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Abstract

How many people should you ask if you are not sure

about your way? We provide an answer to this question

for Random Forest classification. The presented method is

based on the statistical formulation of confidence intervals

and conjugate priors for binomial as well as multinomial

distributions. We derive appealing decision rules to speed

up the classification process by leveraging the fact that

many samples can be clearly mapped to classes. Results

on test data are provided, and we highlight the applicability

of our method to a wide range of problems. The approach

introduces only one non-heuristic parameter, that allows to

trade-off accuracy and speed without any re-training of the

classifier. The proposed method automatically adapts to the

difficulty of the test data and makes classification signifi-

cantly faster without deteriorating the accuracy.

1. Introduction

Due to their inherent multi-class formulation, their sim-

plicity and their very high accuracy, Random Forest clas-

sifiers [4] attract increasing attention within the computer

vision community. Variants like Random Ferns [21] and

Extremely Randomized Trees [13] are also well known. In

general those methods construct a set of base classifiers (e.g.

trees), also called “experts” subsequently, and a vote is com-

puted to predict on unseen data.

The original problem targeted by those classifiers is su-

pervised learning and it is formulated as follows: use the N

members of the training set S = X ×L =
{

(xi, yi)
N

i=1

}

to

learn a model M (x) that generalizes well on unseen data

when predicting the label y ∈ L using the F -dimensional

feature or equivalently called attribute or covariate vector

x ∈ X ⊂ R
F . In case of above mentioned methods, the

model is given by

M (x) = f

(

T
∑

i=1

gi (x)

)

(1)

with T base classifiers (“experts”) gi, i ∈ {1, . . . , T} and

a function f (·) casting the result obtained by summation

into the final classifier output. Details on the base classifiers

and the function f (·) for Random Forest are provided in

Section 2.

The set of available “experts” can be relatively large.

Looking at a Random Forest classifier the available “ex-

perts” are the T trees composing the forest. Several hundred

or even up to some thousand are rather usual. In addition,

detection tasks in computer vision tend to have a large num-

ber F of features. They range from Haar-like wavelets [27]

and Scale-Invariant Feature Transform (SIFT) [20] descrip-

tors to Histogram of Oriented Gradients (HOG) [9] to name

just a few. Features specifically designed for a particular

problem are in use as well. To save computational time dur-

ing classification of unseen data, we generally compute only

those elements of the feature vector x that are necessary,

i.e. the required elements are obtained on demand. Time

for computation heavily depends on the complexity of the

particular feature assessed. In recent years computational

complexity of the features increased from just a few addi-

tions for Haar-like features to more complex operations like

filtering for gradient computation in HOG.

Those features are applied in sliding window based ob-

ject detection or pixel based classification where we gener-

ally label an image (2D or 3D) with the classes L specified

during training. Thus we often apply the classifier to every

instance (pixel/voxel) of the unseen image. See [23] for a

recent application applying a classifier pixel-wise. For de-

cent sized images we already talk about hundred thousands

to millions of samples that need to be classified. Depending

on the problem, many of these instances are easy to classify,

i.e. one “expert” can provide the answer. For some of them

we better ask all available classifiers and for others even that

is not sufficient for a fundamental base of a decision.

To get a feeling for the impact of the proposed approach,

we view a Random Forest classifier as “walking” in the dis-

crete |L|-dimensional space before it concludes with a de-

cision. Considering majority voting, every classifier votes

for one of the |L| unit directions. For a binary classification

scenario the proportion after asking K = k1 +k2 classifiers

is denoted by (k1, k2) with k1 and k2 representing the num-
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Figure 1. The number of test samples from our large scale data

set that hit a certain proportion (k1, k2) during the classification

process. The number of samples is color coded on a logarithmic

scale.

ber of object and non-object guesses respectively. When

classifying an easy sample we might only walk along one

direction whereas for a difficult sample we end up close to

k1 = k2. Fig. 1 illustrates, how often a certain proportion of

positives and negatives, i.e. (k1, k2) was hit, when we ap-

ply a Random Forest classifier to test data of the two class

classification problem presented in Section 5. For now it is

sufficient to note that in many sliding window based classi-

fication problems like face and car detection, the number of

negatives (non-object samples) exceeds the number of pos-

itives (object samples). In addition to the huge amount of

easily classified negatives there are fewer (still several thou-

sands) but easy to distinguish positives as well.

In the following, we propose an analysis based on the

assumptions that 1) each “expert” makes an indepen-

dent prediction and 2) the “experts” are approximately

equally knowledgeable. The latter assumption holds well

for Random Forest. However, the first assumption does not

follow from the injected randomness which strives for un-

correlated trees [4]. Consequently, higher order moments

do not necessarily drop out. Hence, the trees are not in-

dependent. Experiments nevertheless show, that we obtain

encouraging results.

We describe how to integrate a statistical test, suitable

for binary classification tasks into Random Forest. Next

we derive an alternative method for the binomial case and

extend it to multinomial problem instances. We base our

analysis for the binomial and multinomial formulation on

the well known beta or Dirichlet distribution.

For binary classification each “expert” is required to have

a roughly equal probability p to favor a positive label and

1 − p for the negative label. If p > 0.5, i.e. the majority of

the “experts” favor a positive label, we classify the sample

to positive. Otherwise, it is negative. However, the proba-

bility p is unknown and can only be inferred from the binary

decisions of the “experts.” We derive a closed-form solution

to make a consistent decision using the beta distribution of

p given the number of “experts” consulted so far (K) and

the number of “experts” preferring a specific class label (k1

for the positive, k2 for the negative, and k1 + k2 = K).

We then decide if we can make a consistent classification

(that means the classification after consulting K “experts”

is consistent with that after consulting an infinite number of

“experts”) with a high probability, e.g., larger than 95%.

For multi-class classification, it is hard to calculate the

exact solution to make a consistent decision using a Dirich-

let distribution for p. We therefore propose to calculate

the confidence band of the estimate p̂. If the class with

the largest p̂ is a clear winner (its lower confidence band is

higher than the upper confidence bands of all other classes),

we stop consulting more “experts.”

• Thus, we propose a novel adaptive method for Random

Forest that determines automatically when to stop clas-

sification. Experiments indicate a significant speed up

for detection. In other words, we suggest to decrease T
during the process of detection depending on the cur-

rent state Mt (x) = f
(

∑t

i=1 gi (x)
)

of the model.

• For both, the binomial as well as the multinomial case,

all the early termination criteria we obtain can be pre-

computed such that the only complexity added during

classification is one table lookup and eventually com-

parisons.

• A further property of our method is the easiness to bal-

ance accuracy and speed for a given classifier. Neither

re-training nor additional classifiers are required to en-

able tuning w.r.t. either speed or accuracy.

We provide details of our approach in Section 3 after re-

viewing Random Forest and related work in Section 2. To

comfort the reader with the applicability of the method, we

closely investigate the behavior of our algorithm on small

multi-class data sets in Section 4 and provide insight into

large scale behavior (F ≈ 100, 000, several millions of

samples per image) in Section 5. We conclude with a sum-

mary in Section 6.

2. Related Work

Basically almost all the novel techniques in the object de-

tection and recognition community apply classifiers in one

or another way. A very popular choice are Random Forest

classifiers [17, 29]. We subsequently provide a brief intro-

duction.

A Random Forest Classifier is an ensemble/set of clas-

sification trees (e.g. CART [5]). Each leaf node of a tree

i provides the probability pi (y | x) for y ∈ L which is

obtained during training of the forest. We ask the inter-

ested reader to browse the respective literature [4] for de-

tails on the training procedure. We emphasize that in ac-

cordance with the original Random Forest formulation [4],

pi (y | x) is an |L|-dimensional binary indicator variable,

i.e. each tree casts a unit vote for the most popular class.

To the best of our knowledge there is no evidence favoring
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a distribution rather than an indicator variable for pi. If,

contrary to [4], pi denotes a probability rather than a unit

vote we use the label having the highest probability mass.

As detailed later, prediction confidences are easily included

into the presented methods. The final classification result

is an averaging of unit votes pi ∀i and we assign the label

resulting in the maximum vote,

M (x) = arg max
y∈L

1

T

T
∑

i=1

pi (y | x) . (2)

We obtain f (·) = arg maxy∈L
1
T

(·) and gi = pi by

simple comparison of Eq. (2) with the general model (1).

The few comparisons denoted by f (·) are computationally

less expensive than passing a sample down from the root of

tree i using particular features for the binary decision.

To achieve improved performance w.r.t. time, several

methods for Random Forest classifiers were proposed. The

parallelized architecture of the graphics processing unit

(GPU) can be leveraged. Sharp [26] shows the tremen-

dous improvements achievable by a clever implementation.

Combining this with our approach would facilitate real-time

classification for even more complex tasks. It is however

not our main intention to show real-time classification. We

rather aim at indicating that further improvements are pos-

sible if we introduce smart decisions. Nevertheless we em-

phasize that our formulation allows for parallelization at

the sample level, i.e. multiple samples can be classified at

the same time. Another approach named Random Fern was

proposed by Özuysal et al. [21]. As in Random Forest, the

sample is passed down the set of ferns. Each node within

a fern provides a result for the binary test which is used

to access the leaf node containing the posterior probabil-

ity pi (y | x). When changing to log-space, the combina-

tion of posteriors is identical to Random Forest classifiers.

Thus the model given in Eq. (2) is fully applicable and our

method can be applied without any modification.

This emphasizes the general structure of our approach

which can be combined with above two methods by Sharp

and Özuysal et al. We underline that no particular hard-

ware like a GPU is required in our case. Also note, that our

approach is generally applicable to all classifiers that fulfill

the assumptions highlighted in Section 1 and the structural

requirement of Eq. (1).

Many more methods besides Random Forest were ex-

amined w.r.t. performance improvements. Among those are

RANSAC [10] or other classifiers like Boosting [11, 24]

or neural networks. Methods applied there are training of

a rejection trace [3], genetic algorithms [30] and the se-

quential probability-ratio test (SPRT) [28] used e.g. in [7, 8]

for Boosting and RANSAC. SPRT is a likelihood-ratio test

which distinguishes two hypotheses. Thus it is applicable to

binary classification problems but contrasting our approach,

extensions to multiple classes are not straight forward.

We’ll derive a decision rule suitable for binary problems

in the following and compare to results obtained with SPRT.

We then extend this alternative rule to multi-class prob-

lems. Note that the derived rules require only one thresh-

old, whereas SPRT takes at least two parameters as shown

in Section 3.1.

3. Early Termination of Classification

As stated in Section 1 and as we will derive shortly, the

alternate rule is based on a purely statistical foundation us-

ing respective distributions and corresponding confidence

intervals. Due to the discrete nature of the multinomial

distribution, confidence intervals cannot be computed in a

straight forward manner. Note that approximation of confi-

dence intervals for multinomial distributions is still subject

of current research [6]. In the following, we distinguish be-

tween binomial and multinomial classification, although the

multinomial formulation is of course applicable to a bino-

mial problem. For both cases all the early termination cri-

teria can be pre-computed. Hence we just need to retrieve a

value from the respective position in a table and our online

pruning technique hardly adds any computational complex-

ity to the classification task.

3.1. Binomial Formulation

Suppose given a sample, we ask K “experts” and k1 of

them tell us it is positive. An intuitive estimate of the prob-

ability for this sample to be positive is p = k1

K
. Is this an

unbiased estimate? How reliable is this estimate? Suppose

k1 ≥ K
2 . If we stop consulting more “experts” and draw

a conclusion that this sample is positive, what is the proba-

bility that we make a consistent decision (which means the

decision we make so far is consistent with the decision after

consulting an infinite number of “experts”)? In this section,

we will answer all these questions.

Suppose we consult K “experts” and each one indepen-

dently casts a vote for the positive object class with proba-

bility p. The probability of observing k1 (where 0 ≤ k1 ≤
K) positive tests follows the binomial distribution

b (k1 | p,K) =

(

K

k1

)

pk1 (1 − p)
K−k1 . (3)

A positive result from the “expert” gi is a vote for the posi-

tive class, i.e. gi indicates a vote for label 1. As gi is a binary

indicator variable, this task is particularly simple such that

k1, k2 and K are obtained at no extra cost. Note, that the

derivation for the number of negative votes k2 is analogous.

Using Bayes’ rule we compute the distribution of p given

the object votes k1 and the number of trials K as

P (p | k1,K) =
b (k1 | p,K) P (p | K)
∫ 1

0
P (k1, p | K) dp

. (4)
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Figure 2. The binomial case: (a) illustrates the probability

P (p ≥ 0.5 | k1, K) for the current votes (k1, k2) and (b) shows

the region of early termination obtained with a confidence of

1 − α = 0.9 when observing different votes (k1, k2).

Here, P (p | K) = P (p). Without a priori knowledge

about the distribution of p we in general assume it to be

least informative, i.e. uniform. By simplifying Eq. (4) we

obtain

P (p | k1,K) =
b (k1 | p,K)

∫ 1

0
b (k1 | p,K) dp

. (5)

Plugging the binomial distribution given in Eq. (3) into the

result (5) yields the conjugate prior of the binomial, i.e. the

beta distribution

P (p | k1,K) =
(K + 1)!

k1! (K − k1)!
pk1 (1 − p)

K−k1 . (6)

It is easy to verify that p̂ = k1/K is a maximum likelihood

(ML) estimate. But the unbiased estimate for a beta distri-

bution is computed as

EP (p|k1,K) [p] =
k1 + 1

K + 2
. (7)

The unbiased estimate is slightly smaller than the ML result.

We will indicate the difference between this estimator and

the ML result during our large scale experiments.

Having computed the distribution for our random vari-

able p as given in Eq. (6), we calculate the probabil-

ity to make a consistent decision for a positive label, i.e.

P (p ≥ 0.5 | k1,K) =
∫ 1

0.5
P (p | k1,K) dp to be

P (p ≥ 0.5 | k1,K) = 1 − (K + 1)!0.5k1+1

(k1 + 1)! (K − k1)!
2F1 (·)

(8)

with 2F1 (k1 + 1, k1 − K; k1 + 2; 0.5) being the hypergeo-

metric function.

The probability P (p ≥ 0.5 | k1,K) is illustrated in

Fig. 2(a) for the voting results (k1, k2) with k1 + k2 = K.

If it exceeds a confidence 1 − α, we stop consulting more

“experts.”

Assume we obtain the current votes (k1, k2) to decide

whether to ask further “experts.” If either the probability

for object samples or non-object samples exceeds a certain
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Figure 3. A comparison of SPRT and our approach is shown

in (a). The boundary in the multinomial case with proportions

(k1, k2, k3) and confidence 1 − α = 0.9 is given in (b).

threshold 1 − α we stop. The isolines for some thresholds

are depicted in Fig. 2(a). Thus we get the region of early

termination marked with red color in Fig. 2(b). Note, that

the confidence 1 − α does not necessarily need to be equal

for different classes. A sample given to a binary classifier

will “walk” in the (k1, k2) space till it either hits the area

highlighted with red color or until no more “experts” are

available. Interestingly our method inherently forces us to

consult at least four “experts” to achieve a confidence of 1−
α = 0.9. This is intuitive and automatically incorporated.

In Fig. 3(a) we compare the “termination boundary” of

our proposed approach with the one obtained by SPRT,

which is A ≤ k2 − k1 ≤ B. The constants A (ǫ1, ǫ2, θ1, θ2)
and B (ǫ1, ǫ2, θ1, θ2) depend on the error probabilities ǫ1,

ǫ2 and the hypothesis probabilities θ1 > 0.5, θ2. Assuming

equal treatment of object and non-object samples we obtain

at least two parameters with θ2 = 1 − θ1 and ǫ1 = ǫ2,

contrasting one threshold α necessary for our proposed ap-

proach. In favor of experiments, we refer the interested

reader to, e.g., [16] for an in-depth discussion and exam-

ples regarding SPRT. Investigating Fig. 3(a) (α = ǫ1 =
ǫ2 = 0.1, θ1 = 0.6), the alternatively derived rule is more

aggressive in making a decision when asking few “experts”

and more cautious when the ensemble members cannot find

a quick consensus.

Note that Eq. (8) depends only on the discrete values for

the number of positive tests k1 and total number of tests

K. Additionally we know that the maximum amount of

tests is bounded by the maximum amount of available “ex-

perts” (K ≤ T ) and that the number of positive tests k1 is

bounded by the total number of “experts” consulted so far.

Summarizing those facts, we just need to store a polynomial

amount of
(T+1)(T+2)

2 −1 values which is tractable even for

a large number of available base classifiers. Consequently

the computation of (8) is replaced by a fast table lookup and

almost no computational complexity is added. By extend-

ing the computed table to
(TN+1)(TN+2)

2 −1 we can further

incorporate confidences at the tree level. We note that many

values of the enlarged table are close to 0 or 1 which can be

used to decrease the size.
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3.2. Multinomial Formulation

Current research is particularly interested in multi-class

scenarios and our approach is applicable with minor modifi-

cations. Keep in mind that we do not want to add significant

computational complexity to the classification process.

Let the vector k =
[

k1, . . . , k|L|

]

denote votes for

classes with
∑|L|

i=1 ki = K ≤ T being the number of

“experts” consulted so far. Note the simplex constraint
∑|L|

i=1 pi = 1. For the binomial formulation we derived

usage of its conjugate prior (beta distribution). In the fol-

lowing, we apply the Dirichlet distribution P (p | k,K) =
1

Z(k)

∏|L|
i=1 pki−1

i as the conjugate prior of the multinomial

without showing the derivation. The multinomial beta func-

tion Z (k) is used for normalization of the distribution.

Contrasting the binomial case shown in Eq. (8), exact com-

putation of the probability to make a consistent decision for

pi is hard for |L| > 2. The reason is the required marginal-

ization over all variables except pi and the one probability

replaced via the constraint. This step, not necessary for the

binomial formulation, results in an integral that cannot be

expressed analytically. We therefore turn to the ML estima-

tor of p =
[

p1, . . . , p|L|

]

. For a Dirichlet distribution it is

p̂ =
[

p̂1, . . . , p̂|L|

]

with p̂i = ki

K
.

Contrasting the binomial case and as mentioned above,

it is hard to derive a closed-form solution for the probability

to make a consistent decision, using a Dirichlet distribution

for p. Instead, we compute the confidence range for all the

variables of the multinomial distribution of the probability

p ∈ [0, 1]
|L|

. Thus, we want the probability that pi is within

the range [li, ui] to be higher than the confidence 1−α, i.e.

P (li ≤ pi ≤ ui) ≥ 1 − α. (9)

Given the bounds, it is easy to judge whether to stop the

classification process or consult further “experts.” It is suf-

ficient to compare the lower bound of the variable having

the highest expected value p̂i with the upper bound of the

others. Formally, we first find γ = arg maxi∈L p̂i and stop

the classification if lγ − ui > 0 ∀i ∈ L\γ. Thus we end up

with (|L| − 1) comparisons.

To facilitate the comparison we need to compute confi-

dence intervals for multinomial distributions in a fast man-

ner. Moreover, we need a method providing reasonable re-

sults for a statistically small number of observations being

at most the number of available “experts” T . This problem

has a long history and it is well known that the confidence

regions built from asymptotic statistics do not have good

coverage for few observations.

The method proposed by Chafaı̈ and Concordet [6] sug-

gests conducting a comparison between two functions for

each value of p. Based on the result of the comparison

they obtain the confidence region. It is generally not nec-

essary in our case to compute the entire confidence region.

Hence the number of comparisons used for this method can

be reduced, but a simple computation is not possible. An-

other approach to construct simultaneous confidence inter-

vals for multinomial proportions was described by Genz

and Kwong [12]. Their method requires numerical solu-

tion of equations which will be too time consuming for

our purposes. To really leverage the gain we prefer an an-

alytic solution for the bounds. A number of different al-

ternatives were proposed for asymptotic simultaneous con-

fidence intervals for p [14, 22, 2]. Goodman [15] mod-

ified the methods which were later further improved by

Kwong and Iglewicz [18]. Based on a small numerical

study, we found the method proposed by Quesenberry and

Hurst [22] to perform best. Let the current proportions be
[

k1, . . . , k|L|

]

with
∑|L|

i=1 ki = K. The bounds li (α) and

ui (α) are given as

χ2 + 2ki ± χ
(

χ2 + 4ki

K
(K − ki)

)

1

2

2 (K + χ2)
(10)

with χ2 = χ2
1

(

α
|L|

)

where χ2
1

(

α
|L|

)

is defined as the

100
(

1 − α
|L|

)

percentage point of the chi-square distribu-

tion with 1 degree of freedom. (Note that those relations

apply the Bonferroni correction.)

We illustrate the boundary between further consulting

“experts” and stopping for a three-class classification prob-

lem in Fig. 3(b). Investigating the graph closely, we en-

counter that “experts” are consulted as long as we can-

not clearly distinguish between any two or all three of the

classes. Again the approach forces us to consult at least a

certain number of “experts” before concluding with a de-

cision. It is inherently built into our method without any

heuristics.

Similar to the binomial case we pre-compute the bounds

li and ui necessary for Eq. (9) using the formula provided

in Eq. (10) such that computation reduces to a simple table

lookup given α, |L|, ki and K. The additional complexity

introduced are (|L| − 1) comparisons and finding the most

likely class. It remains to be shown in the following sections

that we indeed achieve quite an improvement w.r.t. speed

without degrading the accuracy.

4. Evaluation on Small Scale Data Sets

Due to the saturation nicely shown in [17] and observed

in our own results (Fig. 4 and Fig. 6(d)) detailed below, we

decide to use 100 “experts” as a base, similar to [4]. The

work presented in [19] shows that nowadays the number

of classifiers is decreased to a pre-determined threshold to

obtain faster classification. We denote this as “Fixed Expert

Set” in the following. Before targeting large scale data sets

we evaluate our approach on a total of seven diverse data

sets from the UCI repository [1] as detailed in Table 1.
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Figure 4. Comparison of fixed number of “experts” and our adap-

tive multinomial approach on the binary Tic-Tac-Toe and the eight

class Ecoli data set plotted with identically scaled axis.

As those data sets are fairly small we test using the leave-

one-out technique. Hence, we use all but one sample for

training, and classify the left out sample during testing. For

each leave-one-out experiment we train T = 100 “experts.”

Due to the randomness in the classifier we repeat each ex-

periment 100 times. To study the trade off between speed

and accuracy for the binomial and multinomial formulation,

we tune α ∈ [0, 1]. Hereby, α = 0 means we always use

all 100 “experts.” For α > 0, we adaptively decide for each

sample how many of the available “experts” to consult. For

binary classification problems we further apply the SPRT

procedure and tune ǫ = ǫ1 = ǫ2 ∈
[

0.526, 0.5
]

with the

second specifiable parameter θ1 = 1 − θ2 = 0.55 being

fixed. As ǫ sweeps through an interval, the particular choice

for θ1 and θ2 is irrelevant for the figures to be shown. Given

a specific value of α or ǫ, we obtain the average number of

“experts” Ē applied, which is a direct measure for the time

spent during classification. We also compare our method

with the approach of using a fixed number of “experts” EX

for all samples. The error is measured in deviation from the

result obtained with all 100 classifiers. The representative

results for the Tic-Tac-Toe and Ecoli data sets are shown in

Fig. 4 together with the standard deviation. All three meth-

ods proposed to be applied for early termination, i.e. SPRT,

the binomial and the multinomial formulation, clearly out-

perform the simple but very common approach of using a

fixed number of “experts” [19]. The difference between

the three proposed methods on binary data sets is minor.

But most importantly, the standard deviation obtained with

those approaches is far less than the one obtained when just

decreasing the number of “experts.” This shows the adap-

tion to the difficulty of the data and makes testing results

more reliable.

To provide the full picture, we summarize all results in

Table 1. By inspection of graphs like the ones shown in

Fig. 4, we find that value α100 for Eq. (9) and Eq. (10)

or Eq. (8) as well as ǫ100 for SPRT such that we don’t

worsen the classification result compared to asking all 100

“experts.” Consequently we obtain the average number of

“experts” Ē that were consulted after having classified all

the samples. Next, we require consulting a fixed number

of “experts” EX that is approximately equal to the average

Table 1. The UCI data set name together with α100 or ǫ100 achiev-

ing the same performance as 100 “experts.” The average number

of “experts” (Ē) that were evaluate when applying α100 or ǫ100
and how many additional misclassification errors (Error) made

when requiring to consult a fixed number of classifiers (EX ≈ Ē).

The minimum number of classifiers Emin necessary to achieve the

same accuracy as with 100 “experts.” We compare binomial (b),

multinomial (m) and SPRT (s) approach using the Ionosphere and

the Tic-Tac-Toe data set (for further details see [25]).

Data set α100 or ǫ100 (Ē) Error (EX ) Emin

Tic-Tac-Toe (b) 0.0002 (40.3) 16.5% (41) 100

Tic-Tac-Toe (m) 0.0018 (38.4) 18.0% (39) 100

Tic-Tac-Toe (s) 0.0185 (39.4) 17.5% (40) 100

Ionosphere (b) 0.0017 (19.6) 2.7% (20) 60

Ionosphere (m) 0.0065 (19.7) 2.7% (20) 60

Ionosphere (s) 0.0372 (25.1) 2.5% (26) 60

Iris (m) 0.0046 (15.4) 10.9% (16) 97

Wine (m) 0.0200 (15.2) 14.3% (16) 37

Glass (m) 0.0062 (49.7) 2.4% (50) 87

Ecoli (m) 0.0028 (35.6) 6.5% (36) 95

Yeast (m) 0.0019 (71.0) 0.5% (71) 100

number Ē. This will result in an approximately identical

classification time. We read off the percentage of additional

errors we make compared to using 100 classifiers. We also

provide the minimal number of classifiers Emin necessary

for the method named “Fixed Expert Set,” such that we are

not worse than asking 100 “experts.”

Investigating Table 1, we observe that the average num-

ber of considered classifiers Ē necessary to achieve a de-

tection rate equivalent to the one obtained with 100 “ex-

perts” is smaller. We realize that we never manage to get

the same accuracy by just asking a fixed number of “ex-

perts” EX ≈ Ē. The minimum number of “experts” Emin

necessary to achieve the same accuracy we obtain when ap-

plying the proposed approach is always larger. Savings de-

pend on the particularities of the data, i.e. our method is

only 1.4 ≈ 100
71.0 times faster for the Yeast data but 6.3 times

faster on the Iris set. The absolute error rates of our Random

Forest settings (choose one among
⌈√

F
⌉

features maxi-

mizing Gini entropy, 100 trees) for the Ionosphere, Glass

and Ecoli set are 6.6%, 20.3% and 12.3% consistent with

the 7.1%, 20.6% and 12.8% provided in [4].

Above results encourage to look at larger data sets, we

obtain when considering typical detection problems in com-

puter vision. Especially as the class distributions for above

data sets are fairly uniform. Due to the skewed data, the

possibilities to achieve the same accuracy by asking less

“experts” should be given for imaging data sets as well.

5. Experiments on Large Scale Data Sets

As the usual computer vision data is too large for leave-

one-out techniques we restrict ourselves to dividing the im-
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Figure 5. Three zoomed in examples (size 100× 100) of our wrist

bone training database together with the overlaid annotations.

Table 2. The number of “experts” considered for different values

of α together with the true positive rate (TPR) and the false pos-

itive rate (FPR) for biased (B) ML estimate and for the unbiased

estimate (UB) given in Eq. (7).

α Ē TPRB FPRB TPRUB FPRUB

0 100.0 0.948 0.045 0.948 0.045

0.0001 25.1 0.929 0.042 0.952 0.050

0.0057 15.0 0.930 0.042 0.960 0.056

0.03 10.2 0.929 0.042 0.954 0.053

ages/volumes into two sets, a training part and a test set.

We look at medical image classification as the images are

usually fairly noisy. Specifically we decided to evaluate

our method on 3D Magnetic Resonance Images (MRI) from

the wrist and consider the task of detecting the eight carpal

bones (binary classification). We show three sample im-

ages from a total of 23 3D training volumes together with

annotations in Fig. 5. The volumes of left and right wrists

are approximately parallel or anti-parallel to one of the two

planar coordinate axes as visible in Fig. 5 and Fig. 7. The

considered two-class voxel based classification task itself is

similar to the work presented in e.g. [19].

The average size of the volumes is 240× 240× 30 voxel

and the number of Haar-like features is about F ≈ 100, 000.

The five 3D volumes of the test set consist of approximately

1.5 million samples each. Having trained 100 base classi-

fiers, we apply them to test data and count how often pro-

portion (k1, k2) was hit during classification. We show the

result in Fig. 1. Considering the logarithmic scale in Fig. 1

and recalling the region for termination, exemplarily shown

for a confidence value α = 0.1 in Fig. 2(b), indicates the po-

tential to improve speed if we adaptively ask less “experts.”

We apply a Random Forest classifier together with the

proposed methods for different α and ǫ on the test set. The

error rates are compared in Fig. 6(a). The three approaches

outperform the common method of reducing the number

of “experts” to a fixed number. This time, even 100 en-

semble members cannot achieve the accuracy obtained with

the SPRT, the binomial or the multinomial formulation. To

measure the decrease in performance of the binomial for-

mulation for a varying object classification threshold, we
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Figure 6. The three proposed methods are compared in (a). Com-

parison of biased and unbiased estimator in (b). Cutout of test set

ROC curves using the binomial approach (Eq. (7)) for different α

resulting in Ē shown in (c) and for roughly equal number of fixed

“experts” EX ≈ Ē in (d).

observe the receiver operator characteristic (ROC). Fig. 6(b)

to (d) and Table 2 summarize the results. For the other

methods, ROCs are provided in [25] together with notes on

the practical applicability.

The result for varying α is shown in Fig. 6(c) and the

effect introduced by simply decreasing the number of “ex-

perts” to a fixed number EX is illustrated in Fig. 6(d). We

observe that the true positive rate around a reasonable op-

erating point (5% false positive rate) drops by about 5% if

we reduce EX to one tenth. Applying our proposed ap-

proach, we roughly maintain the true positive rate while de-

creasing the consulted number of “experts” to almost one

tenth. Closer investigations [25] reveal that a fixed number

of about 50 trees is necessary to achieve the same accuracy.

Besides the exact numbers for a usual operating point

in Fig. 6(c), we indicate in Table 2 and via the markers in

Fig. 6(b) (α = 0.0057) the difference when using the unbi-

ased estimator (UB) given in Eq. (7). The curves themselves

are of course supposed to lie ontop of each other. The rates

are provided for a threshold of 0.5, i.e. every sample having

probability higher than 0.5 is considered an object sample.

If we don’t correct the probability, we move on the ROC

curve towards slightly lower false positive rates which is

avoided with the unbiased estimate. Of course we can al-

ternatively tune the threshold to achieve the same operating

point in ROC space. Applying the estimator given in Eq. (7)

circumvents tuning.

The number of “experts” that were asked for each voxel

of a test volume is shown color coded in Fig. 7. We observe

the regions that are “easy” for the classifier, i.e. the interior

of the bones and the exterior of the wrist.
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Figure 7. Number of “experts” asked on a zoomed in test image

(left) for confidences resulting in an average number of “experts”

Ē ≈ 25 and Ē ≈ 10 (right).

6. Conclusion

For small scale and large scale we emphasize that the

common procedure of reducing the number of “experts” re-

sults in a drop of performance which is minimized by adap-

tively deciding how many “experts” to ask before making a

decision. The detailed, parallelizable approach is based on

a statistical formulation and we show in numerous leave-

one-out experiments on publicly available data sets as well

as on 3D images not used for training that we achieve faster

classification without severely degrading the accuracy.
Acknowledgements: The research leading to these re-
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