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ABSTRACT Sachar et al. [3] suggest using a movable rig with sources in

In this paper we present a novel approach to directly recoveflown configuration, which allows triangulation of the mi-
the location of both microphones and sound sources frofifophones. Raykar and Duraiswami [4] assume co-location
time-difference-of-arrival measurements only. No approx Of microphones and speakers, which simplifies the problem.
mation solution is required for initialization and in the-ab ~ While these approaches provides nice workable solutions
sence of noise our approach is guaranteed to always recoV@ many applications, ultimate flexibility would only come
the exact solution. Our approach only requires solving linWwith the ability to self-calibrate the microphone array fign

ear equations and matrix factorization. We demonstrate thération using only the recorded sensor data from an aritrar

feasibility of our approach with synthetic data. array with unknown spatial configuration. Moses et al. [5]
described a 2D search to solve the initialization problem fo

a planar world. To our knowledge, no approach to attacking
this problem in general in 3D has yet been proposed.
It is relatively straightforward to devise an algorithmtha
1. INTRODUCTION iteratively optimizes an estimate consisting of micropéon
, ) . . spatial configuration and source timings in order to explain
The use of microphone arrays is now widespread. MiCrogq time.difference-of-arrival (TDOA) measurements a#l we
phone arrays enable beamforming and speaker tracking fais hossible [6]. Rockah and Schultheiss [7] investigatetow
applications such as smartrooms, surveillance and eveppngs on the sensitivity of such a potential approach teenoi
recording. In addition there are also multiple applicasion j, the measurements. To achieve optimal accuracy, such an it

for other accoustic sensor networks. erative refinement procedure should be used as the final stage

~ Typically the choice of phase-shifts used to focus on a paras 4, aigorithm. However, this requires a reasonably ateura
ticular spatial location is governed either by a priori kirow

- , ; initialization to converge to the global minimum.
edge of the spatial locations of the microphones, or by adap- - pernans most related to our proposed approachiis the work
tation based on the §|gnals received by the array. In therlatt of Thrun [8] who presents a rank-3 factorization algoritun f
case, when adaptation takes place based on the sensor d@igying for the sensor array, but under the assumptionieat t
the approgches qsed aim to maximize thg signal to noise ratiQ, , ceg gre far away from the microphone array (so that pla-
for a particular S|gnal,. and hence exp.I|C|t knowledge of thenar propagation fronts can be assumed), an assumption which
spatial layout Ef thel rr(ycrop?ohne array IIS notfnecegsary.f o does not hold in applications such as for example smart rooms
However, knowledge of the spatial configuration of the, oy1ended sensor network configurations. Our proposed ap-

microphones is necessary in order to do certain things, Sucflq - is hased on a rank-5 factorization which models spher
as tracking of a speaker in 3D metric space and in genergl,, propagation fronts needed for the general case.
estimating the 3D locations of sources in space [1, 2]. To do

this without estimating the 3D locations of the microphones
would require tedious calibration of a mapping between 2. APPROACH
phase-shifts and locations in 3D space.

On the other hand, the task of calibrating the 3D lo-Letm sound sources indexed lyor 1 < i < m be repre-
cations of the microphones is non-trivial. Apart from the sented by vectors;, = [ Ti Y 2 ]T wherezx;, y;, z; are
obvious approach of physically measuring the locations, apatial coordinates and the represent the (also unknown)
few approaches have been suggested that allow more flexibtimes of departure. Similarly, let microphones indexed
ity by augmenting the measurement situation in some wayy j for 1 < j < n be represented by spatial coordinates

Index Terms— Self-localization, Microphone Array,
Sensor Network, TDOA, Factorization
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obtained by correlating the signal recorded by the differen2.2. Refinement of the absolute timings

microphones. Then we have
(w5 — X;)° + (i = Y5)? + (21 — Z))* = v*(ti; — 1:)*, (1)

whereuv is the speed of sound. This can be expanded into

STM; = v (8], — 2tit; +17), (2)
where
Si = [ sl-Tsi —2$i _2yi _2Zi 1 ]T
M = [ 1 X; Y Z mim; |T

It should be noticed that one can also move the tert o
the left handside of the equation, i.e.
§;TM; = v3(t]; — 2tit:) ©)
with S! = (S;—[v22 0 0 0 0]"). Collecting all
yields an(m x 5).(5 x n) = m x n matrix'equation.

2.1. Computing the time of departure

Once the complete vector of source timirtgsas been com-
puted, the matrix given on the right-hand side of Eq. (3) is
completely determined and can thus be factorized as follows
in two rank 5 matrices:
’U2 (t?j - 2tijti) = SA’ZT]\;[] (6)

In practice this can be achieved by using the singular value
decomposition to obtain the closest rank-5 approximatfon o
’U2(t12j — 2tijti).

When more than the minimal number of sounds are avail-

able, these results can be refined as follows using a simple
iterative procedure. Our goal is to minimize

1 -

. 2 T
argmin [t — 2titi; — 38, My @)
and we do this by alternating between minimizing with re-
spect to variables indexed byand byj. For eachi, (S/,t;)
can be computed using linear least-squares. The ve.ﬁflgrs
can be computed a&f; = {S/}! (2, — 2t;;t;) with 1 rep-

In this paragraph we discuss how the times of departure resenting the Moore-Penrose pseudo inverse. While this it-
can be obtained when TDOA measurements for 5 sources aggative procedure is in principle optional, in the presenice

available for at least 10 microphones. It is obvious from thenoise it significantly improve the quality of the results. rOu

above that then x n matrixT" of coeﬁicients{tfj — 2t}
has to be rank five. Letl = {t7,}, B = {-2t;;} andD a
diagonal matrix witht; as entries. Theff’ can be written

5l @

to separate out the unknowr% Since the first row of\/

T = A+ DB, oralternativelyl' = [ I D | [

experiments show that a few iterations are in general suffi-
cient. Notice that since both steps of our iteration mininiz
the same function, this approach is guaranteed to converge.
After refinementS;" is easily obtained frons, T .

2.3. Computing source and microphone locations

contains only ones, there must exist a linear combination foOf course, at this stage the matri&gind]\}[j are only deter-

each set of five independent rowsBfthat results in a row
[1...1). Defined = [ A Al Al Al Al ] and
B=|B! B! B B' Bl }T for a choice of rows
11,19, 13, 14, 15. Thus there must exist a vectorfor which
- A A
T _ S
c'[1 D] [B] _[1...1]orX[B] =[1...1] (5
. T A
To computeX uniquely, the matri B has to be of rank
hr

10 which implies that this approa
crophones. The absolute timings can be obtained fkbias

t;, = Xr+5/X) and can be solved for five sources at a time. h )
We arbitrarily divide the sources in groups of 5 to solve forPOnes. Sim

t;. Since for each sourcea shift int; would result in a cor-

responding shift in alt;; associated with that source, one is

uires at least 10 mi-

mined up to an arbitrary non-singukax 5 matrix, and are re-
lated toS; andM; by a transformation matrix! asSl-T M; =
S.”H~'HM;. We will compute this transformation as a con-
catenation of three transformatiéh= HqoHg H . The first
transformation»; will ensure that the first row of; is
equal to[1...1]. The secondHs will ensure that the same
is true for the last row oF;. Finally the transformatio

imposes the quadratic consistency constraintd/gror S;.
T

The transformationd,, can be written a OhMI

and ks can be computed by solving the linear system of
equationsh}, M; = 1. This step requires at least 5 micro-
ilarly, the transformatidiis can be written as

-1
hs } andhg can be computed by solving the lin-

free to apply such a shift. For numerical reasons, it is thereear system of equatiorts; S; = 1. In fact the first element of
fore recommended for each souide use zero-mean relative hgs has to be zero (to avoid modifying the first rowf, M;)

timings, i.e. subtract the average vajug" , t;; from the cor-

responding;;. This was shown to improve the accuracy of

the results in our experiments.

and thus only four or more sources are required for this step.
The remaining constraints are quadratic in nature and en-
sure that the quadratic term i) andA/; are consistent with



the linear terms. The constraint i; can be written as: estimation under the assumption of independent Gaussian
noise on the TDOA measurements. The approach minimizes
the following expression:

2
® g Y (L5T04nn) @2
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M, BM; = 0 with B =

oo o+ O
OO = OO
O O OO
O O O Ol

= O O O

Similar constraints can be written down 6y. Here we will

solely use the constraints fdf; as using a mix of constraints 2.5. Planar array - 3D sound

on M; and.S; is non-trivial. Therefore, The case of a planar microphone array recording 3D sound
N . sources is very interesting and can be solved effectivelpup
M; H BHM; =0 (9  aper-source mirroring ambiguity about the microphoneyarra

. . - plane. Let us assume without loss of generality that the mi-
By defining M;j = HsHyM; andQ = Hg BHq the fol-  qhhone array corresponds to thia -plane. In this case we
lowing linear equation is thus obtained for the coeffients Oinave:(a:i X))+ (yi — Y;)? + 22 = v(ty; — t;)%, which

the symmetric matrix): can be expanded to

~ /T ~ ’
M; QM; =0 (10) SiTM; = () — 2tisti), (13)
As H, should leave the first row of// and the last row of; where
unchanged, it must have the following form: Sto= [ sfsi—0% -2z, —2y 1 1"
My o= | 1 X; Yy X24v? T
10000 -1 ! oo T
0 0 The planar structure of the array thus causes the rank of
Hq= 0 | and hence) = 0 the above matrices to drop to four. Therefore, we can use
(1) Y 6 0' d 8 the approach described in Section 2.1 to compute the arrival
3

timings, but enforcing the lower rank which can be done lin-

Therefore, taking into account symmet€y,only has ten ~ €arly using 8 or more microphones. Similarly, the approach
degrees of freedom and these coefficients can be computégscribed in Section 2.3 can be used with the quadratic con-

sound sources) using Eq.(10). Then, it can be verified that @at thez? term in S means that in this case there are no
valid choice forHy, is given by quadratic constraints available for the sources. Qugeand

S/ have been recovered, the location of microphones and

1 0 0O 0 sound sources can be extracted from them as follows:
0 ’ ’ T
Ho = t REK 8 si = {_%5142 —55i3 i\/sél_% (Si3+8:3) +vt? }
T
tTt—Qu 2(t"K—[ Q2 Q13 Qua |) 1 mj=[ Mz M 0]
(11)

Notice that the location of the sources can only be recovered

with K the Cholesky factorization of the middiex 3 part up to a mirror ambiguity about the planar microphone arra
of @ and R andt representing the rotation and translation as- P gurty P P Y-

sociated with the Euclidean and mirroring ambiguity of the

reconstruction (e.g. choose = I andt' = [000] for re- 3. EXPERIMENTS

construction). In summary, this approach to absolute alrriv

timing factorization requires 4/10 or 10/4 microphones and/Ve perform several experiments on synthetic data, both for
sound sources (where the computation of absolute timing§'€ general 3D case, as well as the case of 3D sources sensed
from relative required a minimum of 10/5 microphones and?y @ planararray. For the 3D case, two different synthetie co
source). It should be noted that a similar algorithm can be sdigurations are used. The first configuration consists of both

up for any dimension and in particular in 2D where a rank 4microphones and sound sources being arbitrarily distbut
factorization is obtained. over a unit cube. The second configuration consists of mi-

crophones being placed on a regular grid on three faces of
the unit cube, with sound sources arbitrarily distributethie

unit cube. For the planar microphone array experiments, we
We have also implemented a non-linear least-squares apiso distribute the sources randomly over a unit cube. b thi
proach which allows us to obtain a maximum-likelihoodcase the microphone array consists of a regular grid on one

2.4. Non-linear least-squares refinement



relative error

Fig. 1. Figures illustrating the effect on noise on the estima-
tion of absolute time differences, microphone localization

> and source localization. 3D sound3D array localization
(5s/10m and20s/20m) (top) and3D sound2D array local-
ization Gs/9m and20s/20m) (bottom).

of the faces of the cube. The noise corresponds to indepe
dent Gaussian noise added to the relative time of arrival. dat
The average amplitude of the noise is specified relativedo th
time it takes sound to travel 1m (i.gzll—os). The error corre-
sponds to the mean error after alignment between the leealiz
tion result and the ground truth. In Fig. 1 we can see that with
minimum configurations usable results are obtained forenois
levels belowl0~* while with more data very good results can (2]
already be obtained for a noise levelkif—3. Fig. 2 shows

the effect of varying the number of sources and microphones
on the accuracy of the results. 3]

4. CONCLUSION

In this paper we have presented what is to our knowledge tt%]
first approach for joint source and sensor localizationesti

tion which does not require any initialization. This hasfig

icant advantages for applications where source and semsor [[5]
cations are not approximately known a priori and can enable
opportunistic calibration of sensor arrays. We have shown
through synthetic experiment that the approach provides re
sonable results and is able to successfully initialize Inoear
least-squares optimization. Our future work will consikt o
experiments with real data and exploring applications.

5. REFERENCES (7]

[1] M. S. Brandstein, J. E. Adcock, and H.F. Silverman, “A

closed form location estimator for use with room enV|—[8] S. Thrun,

ronment microphone arrayd,EEE Trans. on Speech and
Audio Processing, 5:45-50, 1997.

relative error

5-30 random 3D sound sources & 20 random 3D microphones (1/1000 noise)
25 |

| ‘\ —=2&— linear t
| \‘ linear m
[ —<—linears
0.02F \ ‘\ 4 A lindnl t
lin+nl m
< lin+nl's

0.015} \ |

<<
< g e

<<

B
<

L . T8 g %MQ_@%@ﬁgﬁﬂﬁﬂ_@ﬂrg

OLoAAANNANNNABANNNAR A AN A

5 10 15 20

# sources

25 30

5 random 3D sources & 10-20 random 3D microphones (1/1000 noise)

| —4— linear t

09r | | linear m
9 | —<—linear s

08l || A lintnlt

| lin+nl m

07F | < lin+nl's

06F ||

05f |~
045
03F

0.2F
018~

10

— ety g

b S m— e == S

12 14 16 18 20
#microphones

Fig. 2. Experiments with varying numbers of microphones
and sources.
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