
OmniTour: Semi-automatic generation of interactive virtual tours from
omnidirectional video

Olivier Saurer Friedrich Fraundorfer Marc Pollefeys

Computer Vision and Geometry Group
ETH Zürich, Switzerland

saurero@student.ethz.ch, {fraundorfer, marc.pollefeys}@inf.ethz.ch

Abstract

We present a semi-automatic method to generate inter-
active virtual tours from omnidirectional video. Similar
to Google Streetview, but focused on indoor environments,
the system allows a user to virtually walk through build-
ings on predefined paths. The user can freely look around
and walk into every direction, provided there exists a pre-
recorded location, e.g. at junctions. The method automat-
ically computes the initial tour topology from the omnidi-
rectional video data using structure from motion. A place
recognition step afterwards detects junctions and loop clo-
sures. A final interactive refinement step allows to align the
initial topology to a floor plan with a few mouse-clicks. The
refinement step incorporates automatic constraints from the
place recognition step and manual constraints. The pre-
sented system combines a high degree of automation with a
final manual polishing step to create an easily usable sys-
tem.

1. Introduction
The development of Google Streetview [4] really marked

a milestone for online map services. From then on it was
possible to virtually and interactively walk through cities
along roads and experience views as if you were there. The
system was deployed on a large scale and with high quality
photos. Key features of the system are, that the photos are
aligned to road map data and that it is possible to turn when
roads intersect. For this, the photos are geo-referenced and
aligned with satellite map data using GPS. This allows a
user to click on a point in the map and the corresponding
view shows up. The map alignment and the detection of
intersections are the main challenges of such a system and
in Google Streetview these are resolved using GPS anno-
tated photos. In this paper we now propose a system and
workflow for Streetview-like virtual tours of indoor envi-

ronments, e.g. malls, museums, public buildings. Within
buildings, geo-referencing with GPS is not possible and
thus map alignment and junction detection cannot be done
as for the Streetview application. We overcome this limita-
tion by using structure from motion (SfM) and visual place
recognition instead of GPS annotated photos. We present a
semi-automatic work flow that computes as much as possi-
ble automatically and allows manual intervention for a final
polishing.

The system works with omni-directional images from
a wearable image acquisition setup. As a first step SfM
is used to compute an initial camera path. Next a visual
place recognition system is used to detect loops and junc-
tions. This information is used to improve the initial cam-
era path by adding them as constraints into an optimization
step. Next step is the alignment of the camera path with the
floor plan of the building, for which an interactive author-
ing tool was designed. A user can specify ground control
points which align the camera path to the floor plan. This
process is interactive, every change is immediately incorpo-
rated and the user can see the change instantaneously. Af-
ter alignment the virtual tour can be experienced with our
viewer application.

2. Related work
One of the first virtual tours built, was within the Movie

Map project, developed by Andrew Lippman [6] in the
1980s. The city of Aspen in Colorado was recorded using
four 16mm cameras mounted on a car. Where each cam-
era pointed in a different direction such that they captured a
360 degree panorama. The analog video was then digitized
to provide an interactive virtual tour through the city.

Now, 30 years later, the process of scanning entire cities
or buildings has become much more practical. Image based
rendering techniques have increased the interactivity when
exploring virtual scenes. In the 1990s Boult et al. in [2]
developed a campus tour, allowing a user to freely look

1



around while navigating through the campus. The images
were taken from a catadioptric camera, where a curved mir-
ror provides a 360 degree panoramic view. While the previ-
ous projects focused on outdoor scenes, Taylor’s VideoPlus
[12] provided an indoor walk through using a sparse image
set.

Recently, Uyttendaele et al. in [13] proposed a system
to create virtual tours using six cameras tightly packed to-
gether, to increase image quality. The six camera views are
then combined to a single high resolution omnidirectional
view using image based rendering techniques. They provide
virtual tours through indoor and outdoor scenes. At junc-
tions the viewer can change from one path to an other. Un-
fortunately, their system does not automatically recognize
junctions, instead an author is asked to manually select an
intersection range in both paths, then the system performs
an exhaustive search to find the optimal transition between
both paths, i.e., the transition with minimal visual distance.

Furukawa et al. [3] proposed a fully automated recon-
struction and visualization system for architectural scenes,
based on a sparse set of still images. Their approach is based
on extracting very simple 3D geometry by exploiting known
properties of the architectural scene. The model is then used
as a geometric proxy for view-dependent texture mapping.

Levin et al. in [5] proposed a system to automatically
align a camera trajectory, obtained from a SfM algorithm,
with a rough hand-drawn map describing the recorded path.
Similar panoramic views are recognized using a hierarchi-
cal correspondence algorithm. In a first step color his-
tograms are matched, then the rotation invariance is verified
by computing the 3D rotation between frames. The final
frame correspondence is accepted if the epipolar geometry
provides enough consistent feature matches. The ego mo-
tion is then matched with a hand drawn map and optimized
using loopy belief propagation. Their approach is limited
to the accuracy of the hand-drawn map, and does not allow
user interaction to refine the alignment. Similar to the previ-
ous work Lothe et al. [7] proposed a transformation model
to roughly align 3D point clouds with a course 3D model.

We propose a system which gives a good first estimate
of the camera trajectory. We then provide an authoring
tool to manually align the camera trajectory with a floor
plan. The manual alignment is aided by an optimization
algorithm which incorporates both manual and place recog-
nition constraint to solve for an optimal camera trajectory
aligned with a floor plan.

3. System overview
An overview of the proposed processing pipeline is given

in Fig.1. The input to our algorithm is an omnidirectional
video stream together with a floor plan. We first convert
each frame to six radial undistorted images. After extract-
ing SIFT features we select key-frames based on the motion

Junction 
Detection

SfM

MAP 
Optimization

Preprocessing

Authoring

Topological 
Map

Viewer

Video Stream Floor Plan

Junction 
Detection

SfM

MAP 
Optimization

Preprocessing

Authoring

Topological 
Map

Viewer

Video Stream Floor Plan

Figure 1. Overview of the proposed processing pipeline, for semi-
automatic alignment of camera trajectories with a floor plan.

of the features. Then, we search for already visited places
using visual words and filter false frame matches with a hi-
erarchical filtering scheme. The ego motion of the camera is
estimated using a SfM algorithm. Finally, the camera trajec-
tory is optimized, as described in section 7, which incorpo-
rates both place recognition and user supplied constraints.

4. Acquisition and preprocessing
Camera model: The input to our algorithm is an omni-
directional video stream, captured by a Ladybug21 camera.
The camera consists of six 1024 × 768 color CCDs. Five
of which are positioned horizontally and one is pointing up-
ward. Similar to Tardif et al. in [11], we model the Lady-
bug unit head as a single central projective pinhole camera
holding six image planes with different orientations in 3D
space. Furthermore, we assume that the principle axis of all
six cameras are aligned and intersect in the origin of the La-
dybug unit head coordinate system. The projection equation
for each of the six cameras is then given by Eq.1:

xi = KiRi[I| − Ci]X, i ∈ {1, . . . , 6}, (1)

where Ki represents the intrinsic calibration matrix, Ri and
Ci the rotation and translation of camera i relative to the
Ladybug unit head coordinate system. Given the above as-
sumption that ‖Ci‖ is negligible, the projection equation
rewrites as

xi = KiRi[I|0]X, i ∈ {1, . . . , 6}. (2)

This assumption results in the change of the focal length for
each of the six cameras, making the original light ray flatter.
Triangulating 3D points using this camera model will result
in a wrong depth estimation. However for points far enough
this is negligible.

1http://www.ptgrey.com/products/ladybug2/

2



Figure 2. Backpack acquisition setup, consisting of a Ladybug2
camera, a small computer to store the captured data and a battery
set to power the system.

Data acquisition: To acquire our omnidirectional im-
ages, we mounted the Ladybug camera onto a backpack.
The backpack can be attached to a wheelchair to scan long
planar paths, such as corridors and hallways. Stairways and
locations not accessible with a wheelchair are recorded by
wearing the backpack. The wheelchair setup is in favor,
since it gives a smoother camera motion and a more natural
height when virtually exploring the building.

Feature extraction: Once a video sequence is captured,
each camera stream is converted into a sequence of images.
The high lens distortion is corrected using the lens undis-
tortion algorithm provided by the Ladybug SDK. To extract
key points we use the SIFT implementation provided by
Vedaldi and Fulkerson2. We only keep features located in-
side a bounding box of size 280 × 315 pixels, centered at
the principle point.

Key-frame selection: Key-frames represent a subset of
the image sequence, where two neighboring key-frames
are separated such that a well conditioned essential matrix
can be estimated. A frame is selected as key-frame if more
than 10% of its features have moved over a threshold of 20
pixels.

The key frames together with their SIFT features form
the input to the SfM and junction detection algorithm out-
lined in section 5 and 6.

2http://www.vlfeat.org/ vedaldi/code/siftpp.html

5. SfM using the Ladybug camera
The input to our SfM algorithm are the key-frames of the

omnidirectional video stream which holds a set of discon-
tinuous path sequences.

First, we transform the features of all six CCDs into the
Ladybug coordinate system and merge them to a single fea-
ture set. Then, we transform the 2D rays into 3D vectors
which are normalized to unit length to increase robustness
of the algorithm. For each pair of key-frames we compute
the camera trajectory by extracting rotation and translation
from the essential matrix.

To compute the essential matrix between two frames the
1-point method proposed in [9] is used. It exploits the non-
holonomic constraints of our wheelchair setup and the pla-
nar motion and thus requires only 1 point correspondence
to compute the essential matrix. This makes motion estima-
tion very fast and robust to high numbers of outliers. We
omit relative scale estimation as this is usually subject to
drift. Instead we rely on the internal loop and junction con-
straints and the manual input to compute the relative scales
of the path. The full path is then obtained by concatenating
consecutive transformations.

6. Loop and junction detection
We recognize already visited places, solely based on vi-

sion. Our technique requires to be rotation invariant, since
the camera might traverse an already visited place point-
ing into a different direction. Furthermore, finding spatially
adjacent frames which are temporally separated, requires
a framework which quickly discards a large portion of the
input images, to reduce frame correspondence search. We
make use of the bag-of-word [8] schemes providing a first
guess of a loop-closure, which is verified using a geometric
constraint. The visual dictionary used for quantization, was
trained beforehand on a dataset containing random images
taken from the Internet. The quantized frames are inserted
into a database. Then, for each frame the database is queried
for similar frames. The potential frame matches obtained
from the query are further pruned down using a hierarchical
filtering scheme, consisting of a visual word match, SIFT
feature match and a final geometric verification. Each stage
of the hierarchical filtering scheme can either accept or re-
ject a frame pair. If a frame pair is accepted by one stage
it is passed on to the next stage. A frame pair is finally ac-
cepted as true match, if they satisfy the epipolar constraint
xTb Exa = 0, meaning the two frames share a common view
of the same 3D scene. Each true frame match provides one
entry in the similarity matrix, encoding the number of fea-
ture matches.

The similarity matrix is then post-processed to remove
perceptual aliasing matches, characterized by sparse clutter,
see Fig. 5. We identify sparse clutter by labeling the con-

3



nected components of the binarized similarity matrix and
remove regions which size is below a certain threshold (30
in our experiments).

For each frame we then search for the best match in the
similarity matrix. The best match is defined as the image
pair with the highest ratio of inliers vs. feature matches.
These frame correspondences are then used as constraints
in the optimization process.

7. Interactive alignment to floor plan
7.1. Notation

In the following, camera positions and motions are writ-
ten as coordinate frame transforms. Camera positions are
denoted by the coordinate frame transform from the world
origin into the camera coordinate system and written as Ei
for the i-th camera. The motion between camera Ei and
camera Ei+1 is denoted as Mi. All coordinate frame trans-
forms consist of rotation R and translation t and are repre-
sented by 4x4 matrices:

E, V,M,N =

[
R t
0 1

]
(3)

In this paper the transformations and their uncertainties
are written in terms of the Lie algebra of SE(3) using the
exponential map. This parameterization is extensively dis-
cussed in [10] and not repeated here.

7.2. Fusing SfM with ground control points

From the SfM algorithm we get the camera path as
a sequence of transformations between subsequent cam-
eras. The transformations have 6DOF and are denoted as
M0, ...,Mn. In the interactive alignment this path needs
to be fused with ground control points V0, ..., Vm that are
specified by the user. The path needs to be changed so
that it goes through the ground control points. The individ-
ual camera positions of the path are denoted by E0, ..., En
which are the results of the fusion. Fig. 3(a) shows an illus-
tration of a camera path and the corresponding transforma-
tions. Every transformation has an uncertainty specified by
a covariance matrix. We are seeking the maximum a pos-
teriori estimate of the transformations E0, ..., En which is
done by minimizing the following Mahalanobis distance:

w = minE(
∑

i(Mi−(Ei+1−Ei))
TC−1

Mi(Mi−(Ei+1−Ei))

+
∑

i(Vi−Ei)
TC−1

V i (Vi−Ei)) (4)
= minE((M−HE)T Ĉ−1

M (M−HE)

+(V−KE)T Ĉ−1
V (V−KE)) (5)

In the first term of Eq. 4 Ei and Ei+1 should be com-
puted so that the transformation between the two camera

poses matches the transformation Mi computed from SfM.
At the same time the distance between the ground control
point transformation Vi to Ei needs to be minimized. Eq. 4
can be written in matrix form without summation with H
and K being incidence matrices that specify for each con-
straint which E, M and V transformations are compared to
each other. In general, this problem can be solved by non-
linear optimization as shown in [1]. A different solution to
this problem was proposed by Smith et al. in [10]. They
proposed a linear time algorithm for the case of a sequential
camera path with sparse ground control points. The algo-
rithm works in 3 steps. First, initial estimates for the Ei are
computed by concatenating the Mi transformations starting
from the beginning of the sequence. The covariances are
propagated accordingly. Ground control points Vi are fused
into this by combining these 2 measurements if available.
In the second step this is done again but starting with the
end of the sequence. This results in two measurements for
each Ei which are then combined optimally in a third step.
The combination is done by solving Eq. 5 for two individual
measurements only.

w = min
Eopt

(
(Ej − Eopt)TC−1

Ej (Ej − Eopt)

+ (Ei − Eopt)TC−1
Ei (Ei − Eopt)

)
(6)

This scheme is also used to combine a transformation Ei
with a ground control point Vi.

w = min
Eopt

(
(Ei − Eopt)TC−1

Ei (Ei − Eopt)

+ (Vi − Eopt)TC−1
V i (Vi − Eopt)

)
(7)

For our system we extended the scheme by adding in-
ternal loop constraints Nij . These Nij are transformations
between frames i and j that are computed by place recogni-
tion. The illustration in Fig. 3 depicts a loop constraint Nij .
In our fusion these constraints need to be fulfilled too. For
this Eq. 5 is extended by an additional term.

w = minE(
∑

i(Mi−(Ei+1−Ei))
TC−1

Mi(Mi−(Ei+1−Ei))

+
∑

i(Vi−Ei)
TC−1

V i (Vi−Ei)

+
∑

i,j(Nij−(Ej−Ei))
TC−1

N,ij(Nij−(Ej−Ei))) (8)
= minE((M−HE)T Ĉ−1

M (M−HE)

+(V−KE)T Ĉ−1
V (V−KE)

+(N−LE)T Ĉ−1
N (N−LE)) (9)

To solve Eq. 9 we extend the original algorithm proposed
in [10] as follows. Our data consists of multiple discon-
tinuous path sequences, which are interconnected by place

4



a) b)

Figure 3. Vi denotes the control points set by the user, Ei denotes
the camera translation and rotation, Mi the motion between neigh-
boring frames and Ni loop closure or inter path constraints. a)
illustrates a self intersecting camera trajectory and b) two inter-
connected paths.

recognition constraints. The sequences are optimized inde-
pendently and sequentially. Fig. 3(b) illustrates the case of
optimizing two connected sequences. The illustration con-
tains two paths p1 and p2. In a first step p1 is optimized.
When computing the value for Ej the position of Ei from
the path p2 is fused with path p1. Next, path p2 is optimized
and here the transformation Ej is used to be fused into Ei.
This process has to be iterated so that updates in poses and
covariances are propagated sufficiently. Place recognition
constraints from self intersecting paths are treated in the
same way. This extension allows us to use the initial se-
quential algorithm of [10] for paths with intersections and
loops. It does not find the global minimum of Eq. 9 but
experiments showed that it is an efficient and practicably
approach.

8. Visualization and navigation
We provide two tools, an authoring tool to align the cam-

era trajectory with a floor plan and a viewer tool to interac-
tively explore the virtual tour, both illustrated in Fig. 4.

Authoring: The authoring tool provides a simple and ef-
ficient way to align the camera trajectory to a floor plan.
The user can adjust both camera positions and rotation. A
preview of the selected camera is provided to help the user
localize the corresponding position on the floor plan. The
core algorithm to support the alignment process is outlined
in section 7.

We show in our experiments that a user can align a full
floor plan within a couple of minutes using a small number
of control points.

Viewer: The viewer tool consists of two windows, a main
window showing the environment which is currently ex-
plored by the user and a mini-map showing the user’s cur-
rent position and viewing direction on the floor plan. To
display the environment, we first render a flat panoramic
image from all six camera views which is used to texture

a sphere. The mini-map is provided as a navigation help.
It displays the current position and viewing direction of the
user on top of a floor plan. The mini-map also provides an
easy way to quickly change from one place to an other, by
clicking the new location of interest.

When exploring the virtual tour, we would like to move
forward, backward and change direction at places where
two paths intersect. Therefore we can not rely on the se-
quential storage of the video stream, to display the next
frame, since neighboring frames, especially at junctions
have been recorded at different time instances. Instead we
use the camera position to select the next frame. Depend-
ing on the user’s current viewing direction and position we
search the neighborhood for the closest frame located in the
user’s viewing frustum. The new frame’s rotation is adapted
such that it matches the current frame’s viewing direction.

9. Experiments

To demonstrate our algorithm we recorded a full floor of
a building, excluding offices and rooms not accessible to the
public. The stream holds over 14k omnidirectional frames
resulting in a total of over 84k mega-pixel images. After
preprocessing a set of 4k key-frames remain. They form the
input to the junction detection and the structure from motion
algorithm. Fig. 8 shows one omnidirectional frame of our
input, after correcting for the lens distortion.

The similarity matrix obtained from the junction de-
tection, represents frame correspondences between frames
which lay temporally apart, see Fig. 5. Clusters parallel
to the diagonal represent paths that were re-traversed in
the same direction while clusters orthogonal to the diago-
nal were traversed in opposite direction. The sparse clutter,
around frame (2040, 2330) represents false frame matches
which are due to perceptual aliasing. We only show off-
diagonal frame matches, since frames temporally close to
each other always look similar.

The SfM algorithm is run on the whole stream, which
holds multiple discontinuous paths. The beginning of each
sub path can then be found by looking at the number feature
matches and their corresponding inlier ratio. Neighboring
frames, which are spatially apart and therefore represent the
ending or beginning of a new path, will have a few feature
matches but almost no inliers satisfying the epipolar con-
straint. Fig. 6 shows the total number of feature matches
between two consecutive frames and their number of inliers.
The sub graph represents the ratio of feature matches and in-
liers. Single peaks in the ratio graph indicate the beginning
of a new path.

We then automatically extract frame correspondences
from the similarity matrix to append non continuous paths
and introduce loop closure constraints into our optimiza-
tion. In our experiments 695 constraints were introduced

5



a) b)

Figure 4. a) The visualization tool to interactively explore the environment. A mini-map shows the user’s current position and viewing
direction on the floor plan. b) The authoring tool, to align the camera trajectory with an underlaying floor plan. A preview window shows
the environment of a selected camera pose (in green). Red dots represent camera poses which were fixed by the user to align the full camera
trajectory.

Figure 6. The stream holds multiple non continuous path se-
quences. To find the beginning of a new path, we compute the
ratio between the number of feature matches (blue) and the num-
ber of inliers (red). The ratio is shown in the subplot in (green).
Peak values represent the beginning of a new path sequence, 5 in
the processed dataset.

automatically. Fig. 7 shows the SfM after optimization to-
gether with the final alignment on top of the floor plan.

When combining the SfM trajectory with control points
provided by the user, the error uncertainty of the SfM can
be guided through the covariance matrix C, Eq. 10, where
a strong motion in one direction will provide more uncer-
tainty than a small motion, likewise for the rotation, where
a big rotation holds more uncertainty than a small one. We
therefore linearly adapt the variance in x and y direction
depending on the motion. Similarly for the rotation around
the z-axis the variance is increased with increasing rotation
angle α.

C =



10−6 0 0 0 0 0

0 10−6 0 0 0 0

0 0 α · 10−3 0 0 0

0 0 0 x · 10−2 0 0

0 0 0 0 y · 10−2 0

0 0 0 0 0 10−6

 (10)

10. Conclusions

We present in this paper a system to create topological
maps from an omnidirectional video stream, which can be
aligned with a floor plan with little user interaction. We
have built our own scanning device to record indoor and
outdoor scenes. The camera trajectory is obtained from a
state-of-the-art 1-point RANSAC. Already scanned places
are automatically recognized and used to append non con-
tinuous path sequences and to introduce loop closure con-
straints when optimizing for the camera trajectory. The tra-
jectory optimization can be guided by the user to align the
camera trajectory with a floor plan. Furthermore we provide
two tools. An authoring tool, to align the camera trajectory
with the floor plan and a visualization tool used to explore
the virtual tour. This system is not limited to indoor scenes,
but could also be used in outdoor environments.

In the future, we would like to investigate further au-
tomation to align the SfM with a floor plan, using additional
sources of information such as a sparse 3D reconstruction
and vanishing points. Furthermore, we would like to im-
prove the visualization. At intersections we would like to
introduce synthetic frames, to provide a smoother transition
between paths.

6



a) b)

c) d)

Figure 5. The similarity matrix of the processed data. a) similarity matrix after visual word matching, and b) after geometric verification.
Note that the sparse clutter around frame (2040, 2330) in image b) represents false frame correspondences due to perceptual aliasing. c)
The final similarity matrix after post-processing, i.e., removing sparse clutter. d) the floor plan showing the full aligned camera trajectory
with the according frame correspondences.

References

[1] M. Agrawal. A lie algebraic approach for consistent pose
registration for general euclidean motion. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Confer-
ence on, pages 1891–1897, Oct. 2006. 4

[2] T. Boult. Remote Reality via Omnidirectional Imaging.
In DARPA Image Understanding Workshop (IUW), pages
1049–1052, Nov 1998. 1

[3] Y. Furukawa, C. Curless, and S. Seitz. Reconstructing build-
ing interiors from images. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2009. 2

[4] Google. Street view, 2009. 1

[5] A. Levin and R. Szeliski. Visual odometry and map correla-
tion. In Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, Washington, DC, pages I: 611–618, 2004.
2

[6] A. Lippman. Movie-maps: An application of the opti-
cal videodisc to computer graphics. SIGGRAPH Comput.
Graph., 14(3):32–42, 1980. 1

[7] P. Lothe, S. Bourgeois, F. Dekeyser, E. Royer, and
M. Dhome. Towards geographical referencing of monocu-
lar slam reconstruction using 3d city models: Application to
real-time accurate vision-based localization. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2882–2889, 2009. 2

7



a) b)

Figure 7. In both images only every 10th camera pose is visualized with yellow dots. a) represents the output of the SfM algorithm
after applying recognition constraints, obtained from the similarity matrix, without any user interaction. b) represents the final result after
aligning the camera trajectory with the floor plan. The point correspondences used to align the camera trajectory with the underlaying floor
plan are shown in red.

a) b) c) d) e) f)

Figure 8. One omnidirectional frame. a) - e) represent the five vertical aligned camera views. f) represents the upward pointing camera
view. Note that each image has been corrected for lens distortion.

[8] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, New York City, New York, pages
2161–2168, 2006. 3

[9] D. Scaramuzza, F. Fraundorfer, and R. Siegwart. Real-time
monocular visual odometry for on-road vehicles with 1-point
ransac. In 2009 IEEE International Conference on Robotics
and Automation, pages 1–7, 2009. 3

[10] P. Smith, T. Drummond, and K. Roussopoulos. Computing
map trajectories by representing, propagating and combining
pdfs over groups. In Proc. 9th International Conference on
Computer Vision, Nice, France, pages 1275–1282, 2003. 4,
5

[11] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual
odometry in urban environments using an omnidirectional
camera. In IROS, pages 2531–2538, 2008. 2

[12] C. Taylor. Videoplus: a method for capturing the structure
and appearance of immersive environments. In IEEE Trans.
Visual. Comp. Graphics, pages 171–182, April-June 2002. 2

[13] A. Uyttendaele, A. Criminisi, S. B. Kang, S. Winder,
R. Hartley, and S. Richard. High-quality image-based in-
teractive exploration of real-world environments. Technical
Report MSR-TR-2003-61, Microsoft Research, 2003. 2

8


