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Abstract

In sports broadcasts, networks consisting of pan-tilt-
zoom (PTZ) cameras usually exhibit very wide baselines,
making standard matching techniques for camera calibra-
tion very hard to apply. If, additionally, there is a lack of
texture, finding corresponding image regions becomes al-
most impossible. However, such networks are often set up to
observe dynamic scenes on a ground plane. Corresponding
image trajectories produced by moving objects need to ful-
fill specific geometric constraints, which can be leveraged
for camera calibration.

We present a method which combines image trajectory
matching with the self-calibration of rotating and zooming
cameras, effectively reducing the remaining degrees of free-
dom in the matching stage to a 2D similarity transforma-
tion. Additionally, lines on the ground plane are used to im-
prove the calibration. In the end, all extrinsic and intrinsic
camera parameters are refined in a final bundle adjustment.
The proposed algorithm was evaluated both qualitatively
and quantitatively on four different soccer sequences.

1. Introduction
Pan-tilt-zoom (PTZ) camera networks are widely used

in sports broadcasts. In order to analyze and understand the
captured events, free-viewpoint video and augmented real-
ity have proven to be valuable tools. The calibration of PTZ
camera networks plays a crucial role in these applications,
and it is a requirement for creating novel synthetic views of
the recorded scenes. Even a small error in the alignment of
two images can result in visible artifacts during scene re-
rendering from a different point of view. This requires a
joint calibration of the cameras and priority should be given
to the minimization of this alignment error.

Typically, the calibration can only be performed based
on the acquired footage since the access to the recording fa-

cilities is constrained by restrictive rules. Estimating the
intrinsic and the extrinsic parameters of each camera at
each time instant from the recorded videos is a challeng-
ing problem. The wide baselines and the absence of tex-
tured regions, typical for the footage recorded during soccer
or rugby games, e.g., make standard calibration techniques
hard to apply. While appearance based matching techniques
succeed in relating contiguous images of a video captured
by the same camera, in general, no correspondences can be
found between images captured by different cameras. On
the other hand, methods solely relying on the detection of
field model lines work only if a model is available and a
minimum number of lines is visible and detectable in each
image.

While appearance based matching techniques are not ap-
plicable to find correspondences, player motions provide
very strong cues. Just like feature correspondences, corre-
sponding player tracks from different cameras need to fulfill
specific geometric constraints.

In this paper, we present an approach to multi-view PTZ
camera calibration of sports broadcasts. Since the camera
network is set up to capture players moving on a ground
plane, the player trajectories are leveraged for the camera
calibration. If present, field lines are used to further improve
the calibration. The resulting calibration technique shows to
be robust and allows the calibration of challenging footage
like the one obtained from soccer matches.

2. Related work
In sports broadcasts, it is common to use a 3D line model

of a standardized playing field for calibration. Relating im-
age lines and model lines leads to a set of 2D-to-3D line
correspondences. Correspondences are hypothesized and
the resulting camera parameters are verified by comparing
the projected model lines with the image lines [8]. Once
the center of projection of the camera is known, pan, tilt
and zoom can be determined more robustly by exhaustively
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comparing image lines with a database of projected model
lines for different values of pan, tilt and zoom [23]. How-
ever, such approaches depend on a minimum number of vis-
ible lines and fail if this requirement is not met. If team lo-
gos, advertisements or other distinctive features are present
on the playing field, calibration is still possible [20]. In
sports like soccer or rugby, however, no logos or advertise-
ments are available on the playing field.

For static camera networks, object trajectories have al-
ready been exploited for calibration. For instance, Stein
treated the case of unsynchronized cameras with known in-
trinsic parameters [22]. The extrinsic parameters are found
by estimating the temporal offset and the homography relat-
ing the trajectories of objects moving on a common ground
plane. The approach proposed by Jaynes additionally deals
with an unknown focal length per camera, but it requires
the user to specify two bundles of coplanar parallel lines
for each camera [13]. Assuming a planar scene and syn-
chronized cameras, image trajectories are then warped onto
3D planes and the extrinsics are found by estimating a 3D
similarity transformation between these planes. The work
of Meingast et al. does not require objects to move on a
ground plane [19]. Track correspondences are hypothe-
sized and verified through geometric constraints to deter-
mine the correct essential matrices and temporal offsets be-
tween views. In the case of single static cameras, objects
with known properties provide constraints for camera cali-
bration. A common approach is to treat people as vertical
poles of constant height [18, 14, 6]. A solution based on
objects moving on non-parallel lines at constant speeds was
presented by Bose and Grimson [3].

However, all these approaches do not address the prob-
lem of cameras which pan, tilt and zoom during the record-
ing. Moreover, in sports broadcasts, assumptions like the
vertical pole and the constant speed of the players cannot
be used.

3. Algorithm Overview
The input to our problem consists of a number of syn-

chronized video sequences captured by PTZ cameras. Let
Ici denote the image captured by camera c at time i. The
desired output is the full calibration of the PTZ camera net-
work, i.e. the intrinsic parameters Kc

i , the distortion pa-
rameters kci , the rotation matrices Rci , and the centers of
projection Cc for all the cameras at each time instant. Let
Pci denote the projection matrix of camera c at frame i, de-
fined as Pci = Kc

i [R
c
i | − RciC

c]. The center of projection
(COP) of each camera is assumed to be constant over time,
but unknown. In addition, the pan axis is assumed to be
always perpendicular to the playing field. To simplify the
equations in this paper, the world coordinate system is cho-
sen such that the xy-plane coincides with the ground plane.
Hence, the pan axis is parallel to the z-axis, and the tilt axis

Figure 1. Typical camera arrangement with respect to the playing
field. The pan axis (red) is orthogonal to the ground plane, while
the tilt axis (blue) is parallel to it.

is parallel to the xy-plane and orthogonal to the pan axis
(see Figure 1). The pan angles, tilt angles and focal lengths
of each camera change with every frame.

Ideally, the intrinsic parameters of the cameras would be
pre-calibrated in a controlled environment, but access to the
recording facilities and the cameras is typically restricted.
We assume that the principal point lies in the center of the
image. Since there is a correlation between the principal
point and the remaining camera parameters, the error that is
made by fixing the principal point in the middle of the image
can be partially compensated by slightly changing the focal
length, the COP and the orientation. Skew is assumed to be
zero and the aspect ratios are assumed to be known. Under
these assumptions, each intrinsic matrix Kc

i can be written
as diag(f ci , f

c
i , 1), where f ci denotes the focal length. Ra-

dial distortion is modeled with a single parameter kci vary-
ing over time, such that[

xd
yd

]
= (1 + kci (x

2
n + y2

n))
[
xn
yn

]
,

where (xn, yn)T are the normalized image coordinates, and
(xd, yd)T are the distorted ones.

First, each camera is calibrated independently. A local
coordinate system is chosen for each camera, and the pan
and tilt angles, the focal lengths and the distortion coeffi-
cients are determined with respect to this local coordinate
system. Once these parameters are estimated, a metric rec-
tification of the ground plane can be computed for each
frame. A top-down view resulting from such a rectification
is shown in Figure 2.

Subsequently, players are tracked in each video sequence
independently and the tracks are warped onto the ground
plane. The COPs and the rotation angles with respect to a
common coordinate system are determined by the 2D sim-
ilarity transformations relating the warped player tracks in
all the video sequences. Camera parameters are refined in a
final bundle adjustment.
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Figure 2. Top-down views of the playing field for two cameras.

4. Single Camera Calibration
In the first phase, each video sequence is treated inde-

pendently. To improve readability, camera indices are re-
moved in this section. SIFT features are extracted every ten
frames and matched to SIFT features extracted ten frames
before and after [16]. Additionally, Harris corners are ex-
tracted and tracked using a GPU implementation of the KLT
tracker [17, 21]. Corresponding points in images Ii and Ij
are related by the following homography [12]:

Hij = KjR̃jR̃Ti Ki
−1 = KjRijKi

−1

where R̃i and R̃j are the rotation matrices defined in the lo-
cal coordinate system of the camera (denoted by the tilde),
at time i and j, respectively. Rij is the relative rotation be-
tween the two views, which is independent of the coordinate
system. A point xj in image Ij is related to its correspond-
ing point xi in Ii as

xj ∝ Hijxi

where xi and xj are given in homogenous coordinates and
∝ denotes equality up to scale.

From an image sequence produced by a rotating and
zooming camera, it is in general possible to determine the
intrinsic parameters of the camera as well as its relative rota-
tions [11]. If only the focal lengths and the rotation angles
are needed, there exists a minimal solution using 3 point
correspondences between two frames [4]. We use this min-
imal solution to remove outliers in a RANSAC step and to
get initial values for the focal lengths and the rotation an-
gles [9]. The estimation of the focal length is unstable for
small rotations, but the work of Agapito et al. suggests that
the relative change of focal lengths can still be recovered
[1]. This means that an absolute value has to be determined
once from a pair of images separated by a sufficiently large
rotation. Keeping the focal length fixed for those images,
the remaining absolute values are given through the relative
changes between frames. Given the initial absolute values
for the focal lenghts, the initial rotations are determined.

The initial rotation angles and focal lengths are refined
in a bundle adjustment using the sparseLM library together

with the Cholmod solver (the same libraries are also used
for all subsequent nonlinear least squares problems) [24, 15,
7]. The reprojection errors are minimized by optimizing
for the feature positions, the rotation angles and the focal
lengths. Under the assumptions stated in Section 3, depicted
in Figure 1, the rotation matrix R̃i is given by two rotation
angles and can be rewritten as

R̃i = Rαi
R̃γ̃i

where

Rαi
=

1 0 0
0 cosαi − sinαi
0 sinαi cosαi


and

R̃γ̃i =

cos γ̃i − sin γ̃i 0
sin γ̃i cos γ̃i 0

0 0 1

 .
While the tilt angle αi is given with respect to a coordinate
system common to all the cameras, the pan angle γ̃i is given
in the local coordinate system of the respective camera, i.e.,
up to an additive constant cγ . More precisely, γ̃i = γi + cγ .
The relative rotation between frame i and frame j can be
written as

Rij = Rαj
R̃γ̃j

R̃Tγ̃i
Rαi

T = Rαj
Rγij

Rαi

T

which corresponds to cosγij −sinγijcosαi −sinγijsinαi
cosαjsinγij · · · · · ·
sinαjsinγij · · · · · ·

 ,
where γij is the pan angle between frames i and j. αj can
be obtained as atan2(Rij(3, 1),Rij(2, 1)). Similarly, αi is
obtained from Rij(1, 2) and Rij(1, 3). Care has to be taken
when γij is zero, i.e., when there is no panning motion. In
this case, the tilt angles cannot be recovered. However, this
is not an issue since normally for every frame in the se-
quence there exists at least another one with a different pan
angle. Using the initial values of the absolute tilt angles αi
and the relative pan angles γij , another bundle adjustment
is performed, also including radial distortion coefficients ki.
Rotation matrices are now parametrized with pan and tilt
angles instead of three Euler angles.

To further improve the results, image lines are included
in the calibration process. After undistorting the input im-
ages, lines are extracted and matched between neighboring
frames. For all sets of matching image lines, we try to find
the camera parameters and the line positions on the ground
plane which best explain the image lines.

In order to add lines to the calibration process, we intro-
duce a mapping between points on the ground plane and im-
age points. Let some frame r be a reference frame. At this
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point, the projection matrix Pr is known up to the pan angle
and the center of projection. The constraint of the ground
plane being the xy-plane of the world coordinate system is
not violated by arbitrary rotations around the z-axis, trans-
lations in x- and y-direction or scalings of the scene. There-
fore, the world coordinate system can be chosen such that
Pr = Kr[Rαr | − Rαr (0, 0,−1)T ]. Since points on the
ground plane are of the form (x, y, 0), the homography
mapping the ground plane to image Ii is HriKrRαr

.
The coordinates of a line on the ground plane are given

by a point on the 3D unit sphere, parameterized by two ro-
tation angles ρ and φ. Each image line is represented by
point samples, where each point sample x corresponds to a
point x̂ on a line l(φ, ρ) on the ground plane. To specify
the coordinates of x̂ lying on the line given by ρ and φ, we
introduce an additional parameter λ for each point sample,
such that x̂ is a function p of ρ, φ and λ:

x ∝ HriKrRαr
x̂ = HriKrRαr

p(ρ, φ, λ)

To extract lines, a Canny edge detector is used in the undis-
torted images (see Figure 3) [5]. E.g., white field lines on
green background generate two lines. Such lines are very
close and are merged into a single line. Correspondences
between image lines are then determined by using the cur-
rent estimates of the Hij’s. If a line in image Ii is suffi-
ciently close to a line in Ij after being transformed using
Hij , the two lines are considered a match. If, however, a
third line is close to either one of those two lines, the match
is simply discarded. For each set of matching lines, a line on
the ground plane is initialized by calculating a least squares
fit to the line samples projected onto the ground plane.

In addition to the reprojection errors obtained from the
KLT tracks and the SIFT feature points, the reprojection er-
rors of the line samples are added to the bundle adjustment.
Additionally, e.g., on soccer fields, lines are either paral-
lel or orthogonal. The deviation from known angles can be
added as well. In a third bundle adjustment, we optimize
for all pan angles, tilt angles, focal lengths, distortion coef-
ficients and all the φ’s, ρ’s and λ’s.

5. Camera Network Calibration

5.1. Fixing a World Coordinate System

So far, cameras were treated completely independently,
and the projection matrices Pci were computed up to an un-
known COP and up to an unknown offset of the pan angles.

The world coordinate system is chosen with respect to
an arbitrary reference camera a and an arbitrary reference
frame r, such that Ca = (0, 0,−1)T and γar = 0, i.e.,
Par = Ka

r [R
a
αr
|−Raαr

(0, 0,−1)T ]. For any additional cam-
era b, we get Pbr = Kb

r[R
b
r| − RbrC

b]. The relative pan and
translation with respect to camera a needs to be determined

Figure 3. Lines detected in the undistorted image.

in order to find γbr and Cb. By applying the transformation
Tar with

Tar =
[
Raαr

T (0, 0,−1)T

0 1

]
to Par and Pbr we get Par = Ka

r [I|0] and Pbr = Kb
r [R|t],

where R = RbrR
a
αr

T and t = Rbr((0, 0,−1)T − Cb). Since
points in image Ici can be warped into a reference image Icr
by using Hc

ir, the following formulas are derived for ref-
erence frame r and the index denoting the frame number
is dropped to improve readability. Pc, Kc, Rc, Rαc

and
Rγc

denote Pcr, Kc
r, Rcr, Rcαr

and Rcγr
. For camera matri-

ces Pa = Ka [I|0] and Pb = Kb [R|t], the homography H
induced by the plane with normal n located at a distance d
from the origin is given as [12]:

H = Kb(R−
1
d
tnT )K−1

a .

n is the normal of the ground plane, i.e., the xy-plane. Thus
the associated normal vector is (0, 0,−1)T . However, since
Tar was applied to the projection matrices, this normal needs
to be transformed accordingly and we get

n = Rαa

 0
0
−1

 .
Because Ka, Kb and the tilt angles are known, the image
coordinates and H can be transformed accordingly, leaving
four unknowns γb, t̃x, t̃y and t̃z:

H̃ = RTαb
K−1
b HKaRαa

= RTαb
K−1
b Kb(Rαb

Rγb
RTαa
− 1
d
tnT )K−1

a KaRαa

= Rγb − RTαb

1
d
t

 0
0
−1

T =

cos(γb) −sin(γb) t̃x
sin(γb) cos(γb) t̃y

0 0 t̃z


Matrix H̃ is defined up to scale, therefore a linear solu-

tion can be obtained from 2 correspondences of points lying
on the ground plane, i.e., 4 equations.
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One might think that 3 equations are enough to recover
one angle and a translation up to scale. However, 1

d t is un-
affected by scale changes of the scene, hence it is not up to
scale. Determining H̃ can also be seen as finding the simi-
larity transformation - scale, 2D translation and one rotation
angle - between two top down views.

If the points are not lying on the ground plane, 3 point
correspondences are still enough to determine pan and
translation [10]. A method to extract correspondences be-
tween points on the ground plane is presented in the follow-
ing subsection.

5.2. Correspondences From Player Trajectories

To generate player trajectories, we used a simple blob
tracker. Foot positions are extracted from the player seg-
mentations. A Gaussian mixture color model is created for
both foreground and background colors by having the user
select a few pixels with a few strokes [2].

The segmentation results in a few blobs. Associations
between the blobs of different frames are made based on
spatial proximity in a very conservative way. Whenever
the trajectories of two blobs get too close, the tracking of
these blobs stops. We use the strategy of Lv et al. to extract
the foot positions of the players by using the principal axes
of the blobs [18]. An example of foot tracks is shown in
Figure 4. If a good people tracker is available, image tra-
jectories can also be created from the centers of bounding
boxes. However, the trajectories do not lie on the ground
plane anymore, which has to be taken into account [10].

For each camera, image trajectories of the feet are then
warped onto the ground plane given in the local coordinate
system of the respective camera, as explained in Section 4.
We define the set of candidate matches for each pair of cam-
eras as all the possible pairs of extracted trajectories with a
temporal overlap of at least 10 frames. Since the sought
after transformation, a similarity transformation, is deter-
mined by two point correspondences, one correct trajectory
match is sufficient to find the remaining unknowns in the
absence of errors. This holds even if the tracks are perfectly
straight. The only condition which has to be fulfilled is that
the trajectory itself is not a single point, i.e., it is not related
to a static object.

In order to find the correct association between player
tracks, a similarity transformation S is generated for every
candidate match and verified for all remaining candidates.
The transformation leading to the largest number of inliers
is assumed to be correct and the inliers represent matching
trajectories. For a trajectory σ let σi denote the position at
frame i. Let S(σi) denote the result of applying transforma-
tion S to point σi. A candidate match (σ, τ) is considered
an inlier of transformation S, if ‖S(σi)− τi‖2 < tdist for all
overlapping frames i.

However, depending on the input footage, the accuracy

of the self-calibration varies and the metric rectification can
be inaccurate. Therefore, in some cases, trajectories are not
aligned accurately enough to correctly determine the inliers.
In order to compensate for such inaccuracies, we determine
a homography from two candidate matches. A homography
can explain any projective transformation between planes.
Instead of testing all possible combinations of two candi-
date matches, the similarity transformations obtained be-
fore are used to determine suitable combinations. When-
ever a second match is compatible with the similarity trans-
formation obtained from the first match, the homography
is calculated and verified. A candidate match is considered
compatible with a transformation, if the shape and size of
the transformed track is similar to the one of its match. Let
vij(σ) denote the vector from the position at frame i to the
position at frame j of trajectory σ. Formally, for a candi-
date match (σ, τ) and a transformation S, this means that
the following two conditions need to be fulfilled:

∠(vbe(S(σ)), vbe(τ)) < tangle

max(
‖vbe(S(σ))‖2
‖vbe(τ)‖2

,
‖vbe(τ)‖2
‖vbe(S(σ))‖2

) < tlength,

where b denotes the first frame and e the last frame which
σ and τ have in common. A valid set of correspondences
is a 1-to-1 matching of image trajectories. If one track is
matched to more than one other track, only the match with
the lowest mean distance between corresponding points is
used. Given the matching image trajectories, the homogra-
phy induced by the ground plane can be calculated for every
pair of images Iai and Ibj , as explained in the previous sub-
section. To improve the calibration, additional features can
be matched using these homographies. In soccer, the lines
are the obvious choice. Detected line segments are matched
if they are close enough but not too close to other segments.
As for the self-calibration, image line samples are allowed
to slide along the line on the ground plane. This time, a line
on the ground plane is the same for all cameras and is given
in the common world coordinate frame.

In a final bundle adjustment, all correspondences avail-
able are used to determine the full calibration of the camera
network. This includes the camera intrinsics and extrinsics,
one distortion coefficient per camera and image, SIFT and
KLT feature positions extracted in the self-calibration stage,
world positions of feet and heads as well as world positions
of lines on the ground plane. The errors to be minimized
are the reprojection errors and the deviations of the angles
between lines from the known angles.

6. Evaluation
The proposed algorithm was evaluated on four different

soccer game sequences. Each sequence was captured with
two synchronized SD cameras working at a resolution of
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Figure 4. Foot tracks extracted from a soccer sequence.

720x576 pixels and undergoing a large range of rotations
and zooms. The length of the sequences varies between 10
and 17 seconds, i.e., between 250 and 425 frames. The ob-
tained results were evaluated both quantitatively and quali-
tatively.

Quantitative comparison In order to generate convinc-
ing synthetic views, a consistent calibration with respect to
the different PTZ cameras is very important. To evaluate
this property numerically, we used the root mean square of
the symmetric epipolar transfer distances defined as the dis-
tance between a point in the first image and the epipolar
line of its corresponding point in the second image and vice
versa. More precisely, we evaluated

eepipolar =

√√√√ 1
2N

N∑
i=1

(d(x′i,Fxi)2 + d(xi,FTx′i)2),

where F denotes the fundamental matrix, and d(xi,Fxi) de-
notes the epipolar transfer distance defined as the Euclidean
distance between point xi and line Fxi. Salient correspond-
ing points were selected manually over the course of the
whole sequence. This includes heads, feet and joints of
players, intersections of field lines, the corners of the goals
and banners at the sidelines.

The symmetric epipolar transfer distance was evaluated
on all the tested sequences. The calibration obtained by our
method, once ignoring image lines and once accounting for
image lines, was compared with a calibration obtained by
manually selecting field model points. More precisely, this
latter calibration was obtained by hand-clicking between 4
and 15 model points of the playing field every tenth frame.
This includes all the corners and intersections formed by
field lines, as well as the penalty points. Given the selected
3D-2D correspondences, the pan and tilt angles, the focal
lengths and the COP were determined for each camera sep-
arately by minimizing the reprojection errors. Due to the
limited number of hand-clicked points, radial distortion was
not taken into account in the manual calibration.

Table 1 summarizes the root mean square of the symmet-
ric epipolar transfer distances obtained in the different se-
quences for both the manual calibration and our approach.
Additionally, the table reports the median of all the com-
puted epipolar transfer distances d(xi,Fxi). The second
column indicates the number of hand-clicked correspon-
dences used to calculate eepipolar for the manual calibration.
Adding correspondences between field lines improved the
results and in three out of four sequences, our approach
leads to a smaller eepipolar since it takes both cameras into
account for the estimation. In sequence 4, the error obtained
by our approach is a bit higher than the one obtained using
manual calibration. This is due to the fact that in this se-
quence only few players are moving and the tracks of neigh-
boring players got confused.

Figure 6 shows the distribution of the epipolar transfer
distances d(xi,Fxi) for all the points and sequences. It is
visible that by using our method the distances concentrate
more around zero. An additional comparison is shown in
Figure 7. Here, tilt angles and focal lengths obtained after
single camera calibration (Section 4), network calibration
(Section 5), and by manual calibration for both cameras of
sequence 1 are illustrated. The values for the manual cali-
bration are not available every tenth frame because in some
parts of the sequence not enough model points were visi-
ble. The shapes of the curves are very similar, suggesting
that the estimations of the relative changes between frames
are very similar. The additional constraints added by opti-
mizing for two cameras simultaneously lead to a shift of the
curves estimated from a single camera towards the ones es-
timated using manual calibration. Rotation angles and focal
lengths obtained from single rotating cameras are correlated
and, to some extent, increased focal lengths can be compen-
sated by decreasing the rotation angles and vice versa [1].

Qualitative comparison Using the homography in-
duced by the ground plane, the input image of one camera
was warped and blended with the corresponding input im-
age of the other camera. A result obtained accounting for
lines and a result obtained without using any lines are shown
in Figure 5. Non-overlapping lines and players cause visible
artifacts when generating novel synthetic views using view-
dependent textures. Hence it makes sense to minimize such
errors.

7. Conclusion
In this paper, we presented an approach to multi-view

PTZ camera calibration for sports broadcasts. Each cam-
era is first calibrated in its own local coordinate system
and then the player trajectories are leveraged to establish
a common world coordinate system. Matching field lines
further improves the calibration. Differently from previous
approaches, the proposed calibration method does not rely
on a 3D line model of the playing field or on detectable fea-
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(a) (b)

Figure 5. Blend of two images aquired by two cameras observing the same scene. The first image was warped according to the homography
induced by the ground plane and superimposed to the second one. Figure (a) shows the result obtained ignoring lines. Figure (b) shows the
result obtained accounting for lines.

manual calibration our approach, no lines our approach, incl. lines
#points RMS error [px] median [px] RMS error [px] median [px] RMS error [px] median [px]

sequence 1 108 2.9979 1.7343 2.8901 1.9629 1.6159 0.8144
sequence 2 147 6.2398 1.8590 2.6000 1.5034 1.8539 1.0943
sequence 3 55 2.8181 2.1985 4.8823 3.9737 1.3922 0.7909
sequence 4 82 2.5651 1.4776 8.5352 6.4020 4.5386 3.2121

Table 1. Epipolar transfer distance computed for the tested sequences.

tures on the field. This makes our method more robust in
the absence of visible field lines and textured regions. The
results presented in this papers show that the proposed tech-
nique can handle challenging sequences recorded by PTZ
cameras separated by very wide baselines.

Limitations and Future Work Problems can be en-
countered in sequences where a camera constantly exhibits
large focal lengths because the projection becomes almost
orthographic and no perspective information can be in-
ferred. In this case, self-calibration is difficult and typi-
cally inaccurate. However, as seen in Figure 7, if the camera
zooms out at some point, the calibration can still be recov-
ered.

In zoomed-in cameras, due to the narrow field-of-view,
only a few players are visible, which means that there are
only a few trajectories and hence trajectory matching be-
comes more difficult. Since a zoomed-in camera following
the action needs to move fast, motion blur leads to inac-
curate tracking results which, again, complicates trajectory
matching. We would like to address these issues to be able
to deal with constantly zoomed-in cameras and blurry sub-
sequences.

If only a few of the trajectories extracted in the different
cameras stem from common objects, the number of inliers
obtained using the correct matching can be lower than the
number of inliers obtained by a wrong matching. Additional

cues like player colors can help in reducing the number of
outliers.
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Figure 6. Distribution of the epipolar transfer distances for all sequences obtained by manual calibration (a), automatic calibration not
accounting for lines (b) and automatic calibration including lines (c).
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Figure 7. (a) and (b): tilt angles computed in each frame of sequence 1 for both cameras. (c) and (d): focal lengths computed in each frame
of sequence 1 for the same cameras, shown at a logarithmic scale.
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