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Abstract. Modeling of 3D objects from image sequences is one of the
challenging problems in computer vision and has been a research topic for
many years. Important theoretical and algorithmic results were achieved
that allow to extract even complex 3D scene models from images. One
recent effort has been to reduce the amount of calibration and to avoid
restrictions on the camera motion. In this contribution an approach is de-
scribed which achieves this goal by combining state-of-the-art algorithms
for uncalibrated projective reconstruction, self-calibration and dense cor-
respondence matching.

1 Introduction

Obtaining 3D models from objects is an ongoing research topic in computer
vision. A few years ago the main applications were robot guidance and visual
inspection. Nowadays however the emphasis is shifting. There is more and more
demand for 3D models in computer graphics, virtual reality and communication.
This results in a change in emphasis for the requirements. The visual quality
becomes one of the main points of attention.

The acquisition conditions and the technical expertise of the users in these
new application domains can often not be matched with the requirements of
existing systems. These require intricate calibration procedures every time the
system is used. There is an important demand for flexibility in acquisition. Cal-
ibration procedures should be absent or restricted to a minimum.

Additionally, the existing systems are often build around specialized hard-
ware (e.g. laser range finders or stereo rigs) resulting in a high cost for these
systems. Many new applications however require robust low cost acquisition
systems. This stimulates the use of consumer photo- or video cameras.

In this paper we present a system which retrieves a 3D surface model from a
sequence of images taken with off-the-shelf consumer cameras. The user acquires
the images by freely moving the camera around the object. Neither the camera
motion nor the camera settings have to be known. The obtained 3D model is
a scaled version of the original object (i.e. a meiric reconstruction), and the
surface albedo is obtained from the image sequence as well.

Other researchers have presented systems for extracting 3D shape and texture
from image sequences acquired with a freely moving camera. The approach of



Tomasi and Kanade [32] used an affine factorization method to extract 3D from
image sequences. An important restriction of this system is the assumption of
orthographic projection.

Another type of system starts from an approximate 3D model and camera
poses and refines the model based on images (e.g. Facade proposed by Debevec
et al. [5]). The advantage is that less images are required. On the other hand
a preliminary model must be available and the geometry should not be too
complex.

Our system uses full perspective cameras and does not require prior models.
It combines state-of-the-art algorithms of different domains: projective recon-
struction, self-calibration and dense depth estimation.

Projective Reconstruction: It has been shown by Faugeras [7] and Hart-
ley [12] that a reconstruction up to an arbitrary projective transformation was
possible from an uncalibrated image sequence. Since then a lot of effort has been
put in reliably obtaining accurate estimates of the projective calibration of an
image sequence. Robust algorithms were proposed to estimate the fundamental
matrix from image pairs [33,36]. Based on this, an algorithm which sequentially
retrieves the projective calibration of a complete image sequence has been de-
veloped [1]. A more recent version based on the trifocal tensor was presented
in [9].

Self-Calibration: Since a projective calibration is not sufficient for many
applications, researchers tried to find ways to automatically upgrade projective
calibrations to metric (i.e. euclidean up to scale). Typically, it is assumed that
the same camera is used throughout the sequence and that the intrinsic camera
parameters are constant. This proved a difficult problem and many researchers
have worked on it [8,22,35,13,25,34,15,26]. One of the main problems is that
critical motion sequences exist for which self-calibration does not result in a
unique solution [31]. We proposed a more pragmatic approach [27,28] which
assumes that some parameters are (approximately) known but which allows
others to vary. Therefore this approach can deal with zooming/focusing cameras.
Others have proposed similar approaches [2, 16].

Dense Depth Estimation: Since the calibration of the image sequence
has been estimated we can use stereoscopic triangulation techniques between im-
age correspondences to estimate depth. The difficult part in stereoscopic depth
estimation is to find dense correspondence maps between the images. The cor-
respondence problem is facilitated by exploiting constraints derived from the
calibration and from some assumptions about the scene. We use an approach
that combines local image correlation methods with a dynamic programming
approach to constrain the correspondence search [21]. This technique was first
proposed by Gimmel’Farb [10] and further developed by others [4,6,19].

The rest of the paper is organized as follows: In section 2 a general overview
of the system is given. In the subsequent sections the different steps are explained
in more detail: projective reconstruction (section 3), self-calibration (section 4),
dense matching (section 5) and model generation (section 6). Section 7 concludes
the paper.



2 Overview of the method

The presented system gradually retrieves more information about the scene and
the camera setup. The first step is to relate the different images. This is done
pairwise by retrieving the epipolar geometry. An initial reconstruction is then
made for the first two images of the sequence. For the subsequent images the
camera pose is estimated in the projective frame defined by the first two cameras.
For every additional image that is processed at this stage, the interest points cor-
responding to points in previous images are reconstructed, refined or corrected.
Therefore it 1s not necessary that the initial points stay visible throughout the
entire sequence. The result of this step is a reconstruction of typically a few hun-
dred interest points. The reconstruction is only determined up to a projective
transformation.

The next step is to restrict the ambiguity of the reconstruction to a met-
ric one. In a projective reconstruction not only the scene, but also the camera
is distorted. Since the algorithm deals with unknown scenes, it has no way of
identifying this distortion in the reconstruction. Although the camera is also as-
sumed to be unknown, some constraints on the intrinsic camera parameters (e.g.
rectangular or square pixels, constant aspect ratio, principal point in the middle
of the image, ...) can often still be assumed. A distortion on the camera mostly
results in the violation of one or more of these constraints. A metric reconstruc-
tion/calibration is obtained by transforming the projective reconstruction until
all the constraints on the cameras intrinsic parameters are satisfied.

At this point the system effectively disposes of a calibrated image sequence.
The relative position and orientation of the camera is known for all the view-
points. This calibration facilitates the search for corresponding points and allows
us to use a stereo algorithm that was developed for a calibrated system. This
step allows to find correspondences for most of the pixels in the images.

From these correspondences the distance from the points to the camera center
can be obtained through triangulation. These results are refined and completed
by combining the correspondences from multiple images.

A dense metric 3D surface model is obtained by approximating the depth
map with a triangular wire frame. The texture is obtained from the images and
mapped onto the surface.

In figure 1 an overview of the systems is given. It consists of independent
modules which pass on the necessary information to the next modules. The
first module computes the projective calibration of the sequence together with
a sparse reconstruction. In the next module the metric calibration is computed
from the projective camera matrices through self-calibration. Then dense corre-
spondence maps are estimated. Finally all results are integrated in a textured
3D surface reconstruction of the scene under consideration.

Throughout the rest of the paper the different steps of the method will be
explained in more detail. An image sequence of the Arenberg castle in Leuven
will be used for illustration. Some of the images of this sequence can be seen in
Figure 2. The full sequence consists of 24 images recorded with a video camera.
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Fig.1. Overview of the system: from the image sequence (I(z,y)) the projective re-
construction is computed; the projection matrices P are then passed on to the self-
calibration module which delivers a metric calibration Pas; the next module uses these
to compute dense depth maps D(z,y); all these results are assembled in the last mod-
ule to yield a textured 3D surface model. On the right side the results of the different
modules are shown: the preliminary reconstructions (both projective and metric) are
represented by point clouds, the cameras are represented by little pyramids, the results
of the dense matching are accumulated in dense depth maps (light means close and
dark means far).



Fig. 2. Some images of the Arenberg castle sequence. This sequence is used throughout
the paper to illustrate the different steps of the reconstruction system.

2.1 Notations

In this section some notations used in this paper are introduced. A detailed
explanation of the basic concepts can be found in [23]. Projective geometry and
homogeneous coordinates are used throughout this paper. Metric entities are
indicated with a subscript M.

The following equation is used to describe the perspective projection of the
scene onto the images

mox PM ()

where P is a 3 x 4 projection matrix describing the perspective projection pro-
cess, M = [XYZ1]T and m = [z y1]T are vectors containing the homogeneous
coordinates of the world points respectively image points. Note that o will be
used throughout this paper to indicate equality up to a non-zero scale factor.
Indexes ¢ and j will be used for points (e.g. M;), indexes k and ! for views (e.g.
Py).

In the metric case the camera projection matrix factorizes as follows:
P = K[R | -R{] (2)

Here (R,t) denotes a rigid transformation (i.e. R is a rotation matrix and ¢ is
a translation vector) which indicate the position and orientation of the camera,
while the upper triangular calibration matrix K encodes the intrinsic parameters
of the camera:
fo 5 ug
K= fy uy (3)
1

where f; and f, represent the focal length divided by the pixel width resp.
height, (ug, uy) represents the principal point and s is a factor which is zero for
rectangular pixels.

The following notations are used for the epipolar geometry: Fg; is the fun-
damental matrix for views k and I, eg; is the epipole corresponding to this
fundamental matrix in view [.



3 Projective reconstruction

At first the images are completely unrelated. The only assumption is that the
images form a sequence in which consecutive images do not differ too much.
Therefore the local neighborhood of image points originating from the same
scene point should look similar if images are close in the sequence. This allows
for automatic matching algorithms to retrieve correspondences.

3.1 Relating the images

It 1s not feasible to compare every pixel of one image with every pixel of the
next image. It is therefore necessary to reduce the combinatorial complexity.
In addition not all points are equally well suited for automatic matching. The
local neighborhoods of some points contain a lot of intensity variation and are
therefore easy to differentiate from others. An interest point detector (i.e. the
Harris corner detector [11]) is used to select a certain number of such suited
points. These points should be well located and indicate salient features that
stay visible in consecutive images. Correspondences between these image points
need to be established through a matching procedure.

Matches are determined through normalized cross-correlation of the intensity
values of the local neighborhood. Since images are supposed not to differ too
much, corresponding points can be expected to be found back in the same region
of the image. Therefore at first only interest points which have similar positions
are considered for matching. When two points are mutual best matches they are
considered as potential correspondences.

Since the epipolar geometry describes the complete geometry relating two
views, this is what should be retrieved. Computing it from the set of potential
matches through least squares does in general not give satisfying results due to
its sensitivity to outliers. Therefore a robust approach should be used. Several
techniques have been proposed [33, 36] based on robust statistics [29]. Our system
incorporates the RANSAC (RANdom SAmpling Consesus) approach used by
Torr [33]. Table 1 sketches this technique.

® repeat
- take minimal sample (7 matches)
- compute F
- estimate %inliers
until Ppg(%inliers, #trials) > 95%
e refine F (using all inliers)

Table 1. Robust estimation of the epipolar geometry from a set of matches containing
outliers using RANSAC (Ppg indicates the probability that the epipolar geometry has
been correctly estimated).



Once the epipolar geometry has been retrieved, one can start looking for
more matches to refine this geometry. In this case the search region is restricted
to a few pixels around the epipolar lines.

3.2 Initial reconstruction

The two first images of the sequence are used to determine a reference frame.
The world frame is aligned with the first camera. The second camera 1s chosen
so that the epipolar geometry corresponds to the retrieved Fio (see [23]).

P, = [ I3xs 0 ]
Py = [[e1a)xF12 + e12a" aseqn]

(4)

where [e12]x indicates the vector product with e15. Equation 4 is not completely
determined by the epipolar geometry (i.e. F12 and e12), but has 4 more degrees of
freedom (i.e. a;,i = 1...4). a = [ayazas] " determines the position of the plane at
infinity and a4 determines the global scale of the reconstruction. To avoid some
problems during the reconstruction it is recommended to determine a in such
a way that the plane at infinity does not cross the scene. Our implementation
follows the quasi-Euclidean approach proposed in [1], but an alternative would
be to use Hartley’s cheirality [13] or oriented projective geometry [18]. Since
there is no way to determine the global scale from the images, a4 can arbitrarily
be chosen to a4 = 1.

Once the cameras have been fully determined the matches can be recon-
structed through triangulation. The optimal method for this is given in [14].
This gives us a preliminary reconstruction.

3.3 Adding a view

For every additional view the pose towards the pre-existing reconstruction is
determined, then the reconstruction is updated. This is illustrated in Figure 3.

The first steps consists of finding the epipolar geometry as described in Sec-
tion 3.1. Then the matches which correspond to already reconstructed points
are used to compute the projection matrix Pg. This is done using a robust pro-
cedure similar to the one laid out in Table 1. In this case a minimal sample of 6
matches is needed to compute Pj. Once Py has been determined the projection
of already reconstructed points can be predicted. This allows to find some addi-
tional matches to refine the estimation of Pg. This means that the search space
is gradually reduced from the full image to the epipolar line to the predicted
projection of the point. This is illustrated in Figure 4.

Once the camera projection matrix has been determined the reconstruction
is updated. This consists of refining, correcting or deleting already reconstructed
points and initializing new points for new matches.

After this procedure has been repeated for all the images, one disposes of
camera poses for all the views and the reconstruction of the interest points. In
the further modules mainly the camera calibration is used. The reconstruction
itself is used to obtain an estimate of the disparity range for the dense stereo
matching.
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Fig.3. Image matches (mk_l,mk) are found as described before. Since the image

points, my_1, relate to object points, My, the pose for view k can be computed from
the inferred matches (M, my).
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Fig.4. (a) a priori search range, (b) search range along the epipolar line and (c) search
range around the predicted position of the point.

4 Self-calibration

The reconstruction obtained as described in the previous paragraph is only de-
termined up to an arbitrary projective transformation. This might be sufficient
for some robotics or inspection applications, but certainly not for visualization.
In this section a technique to restrict this ambiguity to metric is described.

For a metric calibration the factorization of the camera projection matrices
as in Equation 2 yields the physical parameters of the camera. A necessary
condition for a metric reconstruction is therefore that constraints which exist on
the intrinsic camera parameters are verified through this factorization.

To apply the following method to standard zooming/focusing cameras, some
assumptions should be made. Often it can be assumed that pixels are rectan-
gular or even square. If necessary (e.g. when only a short image sequence is at
hand, when the projective calibration is not accurate enough or when the motion



sequence is close to critical [31] without additional constraints), it can also be
used that the principal point is close to the center of the image.

For the actual computations the absolute conic w is used. This is an imaginary
conic located in the plane at infinity /7.,. Both entities are the only geometric
entities which are in invariant under all Euclidean transformations. The plane at
infinity and the absolute conic respectively encode the affine and metric proper-
ties of space. This means that when the position of 1, is known in a projective
framework, affine invariants can be measured. Since the absolute conic is in-
variant under Euclidean transformations its image only depends on the intrinsic
camera parameters (focal length, ...) and not on the extrinsic camera parameters
(camera pose). The following equation applies for the dual image of the absolute
conic:

wi o« KpKJ (5)
Therefore constraints on the intrinsic camera parameters are readily translated
to constraints on the dual image of the absolute conic. This image is obtained
from the absolute conic through the following projection equation:

wi < PP (6)

where §2* is the dual absolute quadric which encodes both the absolute conic and
its supporting plane, the plan at infinity. The constraints on wj, can therefore be
back-projected through this equation. The result is a set of constraints on the
position of the absolute conic (and the plane at infinity).

Our systems first uses a linear method to obtain an approximate calibration.
This calibration is then refined through a non-linear optimization step in a second
phase.

4.1 Initial calibration

To obtain a linear algorithm some assumptions have to be made. If the pixels
are square and the principal point is in the middle of the image, the image can
be transformed to obtain the following intrinsic camera parameters:

fr 00
K, = fx 0 (7)
1

This simplifies Equation (6) as follows:

f2 0 0 C1 Cy C3 C4

k .

A0 f20| =P, |25 % 7| p] (8)
001 C3 Cg C8 C9

Cq C7 C9 C10

with A an explicit scale factor. From the left-hand side of Eq. (8) it can be seen
that the following equations have to be satisfied:

wp 0 =™, (9)



wz(u) = wz(m) = wz(%) =0 (10)
wi) = B — )+ (B2) — g | (11)

with w,’;(ij) representing the element on row ¢ and column j of w}. Note that due
to symmetry (10) and (11) result in identical equations. These constraints can
thus be imposed on the right-hand side, yielding 4 independent linear equations
inc¢,2=1...10 for every image:

Pk(l)mpk(l)T _ Pk(z)mpk(z)T
2PN ™" =0
ap Mo p®" =g
2P p®" = 0

with Pk(]) representing row j of Py and {2, parameterized as in (8). The rank
3 constraint can be imposed by taking the closest rank 3 approximation (using
SVD for example). This approach holds for sequences of 3 or more images. The
special case of 2 images can also be dealt with, but with a slightly different
approach. For more details see [28].

4.2 Refined calibration

To refine the calibration Eq. (6) is used directly in a non-linear least squares
criterion. In this case the user is free to specify the constraints which should be
imposed. Every intrinsic parameter can be known, fixed or free. The dual image
absolute conics wy; should be parameterized in such a way that these constraints
are enforced. For the absolute quadric £2* a parameterization should be used
which takes into account the symmetry and the rank 3 constraint. Since 2% is
only determined up to scale this leaves us with a minimum parameterization of 8
parameters. This can be done by putting {255 = 1 and by calculating §2}, from the
rank 3 constraint. The following parameterization satisfies these requirements:

T T
Q*:[ KK' —-KK a] (1)

—a"KK" «"KK"a

Here a defines the position of the plane at infinity /T, = [a' 1]T. In this case
the transformation from projective to metric is particularly simple:
K10 .

Tp_m = [ ol 1] (13)

An approximate solution to these equations can be obtained through non-linear
least squares. The following criterion should be minimized (||.||r is the Frobenius

norm):

n 2

KK/ P; P
KK |lr |[P:;2*P]||F

min

(14)

i=1 F



5 Dense depth estimation

Only a few scene points are reconstructed from feature tracking. Obtaining a
dense reconstruction could be achieved by interpolation, but in practice this does
not yield satisfactory results. Small surface details would never be reconstructed
in this way. Additionally, some important features are often missed during the
corner matching and would therefore not appear in the reconstruction.

These problems can be avoided by using algorithms which estimate corre-
spondences for almost every point in the images. At this point algorithms can
be used which were developed for calibrated stereo rigs.

5.1 Rectification

Since we have computed the calibration between successive image pairs we can
exploit the epipolar constraint that restricts the correspondence search to a 1-D
search range. It is possible to re-map the image pair to standard geometry with
the epipolar lines coinciding with the image scan lines [19]. The correspondence
search is then reduced to a matching of the image points along each image scan-
line. This results in a dramatic increase of the computational efficiency of the
algorithms by enabling several optimizations in the computations. The rectifica-
tion procedure is illustrated in Figure 5. For some motions (i.e. when the epipole
is located in the image) standard rectification based on planar homographies is
not possible and a more advanced procedure should be used [30].

Fig. 5. Through the rectification process the image scan lines are brought into epipolar
correspondence. This allows important gains in computational efficiency and simplifi-
cation of the dense stereo matching algorithm.



5.2 Dense stereo matching

In addition to the epipolar geometry other constraints like preserving the order
of neighboring pixels, bidirectional uniqueness of the match, and detection of
occlusions can be exploited. These constraints are used to guide the correspon-
dence towards the most probable scan-line match using a dynamic programming
scheme [6].

For dense correspondence matching a disparity estimator based on the dy-
namic programming scheme of Cox et al. [4], is employed that incorporates the
above mentioned constraints. Tt operates on rectified image pairs (I, [;) where
the epipolar lines coincide with image scan lines. The matcher searches at each
pixel in image I for maximum normalized cross correlation in I; by shifting a
small measurement window (kernel size 5x5 to 7x7 pixel) along the correspond-
ing scan line. The selected search step size AD (usually 1 pixel) determines the
search resolution. Matching ambiguities are resolved by exploiting the ordering
constraint in the dynamic programming approach [19]. The algorithm was fur-
ther adapted to employ extended neighborhood relationships and a pyramidal
estimation scheme to reliably deal with very large disparity ranges of over 50%
of image size [6].

5.3 Multiview matching

The pairwise disparity estimation allows to compute image to image correspon-
dence between adjacent rectified image pairs, and independent depth estimates
for each camera viewpoint. An optimal joint estimate is achieved by fusing all
independent estimates into a common 3D model. The fusion can be performed
in an economical way through controlled correspondence linking. The approach
utilizes a flexible multi viewpoint scheme which combines the advantages of small
baseline and wide baseline stereo [21].

Assume an image sequence with £ = 1 — n images. Starting from a reference
view point k the correspondences between adjacent images (k+ 1,k + 2,...,n)
and (k—1,k—2,...,1) are linked in a chain. The depth for each reference image
point my, is computed from the correspondence linking that delivers two lists of
image correspondences relative to the reference, one linking down from £ — 1
and one linking up from & — n. For each valid corresponding point pair (xx, x1)
we can triangulate a depth estimate d(zy, ;) along Sy,, with e; representing the
depth uncertainty. The left part of Figure 6 visualizes the decreasing uncertainty
interval during linking.

While the disparity measurement resolution AD in the image is kept constant
(at 1 pixel), the reprojected depth error e; decreases with the baseline. Outliers
are detected by controlling the statistics of the depth estimate computed from
the correspondences. All depth values that fall within the uncertainty interval
around the mean depth estimate are treated as inliers. They are fused by a 1-D
kalman filter to obtain an optimal mean depth estimate. Outliers are undetected
correspondence failures and may be arbitrarily large. As threshold to detect the
outliers we utilize the depth uncertainty interval e;.



The result of this procedure 1s a very dense depth map. Most occlusion prob-
lems are avoided by linking correspondences from up and down the sequence.
An example of such a very dense depth map is given in Figure 6.

P P Pk+]

k
Downward linking <-- upward linking _—

Fig.6. Depth fusion and uncertainty reduction from correspondence linking (left),
Resulting dense depth map (light means near and dark means far) (right).

6 Building the model

The dense depth maps as computed by the correspondence linking must be
approximated by a 3D surface representation suitable for visualization. So far
each object point was treated independently. To achieve spatial coherence for
a connected surface, the depth map is spatially interpolated using a paramet-
ric surface model. The boundaries of the objects to be modeled are computed
through depth segmentation. In a first step, an object is defined as a connected
region in space. Simple morphological filtering removes spurious and very small
regions. We then employ a bounded thin plate model with a second order spline
to smooth the surface and to interpolate small surface gaps in regions that could
not be measured. If the object consist of dominant planar regions, the local
surface normal may be exploited to segment the object into planar parts [20].
The spatially smoothed surface is then approximated by a triangular wire-
frame mesh to reduce geometric complexity and to tailor the model to the re-
quirements of Computer Graphics visualization systems. The mesh triangulation
currently utilizes the reference view only to build the model. The surface fusion
from different view points to completely close the models remains to be imple-
mented. Sometimes it is not possible to obtain a single metric framework for
large objects like buildings since one may not be able to record images contin-
uously around it. In that case the different frameworks have to be registered to
each other. This will be done using available surface registration schemes [3].
Texture mapping onto the wire-frame model greatly enhances the realism of
the models. As texture map one could take the reference image texture alone and



map it to the surface model. However, this creates a bias towards the selected
image and imaging artifacts like sensor noise, unwanted specular reflections or
the shading of the particular image is directly transformed onto the object. A
better choice is to fuse the texture from the image sequence in much the same
way as depth fusion.

The viewpoint linking builds a controlled chain of correspondences that can
be used for texture enhancement as well. The estimation of a robust mean texture
will capture the static object only and the artifacts (e.g. specular reflections or
pedestrians passing in front of a building) are suppressed [17]. The texture fusion
could also be done on a finer grid, yielding a super resolution texture [24].

An example of the resulting model can be seen in Figure 7.

Fig. 7. 3D surface model obtained automatically from an uncalibrated image sequence,

shaded (left), textured (right).

7 Conclusion

An automatic 3D scene modeling technique was discussed that is capable of
building models from uncalibrated image sequences. The technique is able to
extract metric 3D models without any prior knowledge about the scene or the
camera. The calibration is obtained by assuming a rigid scene and some con-
straints on the intrinsic camera parameters (e.g. square pixels).

Work remains to be done to get more complete models by fusing the partial
3D reconstructions. This will also increase the accuracy of the models and elim-
inate artifacts at the occluding boundaries. For this we can rely on work already
done for calibrated systems.
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