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Abstract

Real-world camera networks are often characterized by
very wide baselines covering a wide range of viewpoints.
We describe a method not only calibrating each camera se-
quence added to the system automatically, but also taking
advantage of multi-view correspondences to make the en-
tire calibration framework more robust. Novel camera se-
quences can be seamlessly integrated into the system at any
time, adding to the robustness of future computations.

One of the challenges consists in establishing correspon-
dences between cameras. Initializing a bag of features from
a calibrated frame, correspondences between cameras are
established in a two-step procedure. First, affine invariant
features of camera sequences are warped into a common
coordinate frame and a coarse matching is obtained be-
tween the collected features and the incrementally built and
updated bag of features. This allows us to warp images to
a common view. Second, scale invariant features are ex-
tracted from the warped images. This leads to both more
numerous and more accurate correspondences. Finally, the
parameters are optimized in a bundle adjustment. Adding
the feature descriptors and the optimized 3D positions to
the bag of features, we obtain a feature-based scene ab-
straction, allowing for the calibration of novel sequences
and the correction of drift in single-view calibration track-
ing. We demonstrate that our approach can deal with wide
baselines. Novel sequences can seamlessly be integrated in
the calibration framework.

1. Introduction and Related Work
Motivation Camera networks are prevalent in many

areas like surveillance applications and sports broadcasts.
Multiple calibrated cameras capturing the same scene can
be harnessed to extract 3D data from the 2D images. This
data can be measurements like the height, the 3D position or
the movement of an object. It may even be used to synthe-
size novel views or to add virtual drawings to the scene, e.g.
to enhance the experience of sports broadcasts [11, 12, 7].

The cameras capturing the scene can range from pan-

Figure 1. Starting from a calibrated frame, the proposed method
calibrates a network of cameras. The images shown were captured
by cameras separated by a very wide baseline. The successful
calibration is visualized by projecting a wireframe model of the
playing field.

tilt-zoom cameras to rail and spider cameras (i.e. moving
cameras). To capture the scene from different viewpoints
and to recover as much information as possible, cameras
are often separated by very wide baselines. While this
provides the user with extensive coverage, the feature
matching between different cameras, beneficial or even
necessary for camera calibration and 3D reconstruction,
becomes very difficult.

Related Work Several techniques for feature extraction
and description have been proposed over the past few years
[8, 10, 18]. The degree of invariance towards changes in
viewpoint differs and comes at the cost of distinctiveness.
When captured by a camera, planar surface patches undergo
perspective transformations. The synthesis of novel views
and viewpoint normalization can reverse this process. Con-
sequently, descriptors extracted from such views need not
be invariant towards affine or projective transformations and
can therefore be more distinctive. Normalized viewpoints
have been used successfully to improve the matching of im-
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age regions [6, 19]. We use the idea of normalized patches
to extract matches on dominant scene planes.

If it is known that cameras are capturing the same scene
for a long periode of time, it makes sense to extract an ab-
stract representation or to build a model of the scene being
captured. The extraction of features from images to gener-
ate abstract representations of the real world is commonly
used in location recognition and visual localization. Fea-
ture descriptors are not only associated with an image and
2D geometry information like scale and rotation, but they
are linked to 3D geometry. Descriptors extracted from a
new image are matched to a database containing feature de-
scriptors and 3D information. The 3D information can be
used for pose estimation and efficient matching [19, 2].

To the best of our knowledge no multi-view approaches
for camera calibration have been presented in sports
specific research. Large parts of the scenes are dynamic,
cameras are separated by wide baselines and features are
often occluded. This makes it hard to extract multi-view
correspondences. Existing approaches deal with each
camera separately, often relying on the known appearance
and geometry of the playing field [16, 3]. There, lines
are used to initialize and track the calibration or to avoid
drift when using optical flow based trackers. While these
approaches proved to be rather successful for single-view
usage like augmented reality on the playing field, they lack
the multi-view constraints, which reduce the relative error
between cameras. This is important for 3D reconstruction
or free-viewpoint rendering.

Contributions In this paper we present a framework
to calibrate camera sequences separated by wide baselines,
where additional sequences can be integrated into the sys-
tem at any time, adding to its stability. Cameras are not
required to capture the scene at the same time and, in par-
ticular, they do not have to be synchronized. By providing
the calibration of a single frame, a method to extract and up-
date a feature-based representation of the scene being cap-
tured is bootstrapped, taking advantage of different kinds of
features.

In the feature matching stage, the large tolerance which
MSER [10] features provide towards changes in viewpoint
is leveraged and combined with SIFT [8] in a two-step
matching procedure. The special structure of homographies
mapping scene planes to images leads to a very efficient
2-point RANSAC when matching MSER features. To in-
crease the robustness of the matching stage, features ex-
tracted from several frames are transformed and collected
before matching. A feature based representation of the
scene is created and updated using a very simple yet ef-
fective strategy based on the visibility and the uniqueness
of features.

This paper is structured as follows. An overview of the

Figure 2. MSER and SIFT features are stored in a regularly up-
dated bag of features representing the playing field. Red dots indi-
cate positions on the playing field associated with the features.

proposed system is given in Section 2, followed by a formal
description of the technical part in Section 3. The setup for
our experiments and the results can be found in Section 4.
Finally, we conclude the paper in Section 5.

2. System Overview
Usually the raw material of sports broadcast consists of

the video streams provided by a variety of cameras, in-
cluding fixed cameras, pan-tilt-zoom cameras, rail cameras,
spider cameras, cameras mounted on large robot arms and
cameras carried by humans. All of them except for the
completely fixed cameras change zoom and orientation and
some of them also change pose. In the following we work
with sequences of video streams provided by such cameras.
Our goal is to determine the 6 degrees of freedom of the
camera extrinsics as well as the focal lengths, both for ev-
ery frame. Radial distortion can be estimated in the bundle
adjustment step [17].

An overview of the presented system is depicted in Fig-
ure 3. It is initialized with a single calibrated frame (e.g.
Figure 6(a)), which determines absolute scale, rotation and
translation of the scene. The initial calibration is prop-
agated to a few neighboring frames using a KLT feature
tracker [9, 13]. Given the resulting coarse calibration for
those neighboring frames, MSER features are extracted and
warped onto the playing field, i.e. the ellipses characteriz-
ing the MSER features are backprojected onto the playing
field. The warped features initialize a bag of features (Fig-
ure 2), providing an abstract representation of the playing
field (Section 3.1). This concludes the initialization stage
(Figure 3(a)).

Whenever a new sequence is added to the system in the
main loop (Figure 3(b)), the input images are registered us-
ing homographies. MSER features are extracted in all im-
ages and collected in a reference image. This feature col-
lection is matched with the bag of features more robustly
than features extracted from a single frame only. The affine
transformations extracted from MSER feature matches lead
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Figure 3. (a) The initialization of the bag of features (b) The main loop

to a very efficient 2-point RANSAC (Section 3.2).
From the resulting MSER matches coarse initial calibra-

tions are obtained, which allows us to warp input images
into fronto-parallel views before SIFT features are extracted
and matched. In a subsequent bundle adjustment the camera
parameters and the positions of the features on the playing
field are refined (Section 3.3). The bag of features is up-
dated by warping and adding the new MSER features and
SIFT features along with their optimized 3D positions. In
order not to grow the bag of features continously and in
order to keep it discriminative, a simple updating scheme
based on visibility, scale and viewpoint criteria is applied
(Section 3.4).

3. Technical Part

3.1. Initializing the System

The whole system is initialized with a calibrated frame.
There are several ways to obtain such a frame. While au-
tomatic line based methods exist [16], it is difficult to re-
liably detect field lines in sports like ice hockey and bas-
ketball. Therefore, the user is required to hand-click a few
predefined points on the playing field (e.g. corners of play-
ing field) to make sure that the initial calibration is correct.
Due to the standardized geometry the absolute scale of the
scene is known. The 3D coordinate frame is chosen such
that the playing field coincides with the xy-plane. Starting
from this calibrated frame, the calibration is propagated to
a few neighboring frames using a GPU based KLT feature
tracker. Since the calibration and the geometry of the sta-
dium are known, only features lying on the playing field
are tracked. Additionally, a simple chromakeying based on
a Gaussian mixture model of the colors on the playing field
followed by some morphological operations allows us to get

rid of most of the feature points detected on players, refer-
ees and balls. Feature tracks are pruned in a RANSAC step
by making sure they can be explained by a homography.

Once all frames of the initial sequence are calibrated,
MSER features are extracted for several keyframes, again
ignoring parts of the image not corresponding to the play-
ing field. Every 15th frame of the sequence is chosen to
be a keyframe. Applying the affine invariant MSER feature
detector results in a number of interest points and ellipses
[10]. Warping an image patch centered at the interest point
such that the ellipse associated with it becomes a unit circle
renders the image patch invariant to affine transformations,
except for rotation. Using the SIFT descriptor, the ambi-
guity in rotation is removed by aligning the image patch
according to its dominant orientation [8]. The SIFT de-
scriptor extracted from the normalized image patch is used
for matching the MSER feature with other MSER features.
Combining the normalizing affine transformations from two
corresponding MSER features leads to an affine transforma-
tion between them, i.e. an affine correspondence.

Since the camera calibration of the initial sequence is
known, the MSER features extracted from novel query im-
ages can be matched directly with the playing field instead
of the calibrated images. For that purpose the affine trans-
formations extracted from the calibrated frames need to be
updated accordingly. Each ellipse in an image corresponds
to an ellipse on the playing field. In order to be able to ex-
tract affine correspondences between the playing field and
a query image, the transformations mapping the ellipses in
the calibrated images to oriented unit circles need to be pre-
ceeded by the transformations mapping the ellipses on the
playing field to the ellipses in the images. These local map-
pings of image patches on the playing field to the corre-
sponding patches in the images are given by the Jacobians

323



of the homographies mapping the playing field to the im-
ages.

Due to the spatial coherence within successive frames
some features are extracted several times. All MSER fea-
tures together with their affine transformations and 3D posi-
tions are used to initialize the bag of features. While dupli-
cates can be detected and eliminated by matching features
across frames, the task of handling multiple occurences and
features not useful for matching is left to the bag of features,
as explained in Section 3.4.

3.2. Adding Additional Sequences

Once a novel sequence is added to the system, MSER
features are extracted exactly like in the initial step. Since
the camera parameters are unknown, the audience cannot be
eliminated as before. However, assuming the camera shows
the playing field to a large extent, the chromakeying, the
KLT feature tracker and the RANSAC step can still be used
to get homographies relating the image parts showing the
playing field in neighboring frames. By accumulating the
homographies, a mapping between any two images of the
sequence is provided. In particular, this leads to a mapping
from any image to the first image of the sequence. This
means that all MSER features can be warped into the co-
ordinate frame of the first image. Again, apart from the
feature positions the affine transformations normalizing the
image patches need to be adjusted as well. This is analogue
to Section 3.1. Instead of using the mapping of the playing
field to the image, the homography between the two images
is used.

To obtain a coarse calibration for the new sequence, the
collected features are matched with the bag of features. A
match between MSER features fi and fj is a valid candi-
date match if and only if fi is the most similar feature to
fj and vice versa. The resulting matches usually contain
many outliers. The additional information provided by the
ellipses obtained from MSER detections provides us with
the means to apply an efficient 2-point RANSAC to extract
the homography mapping the playing field to the image [1].
We pick up ideas from Koeser et al. to calculate a homogra-
phy from two affine correspondences [5]. The key observa-
tion is that, locally, affine feature correspondences provide
a first order Taylor approximation to homographies. While
Koeser et al. present the case of conjugate rotations, a dif-
ferent method is necessary to deal with unkown poses and
unknown focal lengths. The homography H describing the
mapping from the playing field to the image has the follow-

ing structure:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33


= λK

f 0 0
0 f 0
0 0 1

(r1 r2 t
)
. (1)

K contains known intrinsic camera parameters and f de-
notes the unknown focal length. r1 and r2 denote the first
and the second column of the camera rotation matrix, re-
spectively, and t is a translation vector. Since r1 and r2 are
columns of a rotation matrix, the following constraint on the
entries of H has to hold:

0 = (h11h12 + h21h22)(h2
32 − h2

31)
+h31h32(h2

11 + h2
21 − h2

12 − h2
22) (2)

One affine correspondence together with one point corre-
spondence is already enough to determine the homogra-
phy. Actually, it is already enough to have the x- or the y-
coordinate of the point correspondence while the second co-
ordinate can already be used to verify the generated hypoth-
esis. A more detailed derivation is given in the appendix.

If the hypothesis obtained from two affine correspon-
dences is valid, it is verified using the remaining correspon-
dences. The threshold in the RANSAC procedure should
be adapted for individual features due to the warp of the
features. Each feature is warped using a homography. The
determinant of the Jacobian of this mapping indicates the
amount of magnification of the image area around a fea-
ture. The RANSAC threshold can be adjusted accordingly
for every feature. If the number of inliers exceeds a certain
threshold and the hypothesized homography does not de-
scribe a degenerate case, correspondences are assumed to
be valid and they are used to initialize the camera parame-
ters of the new sequence.

3.3. Calibration Refinement

The coarse initial calibration of all sequences added to
the system so far can be refined in a bundle adjustment at
any time. Since the correspondences obtained using MSER
features are not very accurate and not very numerous, a dif-
ferent strategy is applied to extract the correspondences for
the bundle adjustment.

The coarse calibrations obtained from the MSER
matches provide a very good idea of which views should
be overlapping. For each pair of views the amount of over-
lap of image regions representing the playing field is deter-
mined. Views are connected based on the overlap. All im-
ages are warped such that the image plane of the synthetic
view is parallel to the playing field. For all warped views,
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(a) (b)

Figure 4. (a) MSER feature matches from original images (b) SIFT feature matches from fronto-parallel views

SIFT features are extracted and matched with the bag of fea-
tures. Due to the already available coarse calibration only
those features lying in the field of view are considered. Fi-
nally, for every pair of connected views, correspondences
are extracted from the SIFT features in the warped images.
Since we are dealing with fronto-parallel views of the same
orientation, a very simple 1-point RANSAC or even exhaus-
tive search can be applied. Figure 4 shows an example of
MSER correspondences obtained from a pair of images and
SIFT correspondences obtained from fronto-parallel views.

Once all connected views are processed, a graph having
the features as nodes is constructed. Whenever two features
match, an edge between them is introduced, i.e. feature
matches are organized into tracks, as it was done by Snavely
et al. [15]. In this graph, connected components with n
nodes correspond to 3D points seen from n views. Together
with the initial camera parameters, the DLT-algorithm pro-
vides initial values for the points on the playing field [4]. As
explained before, only points on the playing field are con-
sidered. Hence, correspondences that cannot be explained
by a homography are removed in a RANSAC step. The ini-
tial parameters for the cameras and the 3D points are refined
in a bundle adjustment. The 3D points are constrained to
lie on the playing field. Once several sequences have been
added and the bundle adjustment contains a large number of
images, the resulting camera parameters and 3D points are
not optimized any further, but considered as fixed parame-
ters in future bundle adjustments. After the bundle adjust-
ment all feature positions are updated. New MSER features
and SIFT features with optimized 3D positions and camera
parameters are added to the bag of features. Again, MSER
features not lying on the playing field are ignored. Features
which are already in the bag are updated. As in the initial
step (Section 3.1), the elimination of duplicates and useless

features is left to the bag of features. Additionally, at some
point, the number of images and MSER features becomes
too large. The next subsection explains the maintenance of
the bag of features.

3.4. Bag of Features

As explained before, the bag of features contains MSER
features and affine transformations, as well as SIFT features
extracted from fronto-parallel views. This provides an ab-
straction of the scene (see Figure 2), which gives a lot of
flexibility for future calibration tasks. New sequences can
be added at any time, enhancing the bag of features.

In order not to fill the bag of features with many similar
or useless features, we propose a simple updating scheme.
While features not lying inside the playing field mask were
already removed in the previous steps (see Section 3.2),
there might still be duplicates and many features which can-
not be used for matching. For that purpose we keep track
of how often an MSER feature should have been matched
and how often it actually was matched. Whenever a new
sequence is added and calibrated successfully, it is known
which features from the bag have been visible in one of the
new views and, therefore, should have been used. Since fea-
tures are covered (e.g. by players) quite often, the match-
ing frequency cannot be very high. To keep the bag as dis-
criminative as possible, features should only be eliminated
if they are not unique in terms of scale and viewpoint. Fur-
thermore a feature should not be removed from the bag as
long as it has not been matched at least 10 times although
it should have been visible. Additionally, features acquired
from very different viewpoints are not required to match at
all, i.e. they are not considered as features that should have
been used. After adding several new sequences to the bag
of features a pruning step is applied. All features with a
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(a) (b)

Figure 5. (a) Red dots indicate features that are removed from the bag of features during the update step. Features which are considered to
be useful and thus remain in the bag are indicated as green dots. (b) The fronto-parallel view shows that logos on the playing field coincide
with the green dots.

matching ratio below 0.1 are removed.
The bag of features is divided into a regular grid. Each

grid cell corresponds to a patch on the playing field, 15cm
by 15cm. When eliminating features, each grid cell is con-
sidered independently of all the others. Figure 5 illustrates
the effect of updating the bag of features. Features which
have been added to the bag only recently and therefore can-
not be removed yet are not shown.

It might happen that a novel sequence cannot be matched
with the bag of features. In this case the calibration of
this sequence is postponed until a few other sequences have
been added to the system. Since for some sequences the cal-
ibration might never succeed and every attempt to calibrate
such sequences is a waste of resources, such sequences are
stalled for an increasing number of new sequences. The
number of intermediate sequences is increased as a power
of 2, i.e. such sequences are added again after 1 new se-
quence, after 2 new sequences, after 4 new sequences and
so on.

In order to avoid drift in single camera calibration track-
ing, keyframes can be matched with the bag of features.

4. Evaluation
Experiments are conducted on basketball and ice hockey

footage. The initial calibration of the starting frame is done
by picking 3D to 2D correspondences by hand (the geome-
try of the playing field is standardized and known, e.g. the
freethrow line in basketball). Figure 6(a) shows the initial
calibration.

In order to evaluate the method, 25 random sequences
from a game of ice hockey (SD, resolution of 720x576)
and 20 random sequences from a game of basketball (HD,
1280x720) are chosen. Each sequence is 60 frames long.
For each sequence 4 out of the 60 frames are selected for
calibration, which amounts to a total of 100 frames for the
ice hockey footage and 80 frames for the basketball footage.

The robustness of the system is inspected by counting the
number of successfully calibrated frames. A calibration is
considered successful if the average reprojection error is be-
low 5 pixels. Additionally the results of the calibration are
visualized by rendering the lines of the playing field model
onto the original input images (Figures 6(b) and 6(c)).

For the ice hockey game, 52% of the sequences are cal-
ibrated successfully. While sequences showing large parts
of the field are always calibrated successfully (see Figure
6(b)), cameras undergoing large zooms and fast movements
are almost impossible to calibrate. The same holds for cam-
eras filming at the height of the playing field, i.e. level with
the players (see Figure 6(d)). Since the sequences are cho-
sen completely at random without any subsequent selection
and the footage at disposal often shows closeups of the goal
area, the rate of successful calibration is not as high as one
would expect. Nevertheless, the system manages to cali-
brate difficult sequences captured from new viewpoints sep-
arated by very wide baselines. The success rate of the cam-
era shown in Figure 6(c) is at 67%, despite of fast camera
movements.

The cameras capturing the basketball game are cali-
brated at a success rate of 51%. Apart from the typical
overview camera the scene was captured by three more
cameras. Again many sequences show closeups of the play-
ers. The field of view is often crowded with players occlud-
ing most of the features all the time. In such cases collect-
ing features from different frames before matching does not
help.

The implementation is not completely optimized for
speed. Much time is spent on the extraction of features and
the calculation of descriptors. Once extracted, descriptors
are matched quite easily and efficiently on the GPU. While
there exists a publicly available GPU implementation for
SIFT feature extraction and matching [14], MSER features
are handled by the CPU.
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Figure 6. (a) Initial calibration from hand-clicked points, indicated as green squares (b) Typical overview camera (c) New view, separated
by a wide baseline (d) Typical failure case

5. Conclusion and Future Work

In this paper we have presented an approach capable of
dealing with the calibration of wide-baseline camera net-
works. We have shown its use for robust calibration and we
have introduced a framework to seamlessly integrate novel
sequences whenever necessary. The correspondences be-
tween images are obtained in several steps, coarse to fine,
by collecting features and matching features in a two-step
method involving MSER features and SIFT features ex-
tracted from fronto-parallel views. Each sequence added
is used to update a bag of features representing the playing
field, increasing the robustness of the system.

To further improve the quality of our method we plan to
include field lines in the calibration procedure. This should
increase the robustness in cases where field lines are visible.
Additionally some stadiums offer diverse banners, which
could be added to the system to further increase its robust-
ness. With some restrictions the same holds for the audience
in the stadium. Since both the banners and the audience ap-
proximately represent large scene planes, efficient matching
should be possible.

Most of the cameras filming team sports such as basket-
ball and ice hockey are mounted on some kind of device.
Examples are pan-tilt-zoom cameras, cameras mounted on
robot arms and cameras mounted on rails or wires. Mod-

eling the resulting reduced space of possible calibrations
could increase both robustness and accuracy.
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A. Homography Computation and Verification
A homography of the form shown in Equation 1 does not

have the usual 8 degrees of freedom [4]. It is constrained by
the special structure of r1 and r2, which are the first two
columns of the camera rotation matrix:

r1T r1 = 1, r2T r2 = 1 and r1T r2 = 0. (3)

Since K is known, it can be eliminated by transforming im-
age coordinates accordingly. What remains is a scaling of

the first two entries of r1 and r2 by f , which leads to

H = λ

fr11 fr12 ft1
fr21 fr22 ft2
r31 r32 t3

 . (4)

From r1T r2 = 0 follows h11h12 +h21h22 +f2h31h32 = 0.
Solving for f2 leads to

f2 = −h11h12 + h21h22

h31h32
. (5)

Similarly, r1T r1 = r2T r2 means that h2
11 + h2

21 + f2h2
31 =

h2
12 +h2

22 +f2h2
32. Inserting the value of f2 from Equation

5 finally leads to the desired constraint given in Equation 2.
Treating the homography as a mapping fH from R2 to

R2, image coordinates x = (x, y)T are transformed as

fH(x) =
1

h31x+ h32y + h33

(
h11x+ h12y + h13

h21x+ h22y + h23

)
.

(6)

Since homographies are defined up to scale, h33 can be set
to 1. Given an affine correspondence and the associated
affine transformation fA mapping x1 to x2, the homography
H should fulfil fH(x1) = x2. By translating the source
and the target coordinate systems such that the homography
maps (0, 0)T to itself, h13 and h23 become 0. After setting
h13 and h23 to 0, the Jacobian of fH evaluated at x0 =
(0, 0)T is

∂fH
∂x

∣∣∣∣
x=0

=
(
h11 h12

h21 h22

)
, (7)

which leads to the following first order Taylor approxima-
tion:

fH(x0 + δx) ≈ fH(x0) +
∂fH
∂x

∣∣∣∣
x=0

δx (8)

Setting this equal to the affine transformation fA(x) =
Ax + t obtained from the affine correspondence leads to(

h11 h12

h21 h22

)
=
(
a11 a12

a21 a22

)
(9)

since the coordinate systems are chosen such that the trans-
lation vector t is 0. Therefore the only unknowns left to
determine are h31 and h32. In addition to Equation 2 one
more constraint is needed. This constraint is provided by a
second (point) correspondence, i.e. fH(y1) = y2. Using
one of the two resulting equations leads to three possible
solutions for H, while the second equation can already be
used to verify the correctness of H. What is especially nice
about this verification is that the remaining equation which
needs to be fulfilled is given in pixel units.
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