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Abstract. Estimating the absolute pose of a camera relative to a 3D
representation of a scene is a fundamental step in many geometric Com-
puter Vision applications. When the camera is calibrated, the pose can
be computed very efficiently. If the calibration is unknown, the prob-
lem becomes much harder, resulting in slower solvers or solvers requiring
more samples and thus significantly longer run-times for RANSAC. In
this paper, we challenge the notion that using minimal solvers is always
optimal and propose to compute the pose for a camera with unknown
focal length by randomly sampling a focal length value and using an ef-
ficient pose solver for the now calibrated camera. Our main contribution
is a novel sampling scheme that enables us to guide the sampling process
towards promising focal length values and avoids considering all possi-
ble values once a good pose is found. The resulting RANSAC variant is
significantly faster than current state-of-the-art pose solvers, especially
for low inlier ratios, while achieving a similar or better pose accuracy.

Keywords: RANSAC, n-point-pose (PnP), camera pose estimation

1 Introduction

Estimating the absolute camera pose from a set of 2D-3D correspondences,
also known as the n-point pose (PnP) problem, is an important step in many
Computer Vision applications such as Structure-from-Motion (SfM) [23, 25] and
image-based localization [12, 18, 19, 21]. Especially for SfM, photo-community
collections such as Flickr or Panoramio represent a vast and easily accessible
source of data and truly enable large-scale 3D reconstructions [9]. Unfortunately,
the EXIF data required to obtain the intrinsic camera calibration of the images
is often missing for images obtained from photo sharing websites or is incorrect
due to image editing operations applied before uploading the photos [3]. Thus,
it is important to estimate both the camera pose and its internal calibration.
For the latter, it is often sufficient to estimate only the focal length [2, 24].

Computing the camera pose for a calibrated camera is a well-understood
problem that has been studied extensively [8, 10, 14, 17]. Given three correspon-
dences between features in an image and points in the 3D model, the camera pose
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Fig. 1: Illustration of the pose estimation strategy proposed in this paper.

relative to the model can be computed very efficiently by solving a fourth degree
polynomial [8, 14], resulting in 3-point pose (P3P) solvers that require only about
2µs on a modern computer [14]. However, estimating the focal length together
with the pose is a significantly harder problem. While special configurations such
as planar scenes can be handled efficiently [1], computing both quantities gen-
erally requires solving a system of multivariate polynomials obtained from four
or more 2D-3D correspondences [2, 24]. The bottleneck of such approaches is
usually the Eigenvalue decomposition of the so-called action matrix and the re-
sulting pose solvers require 46µs or more for a single instance [4]. Consequently,
using such methods inside a RANSAC-loop [8] results in prohibitively long run-
times for all but high inlier ratios. In practice, it is thus common to employ pose
solvers that achieve similar run-times as P3P [14] but require five or more 2D-3D
correspondences [11, 16]. As the number of RANSAC iterations grows with both
the percentage of false matches and the number of matches required to compute
a pose, using such approaches results in significantly longer run-times for low
inlier ratios compared to pose solvers using only three or four matches.

In this paper, we consider the problem of estimating the camera pose for a
camera with an unknown focal length. Inspired by the brute-force approach of
Irschara et al . [12], we propose to estimate the focal length by sampling from a
discrete set of possible values, followed by computing the pose using the selected
focal length instead of simultaneously estimating both quantities. As our main
contribution, we propose a novel RANSAC variant, called P3P(f)-RANSAC, that
in each iteration randomly selects the focal length value based on the probability
of finding a better model for it (c.f . Fig. 1). In contrast to [12], which iteratively
tests all possible focal length values, we re-estimate the probabilities of each
possible focal length value after each RANSAC step using a recursive Bayesian
filter. This enables our algorithm to quickly converge toward the focal length
closest to the correct value. Consequently, our approach does not necessarily
need to evaluate all focal length values, resulting in an average speed-up of more
than one order of magnitude compared to [12]. We observe a distribution of
focal lengths from photos obtained from photo-sharing websites that allow us to
estimate the prior probabilities of the different focal length values, enabling our
approach to use importance sampling to find a good pose more quickly. Through
experiments on both large-scale SfM datasets and image-based localization tasks,
we show that our proposed approach is significantly faster than the state-of-the-
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art minimal solver [2] while achieving a similar pose accuracy. At the same time,
P3P(f)-RANSAC is faster than a recently published non-minimal solver [16] for
low inlier ratios while achieving a higher localization accuracy3.

The rest of the paper is structured as follows. Sec. 2 reviews related work
and Sec. 3 discusses the problem solved in this paper in more detail. We present
our novel RANSAC variant combining probabilistic focal length sampling and
pose estimation in Sec. 4. Sec. 5 then evaluates the resulting approach.

2 Related Work

Estimating the camera pose from n 2D-3D matches is commonly known as the n-
point-pose (PnP) problem and algorithms solving this problem are consequently
called pose solvers. In case that the camera is calibrated, three correspondences
are sufficient to estimate the pose and P3P solvers usually proceed by first es-
timating the position of the three points in the local coordinate system of the
camera before estimating the transformation from the global into the local sys-
tem from these positions [10]. Recently, Kneip et al . proposed a method that
directly estimates the camera pose in the global coordinate frame [14]. Similar
to [8], their method needs to solve a 4th degree univariate polynomial, which
can be done in closed form, resulting in run-times of around 2µs. If the grav-
ity direction is known, the pose estimation problem can be simplified such that
only two matches are required [15]. While these pose solvers are used inside a
RANSAC-loop to robustly handle outliers, it is common to afterwards use the
inlier matches to refine the pose through a general PnP algorithm [17].

In the case that the camera calibration is unknown, the classic 6-point di-
rect linear transform algorithm estimates both the full internal and the external
calibration of the camera from six 2D-3D matches by computing the SVD of a
12×12 matrix [11]. Triggs generalized this approach to incorporate prior knowl-
edge about some calibration parameters, resulting in 4-point and 5-point solvers
[24]. Similar to the 6-point solver, they cannot handle planar point configura-
tions. Handling general configuration usually results in system of multivariate
polynomials [2, 3, 5, 13, 24]. Bujnak et al . proposed such an approach for the
case that only the focal length is unknown [2]. Using four 2D-3D matches, their
method needs to perform Gauss-Jordan elimination on a 154 × 180 matrix fol-
lowed by computing the Eigenvalues of a 10 × 10 action matrix, resulting in
run-times of 100µs or more. A faster solver can be obtained using an auto-
matically generated elimination template together with a more efficient way to
compute the Eigenvalues, reducing the run-time to 46µs [4]. [13] show that four
correspondences are enough to estimate both the focal length and a radial distor-
tion parameter for general point configurations. However, handling planar and
non-planar scenes seperately results in significantly faster run-times [3]. While
such minimal solvers still require about 260µs or more, Kukelova et al . recently
proposed a non-minimal 5-point solver that only relies on linear algebra and is

3 We make our source code available at http://people.inf.ethz.ch/sattlert
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thus orders of magnitude faster while still recovering the focal length and up to
three radial distortion parameters [16].

Similar to the approach proposed in this paper, Irschara et al . [12] repeatedly
apply RANSAC with a P3P solver to each focal length in a set of focal length
values to obtain the pose for an uncalibrated camera rather than estimating the
focal length directly. The focal length value that produces the best pose is then
chosen as the focal length for the camera. However, we show that our proba-
bilistic formulation is much more efficient than the brute-force method proposed
by [12]. The key idea of our RANSAC variant is to randomly sample the focal
length in each iteration according to a given probability distribution. [22] use a
similar RANSAC algorithm to calibrate a network of cameras from silhouettes
extracted from video. In each iteration, they randomly select two directions in
two images to obtain a hypothesis for the epipoles, which is used to recover the
full fundamental matrix. This enables them to recover the epipolar geometry
even though they cannot establish reliable point correspondences between the
silhouettes detected in different images. While [22] sample according to a fixed
distribution, we re-estimate the probabilities after each RANSAC iteration to
incorporate information from previous rounds.

3 Problem Formulation

In this paper, we want to solve the problem of estimating the pose for a camera
with an unknown focal length from a given set M = {(x,X) | x ∈ R2,X ∈ R3}
of 2D-3D matches. Assuming that the principal point coincides with the center
of the image, we are thus trying to determine the focal length f ∈ R and the
rotation R ∈ R3×3 and translation t ∈ R3 such that

α ·
(
x
1

)
=

f 0 0
0 f 0
0 0 1

 [R|t] ·
(
X
1

)
for some scalar α > 0 (1)

holds for all matches (x,X) ∈M, i.e., that each 3D point X is projected onto its
corresponding image position x. In practice, some of the matches will be wrong
due to imperfections in the matching process. The most common strategy to
robustly handle wrong matches is to apply a PnP solver that computes the pose
from nmatches inside a RANSAC-loop [8]. RANSAC iteratively selects a random
subset of size n from the given matches and uses it to estimate the camera pose.
The pose is then evaluated on all matches, where a match is considered as an
inlier to the pose if the reprojection error is below a given threshold and as an
outlier otherwise. The model with the highest number of inliers is considered
as the current best estimate of the correct camera pose. RANSAC terminates
once the probability of having missed the correct pose falls below the desired
failure probability η. Assuming that each all-inlier sample allows us to estimate
the correct pose, this probability may be expressed as

(1− ε∗n)
k
< η , (2)
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Fig. 2: (a) The number of RANSAC iterations required to ensure that the correct model
is found with 99% probability for different PnP solvers. (b) The focal length accuracy
required to recover most of the inliers strongly varies between different cameras. Yet,
the inlier ratio decreases monotonically on both sides of the optimal focal length value.
(c) Histograms of opening angles from images in the Dubrovnik [18], Landmarks 1k
[19], and Rome [18] datasets.

where k is the number of samples generated so far and ε∗ is the inlier ratio,
i.e., the ratio of inliers among all matches, for the current best model. Thus, the
maximal number of iterations required for a given inlier ratio ε is

kmax = log η/ log (1− εn) . (3)

The probability of selecting an all-inlier sample is maximized by minimizing
n. However, the minimal 4-point solver (P4Pf) [4] for the problem of estimating
both the pose and the focal length requires 46µs, which is prohibitively expensive
for low inlier ratios where many RANSAC iterations are required. Faster pose
solvers such as the P5Pfr method [16] that estimates the pose, focal length, and
radial distortion of the camera from five matches exist. However, using a non-
minimal n reduces the probability of selecting an all-inlier sample exponentially,
resulting in a significant increase in the number of required iterations for low
inlier ratios (c.f . Fig. 2(a)). Instead of using a non-minimal solver, we propose
to use a 3-point solver that estimates the pose for a given focal length f [14] and
select f from a pre-defined set F of focal length values. This strategy offers the
possible advantage of requiring fewer iterations than RANSAC with P4Pf (c.f .
Fig. 2(a)) and faster pose computation times by using the P3P solver.

Evaluating all focal length values in F independently from each other as
proposed by [12] will require at least |F| · kmax(fgt) iterations in total, where
kmax(fgt) is the maximum number of iterations required to confidently compute
the pose when using the ground truth focal length. Consequently, the approach
from [12] will only be more efficient than using RANSAC with P4Pf or P5Pfr
if |F| is smaller than the difference in the pose solver time or the difference
in the number of required iterations, respectively. Notice that using quantized
focal length values will invariably result in a lower pose accuracy. Regardless,
as long as we are able to recover most of the inliers we will be able to obtain a
better pose by applying P4Pf on the resulting inliers with only a small run-time
overhead as very few sampling steps will be needed. Unfortunately, the sampling
density required to guarantee that we can select a focal length value close enough
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Algorithm 1 P3P(f)-RANSAC

Given: SetM of 2D-3D matches, desired failure probability η, set F of focal length
values with prior probabilities Pprior(f) for all f ∈ F

1: initialize sampling probability Psample(f) = Pprior(f) for all f ∈ F
2: while probability of having missed the correct pose ≥ η do
3: randomly select focal length f ∈ F according to Psample

4: draw random sample s ⊂M of size 3
5: estimate pose [R|t] from s with a P3P solver using f
6: evaluate pose hypothesis θ = (f, [R|t]) on M
7: if new best model found then
8: θ∗ = (f, [R|t])
9: Update probabilities Psample

10: Re-estimate probability of having missed the correct pose
Return: θ∗

to fgt to recover most of the inliers strongly depends on the depth-variation of
the scene observed by the camera. This can be seen in Fig. 2(b), as we observe
different sensitivities on the focal length accuracy for different cameras. Thus,
we need a rather dense sampling in order to handle all types of scenes, resulting
in a large set F . In order to maintain fast run-times when using a large set of
values, we model the dependencies between the different focal lengths, enabling
us to avoid evaluating all focal length values for at least kmax(εgt) steps. This can
be done by exploiting a key observation that can be made from Fig. 2(b): The
maximal inlier ratio obtained by RANSAC for each focal length value decreases
monotonically with the distance to fgt. Given the focal length used to generate
the current best pose with the highest inlier count, f∗, this observation allows
us to model the probability of finding a pose with a higher inlier ratio using
another focal length f as a function of |f − f∗|.

4 Interdependent Probabilistic Focal Length Sampling

The main idea of our novel pose estimation approach is to use focal length
sampling and a P3P solver [14] in order to estimate a hypothesis for the cam-
era pose from n= 3 2D-3D correspondences instead of computing the pose and
focal length simultaneously from four matches or more. Once we have found a
good pose with a high inlier ratio for a focal length f∗, it becomes very unlikely
that focal length values f far away from f∗ can be used to estimate a better
pose (c.f . Fig 2(b)). The central idea behind our approach is thus to preferably
select focal length values that have a high likelihood of yielding a pose with a
larger number of inliers than the current best estimate. This naturally leads to
a probabilistic formulation of the problem of selecting good focal length values.
This probabilistic formulation in turn enables us to exploit the fact that certain
focal length values are much more likely to be correct than others. Alg. 1 out-
lines the resulting RANSAC variant, where differences to the classical RANSAC
algorithm [8] are highlighted. Besides the 2D-3D matches and the failure prob-
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ability η, our approach requires a set F of focal length values with associated
prior probabilities as an additional input. These priors are then used to initialize
the probability distribution that we use for selecting the focal length value f in
Line 3 of Alg. 1. After using P3P to generate a pose hypothesis from f and three
randomly selected matches, the hypothesis is evaluated on all matches and the
current best pose estimate is updated if necessary. Finally, we use a recursive
Bayesian filter to re-estimate the probability distribution used for sampling the
focal length to reflect the fact that the current iteration might influence the
likelihood of finding a better pose for all other focal length values.

In the following, we will refer to our algorithm as P3P(f)-RANSAC, as it
uses a P3P solver inside of a RANSAC loop, where the focal length value f
is obtained via parameter sampling. Similarly, we will refer to RANSAC-loops
using any other PnP solver as PnP-RANSAC.

In Sec. 4.1, we briefly explain how to obtain the prior probabilities for the
focal length values from F . As the main contribution of this paper, Sec. 4.2
derives the probability distribution used for sampling the focal length values and
our strategy for re-estimating the sampling probabilities. Finally, Sec. 4.3 argues
that using early model rejection techniques [6, 7] is crucial for our RANSAC
variant in order to offer faster run-times than P4Pf and P5Pfr.

4.1 Obtaining the Prior Probabilities

The focal length of a camera mainly depends on the type of camera and the
zoom-level used to take the picture. In this paper, we consider pose estimation
scenarios in which a large variety of camera types is used, as is the case in large-
scale SfM reconstructions from images downloaded from Flickr [23, 9]. Since
some camera types are much more popular than others4, not all focal length
values are equally likely to occur. The cameras contained in a large-scale SfM
reconstruction of community collection photos thus give us an approximation to
the probability distribution of focal length values. However, notice that obtaining
prior probabilities for focal length values is an ill-posed problem as the focal
length depends on the image resolution. In contrast, the maximal opening angle
αmax of a camera with focal length f , width w, and height h, related by

tan (αmax/2) =
max (w, h)

2 · f
, (4)

is independent of the image resolution. Thus, we predetermine a set of open-
ing angle values from cameras contained in large-scale SfM reconstructions of
unordered image collections [18, 19]. We transform the opening angles to focal
length values via Eqn. 4 (based on the resolution of the image being localized)
before applying P3P(f)-RANSAC. Fig. 2(c) shows the distribution of opening an-
gles for three such datasets, Dubronik (6k images) [18], Rome (15k images) [18],
and the Landmarks 1k dataset (205k images) [19]. The distribution of opening
angles is consistent across all datasets, indicating that the resulting distributions

4 https://www.flickr.com/cameras
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are a good representation of images taken in the real world. Still, we will show
in Sec. 5.2 that the choice of priors is not a crucial parameter.

4.2 Obtaining and Re-estimating the Sampling Probabilities

Ideally, the probability Psample(f) of selecting a focal length f should be propor-
tional to the likelihood of obtaining a pose estimate with an inlier ratio ε(f) that
is larger than the inlier ratio ε∗ of the current best pose estimate θ∗ obtained
for focal length f∗. Consequently, we model the sampling probability as

Psampling(f) =
P (ε(f) > ε∗ | f) · Pprior(f)∑

f ′∈F P (ε(f ′) > ε∗ | f ′) · Pprior(f ′)
, (5)

where P (ε(f) > ε∗ | f) is the probability of finding a better model using the
focal length f . As is common in practice, we assume that we can obtain an inlier
ratio of at least ε0 in order to limit the maximal number of RANSAC iterations,
i.e., we assume ε∗ = ε0 until we find a pose with an inlier ratio > ε0.

In the following, we first derive P (ε(f) > ε0 | f) for the case that all models
found so far have an inlier ratio of at most ε0. In this case, we have not yet found
a good model and thus have to treat all focal length values independently. We
then show that the case of having found a good model with ε∗ > ε0, in which
case P (ε(f) > ε∗ | f) depends on the current best pose θ∗, seamlessly integrates
into our definition of the probabilities.

Case 1: ε∗ = ε0. Using the termination criterion from Eqn. 2, we express the
maximal inlier ratio εmax(f) that we have missed with probability ≥ η in terms
of the number of random samples k(f) generated so far for focal length f :

εmax(f) = 3

√
1− k(f)

√
η . (6)

Since we are only required to compute the correct pose with probability ≥ η,
the probability P (ε(f) > ε0 | f) of finding a model with a higher inlier ratio
is directly related to the probability that the number of correct matches in M
is in the range (ε0 · |M|, εmax(f) · |M|]. Notice that the probability of finding
a wrong match only depends on the matching algorithm and the structure of
the 3D model [21], and not on the pose estimation strategy itself. Since this
probability can be estimated empirically from training data, we can assume
without loss of generality that we know the cumulative distribution function
cdf(ε) over the inlier ratios for the given matching algorithm and 3D model.
Thus, we can express the probability of finding a better model for f as

P (ε(f) > ε0 | f) = cdf(max(εmax(f), ε0))− cdf(ε0) . (7)

Under the reasonable assumption that cdf(ε) is strictly increasing, i.e., that all
inlier ratios occur with a non-zero probability, we have P (ε(f) > ε0 | f) =
0 only if εmax(f)) ≤ ε0. Consequently, P3P(f)-RANSAC will terminate after
|F| · kmax(ε0) iterations, i.e., if no pose with inlier ratio greater than ε0 can be
found with a probability of at least η.
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Case 2: ε∗ > ε0. Note that P (ε(f) > ε∗ | f) not only depends on the inlier
ratio ε∗ but also on the value of the focal length f∗ used to compute the current
best hypothesis θ∗. If f∗ is close to the correct focal length fgt, then focal length
values far away from f∗ are much less likely to result in better pose hypotheses
than values close to f∗. This behavior can also be observed in Fig. 2(b), which
shows that the inlier ratio decreases monotonically with the distance to the
correct focal length when applying RANSAC on correct matches only. While
outlier matches might cause local maxima, we found that this relation is still
a very good model in practice. Since a similar behavior has been observed for
other estimation problems [20], we thus use the following simplifying assumption
to derive the sampling probabilities.

Assumption 1 Let ε(f) be the maximal inlier ratio that can be obtained for
focal length f and let fgt be the correct focal length. For focal length values f and
f ′ with |fgt − f ′| < |fgt − f |, ε(f) ≤ ε(f ′) ≤ ε(fgt) should hold.

Without loss of generality, consider the focal length f < f∗. If f is closer
to fgt than f∗, Assumption 1 implies that we should be able to find an inlier
ratio of at least ε∗ for all f ′ ∈ F ∩ [f, f∗). Let F(f, f∗) = F ∩ [f, f∗) be the set
of corresponding focal length values and let P (ε(F(f, f∗)) > ε∗ | f) denote the
probability of finding a better pose in the range [f, f∗), then we have

P (ε(f) > ε∗ | f) ≤ P (ε(F(f, f∗)) > ε∗ | f) . (8)

The maximal inlier ratio in this range of focal lengths that we have missed with
a probability of at least η is again given by

εmax(F(f, f∗)) = 3

√
1− k(F(f,f∗))

√
η , (9)

where k(F(f, f∗)) =
∑

f ′∈F(f,f∗) k(f ′) is the sum over all samples generated for
the focal lengths from the considered range. As in Case 1, we thus obtain

P (ε(f) > ε∗ | f) = cdf(max(εmax(F(f, f∗)), ε∗))− cdf(ε∗) . (10)

This predict-and-update strategy is a recursive Bayesian filter. Note that we
again have P (ε(f) > ε∗ | f) = 0 only if the probability of finding a better
pose for f drops above the confidence threshold η, i.e., P3P(f)-RANSAC es-
sentially uses the same termination criterion as original RANSAC, offering the
same guarantees on the quality of the pose.

Behavior of the proposed sampling strategy. As long as no pose with
an inlier ratio above ε0 is found (Case 1), P3P(f)-RANSAC essentially uses
importance sampling to select promising focal length values. As soon as a good
model with inlier ratio above ε0 is found (Case 2), P3P(f)-RANSAC is able to
model the dependencies between focal length values, allowing it to quickly focus
on a smaller range of focal length values that are most likely to be correct. This
behavior is illustrated in Fig. 3. At the same time, our sampling strategy is able
to escape local maxima since all focal length values that could lead to a better
pose have a non-zero probability of being selected.
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Fig. 3: The number of iterations in which each of the 100 focal length values is selected,
plotted over the iterations of P3P(f)-RANSAC for three cameras from the Dubrovnik
dataset and an outlier ratio of 50%. The focal length value closest to the true focal
length of each camera is highlighted in red. As can be seen, P3P(f)-RANSAC is able
to quickly identify a subset of promising focal lengths while ignoring all other values.

Implementation details. Each focal length value is used for at most kmax(ε0)
samples. Since both Eqn. 6 and Eqn. 9 only depend on the number of iterations
and not on ε∗, we can use a lookup table to determine the maximal inlier ra-
tio. We represent the (empirically determined) cumulative distribution function
cdf(ε) as a discrete set of values. For any inlier ratio ε′, we use linear interpo-
lation to compute cdf(ε′) to guarantee that our discrete representation is still
strictly increasing, which prevents P3P(f)-RANSAC from terminating too early.

4.3 Integrating Early Model Rejection

The P3P solver can compute the pose from three 2D-3D matches in 2µs [14] while
the fastest P4Pf solver takes 46µs [4]. Consequently, P3P(f)-RANSAC should
be able to perform 23 times more sampling steps while still being faster than
P4Pf-RANSAC. However, evaluating the computed pose on the set of matches
also has a significant impact on the run-time of a single RANSAC iteration.
Since evaluating a pose takes around 20− 50µs (or more for images with a large
number of matches), P3P(f)-RANSAC can be at most 2 − 3 times faster than
P4Pf-RANSAC when evaluating each pose on all matches. Obviously, we do
not need to fully evaluate poses generated from non-all-inlier samples or with a
wrong focal length value. We can thus use approaches that terminate the pose
evaluation once it becomes likely that the current pose will not have an inlier
ratio higher than ε∗ [6, 7]. We chose to use the simple Td,d test, which evaluates
a pose on all matches only if d randomly selected matches are inlier to the pose,
with d= 1 as proposed in [6]. As a result of applying this T1,1 test, we need to
draw n=4 matches in each iteration of P3P(f)-RANSAC, increasing the number
of required iterations (c.f . Eqn. 3). At the same time, it becomes rather unlikely
that any pose estimated from a focal length far away from the correct value, even
if it was estimated only from correct matches, is evaluated on all correspondences
since significantly fewer correct matches are inliers to such poses (c.f . Fig. 2(b)).
As a consequence, only a small fraction of all generated poses need to be fully
estimated, resulting in a significant speed-up.
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5 Experimental Evaluation

In the following, we evaluate the performance of our proposed method both
on synthetic and real-world data. For all experiments, we use the Landmarks
1k dataset [19], reconstructed from 205k Flickr images, to learn the probability
distribution for 100 equally spaced opening angles, which we then transform into
focal length values for any image with a given width and height.

Using realistic focal lengths is an important part of our experiments, since our
algorithm utilizes the distribution of likely focal lengths to inform our RANSAC
scheme. In order to obtain realistic focal length values, and realistic 2D-3D
matches, for our synthetic experiments, we use two large-scale SfM reconstruc-
tions and generate pixel-perfect 2D-3D correspondences by reprojecting the 3D
points into the images in which they were observed. The Rome model [18] con-
sists of 15k database images and ∼4M points, while ∼1.9M points were recon-
structed from 6k images to create the Dubrovnik model [18]. The scale for the
latter model is known, allowing us to measure the localization accuracy on the
Dubrovnik dataset in meters. Both datasets form a standard benchmark for
image-based localization tasks [18, 19, 21] and we thus evaluate the performance
on real-world data of our approach in this application scenario. For both datasets
we use a cdc learned from inlier ratios observed on the Dubrovnik dataset.

For our experiments, we used the publicly available implementations of P3P
[14] and P4Pf [2] and our own implementation of the P5Pfr solver [16].

5.1 Experiments with Synthetic Data

We conducted two synthetic experiments to measure the performance of our
algorithm under increased levels of image noise and outlier ratios.

Image noise. We measured our algorithm’s robustness against image noise by
adding increasing levels of Gaussian pixel noise to the 2D positions of the perfect
2D-3D correspondences obtained by reprojecting the 3D points. We tested image
noise levels of 0, 0.1, 0.5, 1.0, and 2.0 pixels. Fig. 4 compares the performance of
our approach with P4Pf-RANSAC. For all levels of image noise, P4Pf achieves
slightly lower rotation, translation, and focal length errors, though the errors are
comparable. This indicates that our algorithm is able to estimate the pose and
focal length with high precision and is thus robust to noise, which is important
for real-world data.

Outlier ratio. The key idea of our approach is to use the faster P3P solver
to estimate camera poses more efficiently while avoiding a brute-force search
through all possible focal length values through our novel sampling scheme. In
this experiment, we evaluate the robustness of our approach to high outlier ratios.
We again use the perfect matches from the Dubrovnik dataset, with 1 pixel of
Gaussian noise added to the reprojected points, and create outliers by adding
new image points with correspondences to 3D points that were not observed in
the image until the desired outlier ratio is achieved.
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Fig. 4: Performance of our algorithm (red) and P4Pf [2] (blue) are compared for in-
creased levels of image noise. Our algorithm has comparable performance to P4Pf for
rotation, position, and focal length errors for all levels of noise. Despite requiring more
iterations, our algorithm has a lower run-time than P4Pf as the image noise increases.

Fig. 5 shows the performance of our P3P(f) approach and P4Pf-RANSAC
for increasing levels of outlier ratios. We plot the median position errors, inlier
ratios, and execution times. As can be seen, our algorithm is able to handle
low-inlier scenarios and still produce results that are nearly as accurate as P4Pf
while being several orders of magnitude faster. These results demonstrate that
Assumption 1 holds well enough even in the presence of outliers. For tasks such
as image-based localization, being able to handle low-inlier scenarios accurately
and efficiently is extremely important.

5.2 Experiments on Real Data

As a final experiment, we compare the performance of our algorithm to P3P,
P4Pf, and P5Pfr in an image-based localization task [18, 19, 21]. We use two ver-
sions of our algorithm: One with focal length priors obtained from the Landmarks
1K dataset, and one with no learned priors (i.e. uniform priors). We use the effi-
cient, publicly available localization method of [21] to obtain 2D-3D matches for
the 800 and 1000 query images available for the Dubrovnik and Rome datasets,
respectively. All query images were obtained by removing cameras from larger
SfM reconstructions, providing ground truth positions for the query images. No-
tice that we do not use perfect correspondences in these experiments.

The results for the Rome dataset are shown in Fig. 6. Algorithms that com-
puted focal length in addition to pose are able to recover noticeably more inliers
than the P3P method that was used with ground truth focal lengths values as
we did not account for radial distortion. As expected, all of the algorithms are
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Fig. 5: The median position error, inlier ratio, and run-time was measured while in-
creasing the outlier ratio from 0 to 0.7. Both algorithms are able to recover high quality
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run-time than P4Pf (right) as the outlier ratio increases due to using a faster solver.
This is a major advantage of our algorithm in low-inlier scenarios.
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Fig. 6: Localization results from the Rome dataset [18] are shown. Our P3P(f)-
RANSAC algorithm is able to recover more inliers than P3P used with ground truth
focal lengths from Bundler, and a comparable amount to P4Pf and P5Pfr (left). Our
algorithm has an execution time that is nearly one order of magnitude faster than P4Pf
(center), despite running for more iterations. In low-inlier cases (inlier ratio ≤ 0.5), our
algorithm is significantly faster than alternative algorithms (right).

slower than P3P. Our algorithm performed much faster than P4Pf in all cases.
As shown in Fig. 6, our approach is faster than P5Pfr for most low-inlier cases as
it requires fewer matches per sample and thus fewer iterations per focal length.

Tab. 1 shows the position errors of each method on the Dubrovnik dataset,
where we can measure distances in meters. The median position error of each
camera was recorded over 100 trials for each of the methods. All methods are
able to localize almost all images, and our method gives position errors that are
comparable to or only slightly higher than P4Pf, which has the lowest errors
of all algorithms. P3P(f) achieves better localization accuracy than P5Pfr. As
can be also seen in Tab. 1, our method is on average over an order of magnitude
faster than P4Pf. At the same time, P3P(f) is consistently faster than P4Pf on all
quantiles while being faster than P5Pfr for images with lower inlier ratios. Notice
that our P4Pf implementation requires 115µs compared to the 46µs required by
[4]. Yet, our approach is on average more than 7 times faster than when using the
solver from [4] and still achieves faster quantile run-times. On average, P3P(f)
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Table 1: The position errors and localization times measured on the Dubrovnik dataset
for an image-based localization task. Besides the results obtained by our approach
using the learnt priors for the focal lengths, we also include results for an uniform prior

Solver
Localization Accuracy [m] Localization Times [ms]

# loc. Mean Quantiles [m] Mean Quantiles [ms]
images [m] 25% 50% 75% 90% [ms] 50% 75% 90%

P3P (exact focal) 792 40.3 1.0 7.6 26.4 111.8 1.21 0.20 1.00 3.01
P4Pf 795 38.7 0.4 1.3 4.7 20.1 32.09 4.84 10.78 28.73
P5Pfr 796 227.2 0.5 2.0 31.3 200.9 6.02 0.54 3.07 16.44

P3P(f) (Ours) 795 20.8 0.4 1.6 5.4 27.6 1.68 0.68 1.27 2.72
P3P(f) uniform prior 795 28.1 0.5 1.7 5.9 24.3 1.89 0.85 1.46 3.08

is only 1.39 times slower than P3P, even though it requires no knowledge about
the focal length, making it well suited for SfM and localization applications.

Tab. 1 and Fig. 6 also show results obtained using a uniform prior on the
focal lengths. As can be seen, our method benefits from using a good prior
but performs only slightly worse otherwise. This demonstrates that our novel
sampling scheme is the main reason for why P3P(f)-RANSAC succeeds.

6 Conclusion

In this paper, we have proposed a novel approach, termed P3P(f)-RANSAC, for
efficiently estimating the pose of a camera with unknown focal length inside a
RANSAC loop. Instead of computing the focal length using a minimal solver,
our approach samples focal length values according to a probability distribution
and then uses the significantly faster P3P solver to estimate the pose of the
now calibrated camera. As the main contribution, we have proposed a novel
sampling scheme that is able to model the probability of finding a pose better
than the current best estimate for all focal length values. As a consequence, our
approach is able to avoid evaluating all values and focus on the more promising
candidates while offering the same guarantees as RANSAC in the presence of
outliers. We have shown that our algorithm achieves a similar pose accuracy as
previous pose solvers while achieving significantly faster run-times. These results
challenge the notion that using minimal solvers is always an optimal strategy.
While this paper focusses on the absolute pose problem, we plan to explore the
use of our framework for other pose estimation problems in future work.
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