit is not neces-
sarythattheinitial pointsstayvisible throughouttheentire
sequence.For sequenceswherepointscan disappearand
reappear, it cannenecessaryto matchthe imagesto other
imagesthanthepreviousone. The algorithmwasadapted
to efficiently dealwith this. The resultof this stepis a re-
constructionof typically a few hundredto a few thousand
interestpointsandthe(projective)poseof thecamera.The
reconstructionis only determinedup to a projective trans-
formation.

The next stepis to restrict the ambiguityof the recon-
structionto a metricone. In a projective reconstructionnot
only the scene,but alsothe camerais distorted.Sincethe
algorithmdealswith unknownscenes,it hasnowayof iden-
tifying this distortion in the reconstruction.Although the
camerais alsoassumedto beunknown,someconstraintson
the intrinsic cameraparameters(e.g. rectangularor square
pixels, constantaspectratio, principal point in the middle
of the image,...) canoften still be assumed.A distortion
onthecameramostlyresultsin theviolationof oneor more
of theseconstraints.A metric reconstruction/calibrationis
obtainedby transformingtheprojectivereconstructionuntil
all the constraintson the camerasintrinsic parametersare
satisfied.

At this point the systemeffectively disposesof a cali-
bratedimagesequence.The relative positionandorienta-
tion of thecamerais known for all theviewpoints.Thiscal-
ibration facilitatesthesearchfor correspondingpointsand
allowsusto useastereoalgorithmthatwasdevelopedfor a
calibratedsystemandwhichallowsto find correspondences
for mostof thepixelsin theimages.

Fromthesecorrespondencesthedistancefrom thepoints
to thecameracentercanbeobtainedthroughtriangulation.
Theseresultsarerefinedandcompletedby combiningthe
correspondencesfrom multiple images.

A densemetric3D surfacemodelis obtainedby approx-
imating the depthmap with a triangularwireframe. The
texture is obtainedfrom the imagesandmappedonto the
surface.

In figure1 anoverview of thesystemis given.It consists
of independentmoduleswhichpasson thenecessaryinfor-
mationto thenext modules.Thefirst modulecomputesthe
projectivecalibrationof thesequencetogetherwith asparse
reconstruction.In the next modulethe metric calibration
is computedfrom the projective cameramatricesthrough
self-calibration.Thendensecorrespondencemapsarees-
timated. Finally all resultsareintegratedin a textured3D
surfacereconstructionof thesceneunderconsideration.

Throughoutthe restof this paperthe differentstepsof
themethodwill beexplainedin moredetail. An imagese-
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Figure 1. Overview of the system: from the
image sequence (

�����	��

�
) the projective re-

construction is computed; the projection ma-
trices � are then passed on to the self-
calibration module whic h deliver s a metric
calibration �	� ; the next module uses these to
compute dense depth maps � ���	��

�

; all these
results are assemb led in the last module to
yield a textured 3D surface model. On the
right side the results of the diff erent modules
are sho wn: the preliminar y reconstructions
(both projective and metric) are represented
by point clouds, the cameras are represented
by little pyramids, the results of the dense
matc hing are accum ulated in dense depth
maps (light means close and dark means far).

Figure 2. First and last image of the Aren-
berg castle sequence . This sequence is used
thr oughout this paper to illustrate the diff er-
ent steps of the reconstruction system.

quenceof the Arenberg castlein Leuven will be usedfor
illustration. Someimagesof this sequencecanbe seenin
Figure2. Thefull sequenceconsistsof 24 imagesrecorded
with a videocamera.

3. Projective reconstruction

At first the imagesarecompletelyunrelated.The only
assumptionis that the imagesform a sequencein which
consecutive imagesdo not differ too much. Thereforethe
local neighborhoodof imagepoints originating from the
samescenepoint shouldlook similar if imagesare close
in thesequence.This allows for automaticmatchingalgo-
rithmsto retrieve correspondences.Theapproachtaken to
obtaina projective reconstructionis very similar to theone
proposedby Beardsley etal. [1].

3.1. Relating the images

It is not feasibleto compareevery pixel of one image
with everypixel of thenext image.It is thereforenecessary
to reducethecombinatorialcomplexity. In additionnot all
pointsareequallywell suitedfor automaticmatching.The
localneighborhoodsof somepointscontainalot of intensity
variationandarethereforeeasyto differentiatefrom others.
TheHarriscornerdetector[9] is usedto selectasetof such
points. Correspondencesbetweentheseimagepointsneed
to beestablishedthrougha matchingprocedure.

Matches are determined through normalized cross-
correlationof the intensity valuesof the local neighbor-
hood. Sinceimagesaresupposednot to differ too much,
correspondingpointscanbe expectedto be found backin
thesameregion of the image.Thereforeat first only inter-
estpointswhich have similar positionsareconsideredfor
matching. Whentwo pointsaremutualbestmatchesthey
areconsideredaspotentialcorrespondences.

Sincetheepipolargeometrydescribesthecompletege-
ometryrelatingtwo views, this is whatshouldberetrieved.



� repeat

- take minimal sample (7 matches)

- compute �
- estimate ���������������

until � OK � ������������� � �"!�# �$��%&�'� �)(+*-, �
� refine � (using all inliers)

Table 1. Robust estimation of the epipolar ge-
ometr y from a set of matc hes containing out-
lier s using RANSAC ( � OK indicates the prob-
ability that the epipolar geometr y has been
correctl y estimated).

Computingit fromthesetof potentialmatchesthroughleast
squaresdoesin generalnotgivesatisfyingresultsdueto its
sensitivity to outliers. Thereforea robustapproachshould
be used. Several techniqueshave beenproposed[29, 31]
basedon robust statistics[25]. Our systemincorporates
theRANSAC (RANdomSAmplingConsesus)[8] approach
usedby Torr etal. [29]. Table1 sketchesthis technique.

Oncetheepipolargeometryhasbeenretrieved,onecan
start looking for morematchesto refinethis geometry. In
this casethe searchregion is restrictedto a few pixels
aroundtheepipolarlines.

3.2. Initial reconstruction

The two first imagesof the sequenceareusedto deter-
mine a referenceframe. The world frameis alignedwith
the first camera.The secondcamerais chosenso that the
epipolargeometrycorrespondsto theretrieved �/.�0 (see[1]
for moredetails).

1 .32 4 576�896 : ; <1 0 2 4=4 > .?0 < 8 � .?0A@ > .�0�BDC :FE�> .�0 < (1)

where 4 >&.�0G<�8 indicatesthevectorproductwith >9.?0 . Equa-
tion 1 is not completelydeterminedby theepipolargeom-
etry (i.e. �/.?0 and >9.�0 ), but has4 moredegreesof freedom
(i.e. �IH � ��J � ��K � E ). B 2L4 �IHM��JN��KO< C determinestheposition
of the planeat infinity and E determinesthe global scale
of the reconstruction.To avoid someproblemsduring the
reconstruction(dueto theviolation of thequasi-Euclidean
assumption),it is recommendedto determine� H � � J � � K in
suchawaythattheplaneatinfinity doesnotcrossthescene.
Our implementationusesanapproachsimilar to thequasi-
Euclideanapproachproposedin [1], but thefocal lengthis
chosensothatmostof thepointsarereconstructedin front
of the cameras.This approachwas inspiredby Hartley’s
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Figure 3. Image matc hes ( PRQ�ST. � PRQ ) are found
as described before . Since the image points,
PUQ�S�. , relate to object points, VWQ , the pose
for view X can be computed from the inf erred
matc hes ( V � PUQ ).

cheirality [11] andthe orientedprojective geometryintro-
ducedby Laveau[16]. Sincethereis no way to determine
theglobalscalefromtheimages,E canarbitrarilybechosen
to EY2[Z .

Once the camerashave been fully determinedthe
matchescan be reconstructedthroughtriangulation. The
optimal methodfor this is given in [12]. This givesus a
preliminaryreconstruction.

3.3. Adding a view

For every additional view the pose towards the pre-
existing reconstructionis determined,thenthe reconstruc-
tion is updated. This is illustratedin Figure 3. The first
stepsconsistsof finding theepipolargeometryasdescribed
in Section3.1. Thenthe matcheswhich correspondto al-
readyreconstructedpointsareusedto computetheprojec-
tion matrix

1 Q . This is doneusinga robustproceduresim-
ilar to the onelaid out in Table1. In this casea minimal
sampleof 6 matchesis neededto compute

1 Q . Once
1 Q

hasbeendeterminedtheprojectionof alreadyreconstructed
pointscanbepredicted.Thisallowsto find someadditional
matchesto refinetheestimationof

1 Q . Thismeansthatthe
searchspaceis graduallyreducedfrom thefull imageto the
epipolarline to thepredictedprojectionof thepoint. This is
illustratedin Figure4.

Oncethecameraprojectionmatrix hasbeendetermined
thereconstructionis updated.Thisconsistsof refining,cor-
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Figure 4. (a) a priori search rang e, (b) search
rang e along the epipolar line and (c) search
rang e around the predicted position of the
point.

rectingor deletingalreadyreconstructedpointsandinitial-
izing new pointsfor new matches.

After thisprocedurehasbeenrepeatedfor all theimages,
onedisposesof cameraposesfor all the views andthe re-
constructionof the interestpoints. In the further modules
mainly the cameracalibrationis used. The reconstruction
itself is usedto obtainanestimateof thedisparityrangefor
thedensestereomatching.

3.4. Relating to other views

The procedureto adda view describedin the previous
sectiononly relatesthe imageto the previous image. In
fact it is implicitly assumedthat oncea point getsout of
sight,it will not comeback.Althoughthis is truefor many
sequences,this assumptionsdoesnot alwayshold. When
the systemis usedto recordthe appearanceof an object
from all around,thecamerais oftenmovedbackandforth.
In thiscasepointswill continuouslydisappearandreappear.

Althoughthis is truefor many sequences,it is certainly
not always the case. For somehand-heldsequencesthe
cameracanbeusedto recordtheappearanceof theobject
from all around.Oftenthecamerawill bemovedbackand
forth to scantheviewing sphereof theobject.With thetra-
ditional schemethis would imply thatnew 3D pointskeep
beinginstantiated.This will not immediatelycauseprob-
lems,but sincefor thesystemthesetwo 3D pointsareunre-
latednothingenforcestheirpositionto correspond.

This is especiallycrucial for longer image sequences
wherethe errorsaccumulate.It resultsin a degradedcal-
ibration or even causesthe failure of the algorithmafter a
certainnumberof views.

A possiblesolutionconsistsof relatingevery new view
with all previousviews usingtheprocedureof Section3.1.
It is clearthat this would requirea considerablecomputa-
tional effort. We proposea morepragmaticapproach.This
approachworkedwell onsomecasesweworkedon.

Let \1^]
betheinitial estimateof thecameraposeobtained

asdescribedin theprevioussection.A criterionis thenused
to definewhichviewsarecloseto theactualview. All these
closeviews arematchedwith theactualview (asdescribed
in Section3.1). For every closeview a setof potential2D-
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Figure 5. Sequential approach (left) and ex-
tended approach (right). In the traditional
scheme view 8 would be matc hed with view 7
and 9 onl y. A point _ whic h would be visib le
in views 2,3,4,7,8,9,12,13 and 14 would there-
fore results in 3 independentl y reconstructed
points. With the extended approach onl y one
point will be instantiated. It is clear that this
results in a higher accurac y for the recon-
structed point while it also dramaticall y re-
duces the accum ulation of calibration errors.

3D correspondencesis obtained.Thesesetsaremergedand
the cameraprojectionmatrix

1^]
is reestimatedusing the

samerobustprocedureasdescribedin theprevioussection.
Figure5 illustratesthisapproach.

We applieda very simple criterion to decideif views
werecloseornot. It workedwell for theapplicationswehad
in mind, but it couldeasilyberefinedif needed.Theposi-
tion ` ] of thecamerais extractedfrom \1 ]

andthedistancea-]cb
to all the other camerapositionsis computed. Close

views are selectedas views for which
aD]db[e Zgf h a ]jik] S�.?l .

Note thatstrictly speakingsuchmeasureis meaninglessin
projective space,but sincea quasi-Euclideaninitialization
wascarriedout andonly local qualitative comparisonsare
madethe obtainedresultsaregood. More detailson this
approachcanbefoundin [15].

4. Upgrading the reconstructionto metric

Thereconstructionobtainedasdescribedin theprevious
paragraphis only determinedup to an arbitraryprojective
transformation.This might besufficient for somerobotics
or inspectionapplications,but certainlynot for visualiza-
tion.

The systemusesthe self-calibrationmethoddescribed
in [19, 23] to restrict the ambiguityon the reconstruction
to metric (i.e. Euclideanup to scale). This flexible self-
calibrationtechniqueallowstheintrinsiccameraparameters
to vary during the acquisition. This featureis especially
usefulwhenthe camerais equippedwith a zoomor with
auto-focus.

It is outsidethescopeof thispaperto discussthismethod
in detail. The generalconceptconsistof translatingcon-
straintson theintrinsiccameraparametersto constraintson



Figure 6. Reconstruction before (top) and af-
ter (bottom) self-calibration.

theabsoluteconic. Oncethis specialconic is identified,it
canbe usedasa calibrationpatternto upgradethe recon-
structionto metric.

Some reconstructions before and after the self-
calibrationstageareshown. Thetop partof Figure6 gives
the reconstructionbeforeself-calibration. Thereforeit is
onlydeterminedupto anarbitraryprojectivetransformation
andmetricpropertiesof thescenecannotbeobservedfrom
this representation.Thebottompartof Figure6 shows the
resultafterself-calibration.At this point thereconstruction
hasbeenupgradedto metric.

5. Densedepth estimation

Only a few scenepoints are reconstructedfrom fea-
ture tracking. Obtaininga densereconstructioncould be
achievedby interpolation,but in practicethisdoesnotyield
satisfactory results. Small surfacedetailswould never be
reconstructedin this way. Additionally, someimportant
featuresareoften missedduring the cornermatchingand
would thereforenotappearin thereconstruction.

Theseproblemscan be avoided by using algorithms
which estimatecorrespondencesfor almostevery point in
the images. Becausethe reconstructionwas upgradedto
metric,algorithmsthatweredevelopedfor calibratedstereo
rigscanbeused.

5.1. Rectification

Sincewehavecomputedthecalibrationbetweensucces-
sive imagepairswe canexploit theepipolarconstraintthat
restrictsthe correspondencesearchto a 1-D searchrange.
It is possibleto re-mapthe imagepair to standardgeome-
try with the epipolarlines coincidingwith the imagescan
lines[13]. Thecorrespondencesearchis thenreducedto a
matchingof the imagepointsalongeachimagescan-line.
This resultsin a dramaticincreaseof thecomputationalef-
ficiency of thealgorithmsby enablingseveraloptimizations
in thecomputations.

For somemotions(i.e. whentheepipoleis locatedin the
image)standardrectificationbasedonplanarhomographies
is not possibleanda moreadvancedprocedureshouldbe
used.RecentlyRoy, MeunierandCox [26] presentedsuch
a method.The ideaof themethodis to rectify the images
on a cylinder in steadof a plane. The methodis however
relatively complex andhassomedisadvantages.

Thesystemdescribedin thispaperusesanew approach.
Themethodcombinessimplicity with minimal imagesize
andworks for all possiblemotions. The ideais to usepo-
lar coordinateswith theepipoleasorigin. Sincetheambi-
guity for the location of matchingpoints in a pair of im-
agesis restrictedto half epipolarlines [16] we only have
to usepositivevaluesfor thelongitudinalcoordinate.Since
(half-)epipolarline transferis fully describedby anoriented
fundamentalmatrix, this is all our methodneeds.Thenec-
essaryinformationis alsoeasilyextractedfrom (oriented)
cameraprojectionmatrices.Theanglebetweentwo consec-
utivehalf-epipolarlinesis computedto have theworstcase
pixels preserve their area. This is doneindependentlyfor
everyhalf-epipolarline. This thereforeresultsin a minimal
imagesize. A morecompletedescriptionof this methodis
givenin [24].

As an examplea rectifiedimagepair from the castleis
shown for boththestandardtechniqueandournew general-
izedtechnique.Figure7 shows therectifiedimagepair for
bothmethods.

A secondexampleshows that themethodsworksprop-
erly whenthe epipoleis in the image. Figure8 shows the
two original imageswhile Figure9 shows thetwo rectified
images. In this casethe standardrectificationprocedure
cannot deliver rectifiedimages.This rectifiedimagepair
wasusedwith successby our standardstereomatchingal-
gorithm.

5.2. Densestereomatching

In addition to the epipolargeometryother constraints
like preservingthe order of neighboringpixels, bidirec-
tional uniquenessof thematch,anddetectionof occlusions
canbe exploited. Theseconstraintsareusedto guide the



Figure 7. Rectified image pair for both meth-
ods: standar d homograph y based method
(top), new method (bottom).

Figure 8. Image pair of a desk a few days be-
fore a deadline . The epipole is indicated by a
white dot (top-right of ’Y’ in ’VOLLEYBALL’).

Figure 9. Rectified pair of images of the desk.
It can be verified visuall y that corresponding
points are located on corresponding image
rows. The right side of the images corre-
sponds to the epipole .



correspondencetowardsthemostprobablescan-linematch
usinga dynamicprogrammingscheme[5].

For densecorrespondencematchinga disparityestima-
tor basedon the dynamic programmingschemeof Cox
et al. [3], is employed that incorporatesthe above men-
tioned constraints. It operateson rectified image pairs�j� Q �m�Gno� wherethe epipolarlines coincidewith imagescan
lines. The matchersearchesat eachpixel in image

� Q for
maximumnormalizedcrosscorrelationin

� n
by shifting a

smallmeasurementwindow (kernelsize5x5 to 7x7 pixel)
along the correspondingscanline. The selectedsearch
stepsize pq� (usually1 pixel) determinesthe searchres-
olution. Matchingambiguitiesare resolved by exploiting
the orderingconstraintin the dynamic programmingap-
proach(seeKoch[13]). Thealgorithmwasfurtheradapted
to employ extendedneighborhoodrelationshipsandapyra-
midal estimationschemeto reliably deal with very large
disparity rangesof over 50% of imagesize (seeFalken-
hagen[5]). This algorithmthat wasat first developedfor
calibratestereorigs (SeeKoch [13]) could easilybe used
for ourpurposessinceatthisstagethenecessarycalibration
informationhadalreadybeenretrievedfrom theimages.

5.3. Multi view matching

Thepairwisedisparityestimationallowsto computeim-
ageto imagecorrespondencebetweenadjacentrectifiedim-
agepairs,andindependentdepthestimatesfor eachcamera
viewpoint. An optimal joint estimateis achieved by fus-
ing all independentestimatesinto a common3D model.
Thefusioncanbeperformedin aneconomicalwaythrough
controlledcorrespondencelinking. Theapproachutilizesa
flexible multi viewpointschemewhichcombinestheadvan-
tagesof smallbaselineandwide baselinestereo(seeKoch,
PollefeysandVanGool [14]).

The resultof this procedureis a very densedepthmap.
Mostocclusionproblemsareavoidedby linking correspon-
dencesfrom up and down the sequence.An exampleof
suchaverydensedepthmapis givenin Figure10.

6. Building the model

The densedepthmapsas computedby the correspon-
dencelinking mustbeapproximatedby a 3D surfacerepre-
sentationsuitablefor visualization.Sofareachobjectpoint
wastreatedindependently. To achievespatialcoherencefor
a connectedsurface,thedepthmapis spatiallyinterpolated
usinga parametricsurfacemodel. The boundariesof the
objectsto bemodeledarecomputedthroughdepthsegmen-
tation. In a first step,an object is definedasa connected
region in space. Simple morphologicalfiltering removes
spuriousandverysmallregions.Thena boundedthin plate
modelis employedwith asecondordersplineto smooththe

Figure 10. Dense depth map (light means near
and dark means far).

surfaceandto interpolatesmallsurfacegapsin regionsthat
couldnotbemeasured.

Thespatiallysmoothedsurfaceis thenapproximatedby
atriangularwire-framemeshto reducegeometriccomplex-
ity andto tailor themodelto therequirementsof computer
graphicsvisualizationsystems.Themeshtriangulationcur-
rently utilizes the referenceview only to build the model.
Thesurfacefusionfrom differentview pointsto completely
closethemodelsremainsto beimplemented.Sometimesit
is notpossibleto obtainasinglemetricframework for large
objectslike buildingssinceonemay not be ableto record
imagescontinuouslyaroundit. In that casethe different
frameworkshave to beregisteredto eachother. This could
bedoneusingavailablesurfaceregistrationschemes[2].

Texturemappingonto thewire-framemodelgreatlyen-
hancestherealismof themodels.As texturemaponecould
takethereferenceimagetexturealoneandmapit to thesur-
facemodel. However, this createsa bias towardsthe se-
lectedimageand imaging artifactslike sensornoise,un-
wantedspecularreflectionsor the shadingof the particu-
lar imageis directly transformedonto the object. A better
choiceis to fuse the texture from the imagesequencein
muchthesamewayasdepthfusion.

The viewpoint linking builds a controlledchainof cor-
respondencesthat canbe usedfor texture enhancementas
well. Theestimationof a robustmeantexturewill capture
thestaticobjectonly andtheartifacts(e.g. specularreflec-
tionsor pedestrianspassingin front of a building) aresup-
pressed.The texture fusion could alsobe doneon a finer
grid, yieldinga superresolutiontexture[17].

An exampleof the resultingmodelcanbe seenin Fig-
ure11. Somemoreviewsof thereconstructionaregivenin
Figure12.



Figure 11. 3D surface model obtained au-
tomaticall y from an uncalibrated image se-
quence , shaded (left), textured (right).

Figure 12. More views of the castle model.

7. Conclusion

An automatic3D scenemodeling techniquewas dis-
cussedthatis capableof building modelsfrom uncalibrated
imagesequences.The techniqueis able to extract metric
3D modelswithoutany prior knowledgeaboutthesceneor
thecamera.Thecalibrationis obtainedby assuminga rigid
sceneandsomeconstraintson theintrinsiccameraparame-
ters(e.g.squarepixels).

Work remainsto be doneto get morecompletemodels
by fusingthepartial3D reconstructions.This will alsoin-
creasetheaccuracy of themodelsandeliminateartifactsat
theoccludingboundaries.For this we canrely on work al-
readydonefor calibratedsystems.
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