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Abstract

This paper describes a novel approach for reconstructing a
closed continuous surface of an object from multiple cali-
brated color images and silhouettes. Any accurate recon-
struction must satisfy (1) photo-consistency and (2) silhou-
ette consistency constraints. Most existing techniques treat
these cues identically in optimization frameworks where sil-
houette constraints are traded off against photo-consistency
and smoothness priors. Our approach strictly enforces sil-
houette constraints, while optimizing photo-consistency and
smoothness in a global graph-cut framework. We transform
the reconstruction problem into computing max-flow / min-
cut in a geometric graph, where any cut corresponds to a
surface satisfying exact silhouette constraints (its silhou-
ettes should exactly coincide with those of the visual hull); a
minimum cut is the most photo-consistent surface amongst
them. Our graph-cut formulation is based on the rim mesh,
(the combinatorial arrangement of rims or contour genera-
tors from many views) which can be computed directly from
the silhouettes. Unlike other methods, our approach en-
forces silhouette constraints without introducing a bias near
the visual hull boundary and also recovers the rim curves.
Results are presented for synthetic and real datasets.

1. Introduction
Two well-known categories of multi-view 3D reconstruc-
tion algorithms are - (1) Shape from Silhouette(SFS) [1, 2,
5] : techniques that compute a coarse shape of an object
from its silhouettes; (2) Shape from Photo-consistency [12,
15, 18] : volumetric methods which recover the geome-
try of complete scenes using the photo-consistency con-
straint [12]. Multi-view stereo [17] also relies on photo-
consistency to recover dense correspondence across views
and compute scene depth. 3D reconstruction is an opti-
mization problem, solved by both local [12, 15], as well as
global methods like dynamic programming [17], variational
techniques [6, 7] and graph-cut optimization [3, 8, 9].

In this paper we present a global optimization approach
for surface reconstruction, by imposing constraints present
in both color images and silhouettes. A true scene point,

when seen from different views must produce pixels with
similar colors; this is the color consistency or the photo-
consistency constraint. In the ill-posed reconstruction prob-
lem, different scenes can be consistent with the same set of
color images. Theoritically the union of all photo-consistent
scenes, the photo hull [12] is a unique reconstruction, but it
is sensitive to the sampling rate of 3D voxels, the range of
textures in the scene and image noise. The reconstructed
shape when re-projected must coincide with the respective
silhouettes; this is the silhouette consistency constraint. The
exact visual hull’s silhouettes [1, 2] should be considered,
when calibration or segmentation errors are present.

SFS methods compute the visual hull [1, 14, 2, 5]; the
maximal shape consistent with a set of silhouettes. It can be
computed by intersecting visual cones obtained by back-
projecting silhouettes from calibrated viewpoints. Exact
polyhedral representations [5] of the visual hull as well
as volumetric ones [15] are common. Polyhedral visual
hulls [5] are watertight and efficient to compute, although
they coarsely approximate the actual shape when only a few
views are available. In fact visual hulls cannot recover sur-
face concavities as these never appear on the silhouettes.
Volumetric methods like Space Carving [12], Generalised
Voxel Coloring (GVC) [15] can reconstruct complex ob-
jects or scenes based on photo-consistency by carving away
voxels, producing a reconstruction where all inconsistent
voxels have been removed. Photo-consistency is also used
by [3, 10] to formulate multi-view stereo as a max-flow
problem and by [8, 9] to build energy functions, which are
minimized by graph-cuts.

Some recent approaches combine silhouette constraints
and photo-consistency; [13] combines them into a single
cost function; [6] uses them in a level-set based variational
approach; [3] uses the visual hull for initialization and graph
cuts for optimization, [4, 7] describe iterative mesh defor-
mation using texture and silhouette forces. These methods
do not guarantee exact silhouette consistency; in fact they
could introduce a bias in the reconstruction near the visual
hull boundary. We enforce silhouette constraints strictly,
and obtain the most photo-consistent solution amongst the
ones which satisfy silhouette constraints exactly. We start
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by computing the exact visual hull [5] from silhouettes and
then recover the rim mesh [2] from it. The rim mesh tells us
how the actual surface touches the visual hull (we assume
that the actual surface is inside it). This is used to build a
geometric graph; a graph cut on it yields by construction,
one of the many possible surfaces which exactly satisfy the
silhouette constraints. Graph edges are now assigned costs
from a photo-consistency measure and smoothness prior.
Computing the minimum cut on this graph, minimizes an
energy function that produces an optimal photo-consistent
smooth surface along with the location of the rim curves on
the surface.

Sec. 2 describes the theory of visual hulls and the rim
mesh; Sec. 3 explains our max-flow formulation of the re-
construction problem and the rim mesh construction, while
Sec. 5 and 6 discusses results and conclusions respectively.

2. Theory

Figure 1: 2-view visual hull: Rims are dashed curves;
they intersect at frontier points; intersection curves are solid
curves. Cone-strips and visual cone faces are also shown.

2.1. Visual Hulls and the Rim Mesh
The visual hull is the maximal shape that projects consis-
tently into a set of silhouettes, and is obtained by intersect-
ing visual cones from the corresponding calibrated view-
points. Visual rays from a camera which grazes the true
surface tangentially give rise to a smooth continous curve
on the true surface called the rim [2, 16] or the contour gen-
erator and its projection in the image is the apparent con-
tour. Rims from different cameras intersect on the surface
at points called frontier points, which project to the respec-
tive apparent contours. The projected frontier points satisfy
the 2-view epipolar tangency constraint [2] (these are the
points of tangencies of tangents from the epipole to the sil-
houette which are also corresponding epipolar lines). The
back-projection of points on the apparent contour produces
viewing rays, each of which contributes a view edge to the
visual hull polyhedron. At least one point on the view edge
must touch the surface at a point on the rim. The view edges

from a camera form a ruled surface called a cone-strip while
the boundaries of cone strips are called intersection curves;
these lie outside the actual surface in general. The cone-
strips are made up of multiple visual cone patches each of
which has a rim segment, the part of the rim between suc-
cessive frontier points. Figure 1 illustrates these definitions
while [2, 5] provide details.
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Figure 2: Top : 3-view case. Rims are dashed curves and
intersecton curves are solid lines. X, Y and Z are frontier
points. Below : The complete rim mesh. Every rim segment
occupies a single visual cone patch.

The idea of epipolar nets [13] was refined into a for-
mal representation called the rim mesh by [2]. The rim
mesh is a combinatorial arrangement of rims on the surface
(see Figure 2). Frontier points constitute its vertices and
the rim segments between successive frontier points, form
its edges. Each rim mesh edge thus corresponds to a visual
cone patch. Patches on the surface bounded by different rim
segments form faces in the rim mesh. The rim mesh itself
contains only information about the arrangement of rims
and their connectivity, not their geometric shape. The im-
age based algorithm [2] computes the rim mesh only from
silhouettes under some simplifying assumptions; it does not
deal with occluded rims or objects with non-zero genus. An
embedding of the rim mesh on the surface partitions it into
patches where every patch is purely inside the visual hull
but touches it along its boundary (along different rim seg-
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ments). This patch separates the object’s interior from a set
of intersection curves, which lie outside the object in gen-
eral. This property will be useful in our method.

2.2. The maximum flow problem
Many global minimization and combinatorial optimization
problems have been solved by formulating them as graph-
cut problems on network flows [20]. Given a flow network
G(V,E) [20] with a source s and a sink t, a graph cut parti-
tions V into S and T such that s ε S and t ε T . the maximum
flow problem computes a flow with the maximum value.
The max-flow min-cut theorem [20] shows that computing
the maximum flow is equivalent to finding the mininum cost
cut between s and t (the s-t min-cut). While s-t cuts can be
computed efficiently, the more general multiway-cut prob-
lem (partitioning graphs into 3 or more subsets) is NP-Hard.
In computer vision, [3, 8, 10] have used graph-cuts on geo-
metric graphs while [11] has solved stereo, segmentation,
multi-view reconstruction using energy minimization for-
mulations via graph-cuts.

3. Our Graph Cut Formulation
3.1. A 2D Overview
Consider a 2D visual hull in flatland seen from two 1D
cameras. Let P=v1,v2,. . . v4 be the visual hull polygon as
shown in Figure 3(a). Different curves can give rise to P ,
however they must all touch every edge of P at least once.
These contour points p1,p2 . . . p4 are the 2D apparent con-
tours. If we knew their exact positions, we could partition
the unknown curve into independent segments with fixed
end-points. Without this information, we still know that,
pi ∀i must lie somewhere on its respective edge (see Fig-
ure 3(a)). Now let us lift the 2D plane into a series of planes
such that each individual segment bounded by two succes-
sive contour points lies in its own plane. See the illustration
in Figure 3(b). The planes corresponding to every pair of
adjacent curve segments are attached by vertical sheets such
that the respective segments incident at a contour point on
these different planes are connected through a vertical edge.

We have taken a 1D closed manifold in 2D and embed-
ded it in 3D by exploiting the silhouette constraints. Any
curve that produces the visual hull P can be represented
in this form. This representation allows us to map the true
curve (or surface) to an s-t cut on a geometric graph. The
graph construction for the 2D case is now described.

Consider the 4-connected 2D grid graph GP (V,E)
where V is the set of 2D voxels inside P and the points
obtained by intersecting this grid with P . The set E con-
tains all the edges connecting vertices in V on the underly-
ing grid. While lifting P to multiple planes we make copies
of GP and assign a copy GP

i to each level i (imagine planes
indexed by height). For every edge e of P , where segments i
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Figure 3: (a) 2D Visual Hull Polygon P = v1, v2, . . . , v4

from 2 views with p1, p2, . . . , p4 the apparent contours. (b)
Embedding the 1D manifold in 3D (shown in bold). The
vertical edges are shown (sparsely for clarity). (c) Two suc-
cessive levels in the graph showing the connections to the
source and the sink. (For clarity the grid is not drawn).

and j are incident, a vertical sheet is created connecting GP
i

to GP
j through surface vertices (representing surface points)

on this edge e. Vertices for these surface points are intercon-
nected by surface edges. Consider the graph

⋃n
i GP

i along
with all the vertical edges and surface vertices.In the even
levels, the outside vertex vi is connected to the source while
the boundary edges excluding the two edges incident on vi

are connected to the sink. The source and sinks are reversed
on the odd levels. The continuous curve will always map
to a s-t cut (Figure 3(c)) if and only if the number of levels
can be shown to be even. Visual hulls in 2D in the generic
sense, always have an even number of edges, (since every
camera contributes two half-planes and hence two distinct
line-segments to the visual hull).

This graph could grow quickly in size (especially in 3D)
and could be considerably reduced when GP

i in level i is
limited to a potentially visibile region in the respective lev-
els (see Section 3.4), assuming that the curve/surface can-
not lie beyond the visibility boundary in this level. If it did,
photo-consistency could never recover it anyway.
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3.2. The 3D algorithm
The 3D version is similar to the 2D case. The reconstruc-
tion surface is now a 2-manifold which must be lifted from
3D and embedded in a 4D geometric graph. P is the visual
hull polyhedra and GP the associated 6-connected 3D grid
graph consisting of voxels and surface points on P . The true
surface touches faces of the visual hull mesh along rim seg-
ments (the edges of the rim mesh). Thus rims partition the
actual surface into patches, each inside the visual hull but
with boundaries, each forced to touch the visual hull along
particular visual cone patches.

Each level GP
f is built from a rim mesh face f (This

was also true in the 2D case, where the rim mesh was iso-
morphic to the 2D visual hull’s dual graph). In 2D, the
subgraph GP

i for level i was always connected to two sub-
graphs, each corresponding to vertex vi’s neighbouring ver-
tices in P . In 3D, the lateral connections for GP

f are es-
tablished based on which faces are adjacent to f in the rim
mesh. Thus if f and g are adjacent faces in the rim mesh,
the sub-graphs GP

f and GP
g have lateral edges through the

visual cone patch they share. Surface vertices on this cone
patch are also interconnected by surface edges. The follow-
ing result makes the max flow formulation possible in 3D.

Lemma 3.1 A surface map Mk, induced by the rim mesh
from k views can be 2-colored.

Proof We prove this by induction: A rim divides the sur-
face into 2 parts: front and back. Let us color them differ-
ently. Thus, M1 can be 2-colored. Assuming Mk can be
2-colored, we must prove that Mk+1 can also be 2-colored.
After adding the (k + 1)th rim to Mk, swap colors of its
front faces in the new map, Mk+1 , but leave the back faces
untouched. This will always 2-color the newly created faces
in Mk+1, consistently with the old faces, unchanged from
Mk. Thus Mk+1 can be 2-colored.

Figure 4: 2-Coloring the Rim Mesh. (Left) Map induced by
k-rims. (Right) Adding rim (k+1)

2-Coloring the rim mesh faces is equivalent to labeling the
subgraphs GP

i red and blue. For each red subgraph we set
the source to be a subset of intersection curves belonging to
this patch. The visibility computation (Section 3.4) finds a
visibility boundary in this level which can be made the sink.
For blue subgraphs, the sources and sinks are swapped.

Figure 5: An orthographic view of the subgraph for a sin-
gle level. The graph show interior vertices, interior edges,
surface vertices, surface edges and interior to surface edges.
Rotated 3D views are shown in the inset circles.

3.3. Graph Construction (3D case)
We first describe how to build sub-graphs GP

f (V P
f , EP

f ) for
each rim mesh face f . We then construct lateral edges and
surface vertices to interconnect them. Vertices denote 3D
points, sampled either inside the visual hull P on a regu-
lar grid M with unit resolution g or on the cone patches
of P . V is(f) denotes the visibility region for face f ;
V is(f) ⊆ M . The sets V P

f and EP
f are as follows :

V P
f = {(x, y, z, f)} (x, y, z) ε V is (f) (1)

EP
f = {(u, v)} u, v ε V P

f × V P
f , (u, v) ε M. (2)

GP
f is sub-isomorphic to the grid graph of M . We denote

the surface vertex set by V s
p ; the set of surface edges by Es

p

and the set of surface to interior edges by Ei
p for patch p.

V s
p is defined as : V s

p = {(x′, y′, z′)} where (x′, y′, z′) is
a surface point on cone patch p that cuts the grid lines of M .
The set Ei

p is defined as : Ei
p = {(u, v)} u ε V P

f , v ε V s
p

and f shares p with another rim mesh face. These edges
join internal voxels to surface points along the grid lines.
Es

p is defined as: Es
p = {(u, v)} u, v ε V s

p , and dist(u, v)
≤ √

(3) ∗ g. These edges join proximal surface points on p.
The interior vertices at the visibility boundary will con-

nect to the Sink/Src vertices (Fig. 5). Let Tf be the set of
those edges. Sf is the set of all edges connecting to the
Src/Sink. Points on f ’s intersection curve form the vertex
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set Rf . Vertices in Rf are connected to the closest inte-
rior grid vertices. Vertices in Rf are also connected to the
Src/Sink by edges which make up the set Sf .

Finally, we can now define G(V,E) as follows :

V =
⋃

∀f

( V P
f ∪ Rf ) ∪ (

⋃

∀p

V s
p ) ∪ {s, t} (3)

E = (
⋃

∀f

EP
f ) ∪ (

⋃

∀p

( Ei
p ∪ Es

p) ) ∪ Sf ∪ Tf (4)

Interior vertices, interior edges, interior to surface edges
have multiple copies in different subgraphs, if they are in
the visibility regions for different rim mesh faces. Surfaces
vertices and edges have single copies in G. The assignment
of edge capacities in G is now described; c(u, v) is a mea-
sure proportional to the photo-consistency at the mid-point
of vertices u and v. Due to different visibility computations,
the 3D point corresponding to the edge (u, v) will have dif-
ferent photo-consistency measures in different visibility re-
gions, each of which corresponds to a subgraph GP

f . λ is a
smoothness term explained in Sec. 3.5 and Cmax is a large
constant.

c(u, v) = 0.5 ∗ (C(u) + C(v)) + λ (u, v) ε EP
f (5)

c(u, v) = ∞ (u, v) ε Sf or Tf (6)

c(u, v) = Cmax (u, v) ε Ei
p (7)

c(u, v) = λ (u, v) ε Es
p (8)

An interior edge’s capacity c(u, v) reflects the consistency
of the mid-point of voxels u and v. The surface edges have
a constant capacity λ; increasing it reduces the overall cur-
vature of the reconstructed rims on the surface. The high
capacity on the surface to interior edges prevents the cut-
surface from staying on the cone patch view edge if interior
voxels are present. A higher value of Cmax would be suit-
able for smooth surfaces. When Vis(f) is empty, the cut is
forced to go through these surface to interior edges resulting
in a fully connected watertight cut-surface. Note that, the
cut-surface could transition from one subgraph to another
multiple times through the same cone patch. This would
happen when the true surface is bitangent to the visual hull.

3.4. Computing Visibility
For every rim mesh face, we find a region inside the visual
hull, denoted by V is(f), visible from at least k cameras.
The apparent contours p1 and p2 on the visual cone patches
AB and BC (see Fig. 6(a)) cannot be any further than A and
C respectively. We treat the set of patches AB and BC as a
hole in the visual hull, determine its at least k-visible region
(Fig. 6(b)). Grazing views are avoided using a heuristic and
robust cost based on photo-consistency (Fig. 6(c)) is com-
puted at every vertex in Vis(f). If V is(f) is empty due to

Figure 6: (a) Surface patch touching visual cone patches
AB and AC at p1 and p2. (b) The k ≥ 3 visibility region.
(c) The same region with the Photo-Consistency costs.

insufficient views, the graph cut would lie along the visual
hull cone patches at this face.

With n views, the rim mesh has O(n2) faces. Without
visibility regions, the vertex set V in the graph G(V,E) is
O(n2|G|) where |G| is the voxel count. Visibility shrinks V
and makes it O(n|G|). This property makes our algorithm
feasible for reconstruction in a fine volumetric grid. For a
voxel v at level l, a vertex is present in the graph only if at
least k cameras see it through the hole (set of visual cone
patches) associated with this rim mesh face. A cone patch
is shared between only two rim mesh faces. Since there
are atmost n/k distinct groups of k camera sets, v can have
atmost F ∗ |V |/k copies in different levels where F is the
average number of cones patches in a rim mesh face ( � n,
F = 3 in 2D).

3.5. Energy Minimization Framework

The color variance of a voxel projected into different
views [12, 18], is used as a photo-consistency measure in
energy functionals [10, 11, 8]. It is sensitive to outliers
and improper sampling of voxels [15]. We need a robust
measure as self-occlusions will produce outliers. We use a
robust variance by picking the color variance of the most
consistent 	rk ∗ k
 views within the k available views (rk

is the inlier percentage). We assume lambertian surfaces,
but a non-lambertian photo consistency [19] could also be
incorporated.

The minimum cut surface we recover is represented as
an implicit surface S containing regular grid points (mid-
point of cut edges) and surface points (constituting the re-
constructed rims) that minimizes the following discrete en-
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Figure 7: (a) Cone Strip Intersection for smooth silhouettes
produce frontier points. (b,c,d) Frontier Elements are gen-
eralization of frontier points for discrete representations. (e)
Cone Strips under perfect conditions. (f) Broken cone-strip
segments. (g) Repaired Cone-strip.

ergy functional E(S).

E(S) =
∑

vεS

C(v) + λ (9)

where v denotes a point in S, C(v) is its photo-consistency
whereas λ is a smoothness parameter weighting the smooth-
ness against the photo-consistency. Our smoothness term is
spatially constant and corresponds to minimizing the Man-
hattan area (equivalent of Manhattan distance in 2D) of the
cut-surface. The total smoothness cost is λ∗|CS | where CS

is the set of cut edges. Our maximum flow algorithm com-
putes the global minimum of this energy function E(S). In
our formulation, the energy functional does not have any
silhouette terms.

3.6. Robust Computation of Rim Mesh
Lazebnik’s rim mesh algorithm [2] assumes smooth silhou-
ettes and perfect data (good segmentation, calibration). Dis-
cretization or calibration noise makes the rim mesh unsta-
ble, as it causes missing frontier points, due to the problem
of lost tangency [5] or perturbs their consistent ordering.

We relax the need for perfect data by robustly comput-
ing a consistent rim mesh where frontier points (Figure 7(a)
are replaced by generalised frontier elements which could
be edges or facets as shown in Figure 7(b,c,d) for 2-views)
or a contiguous sequence of edges for 3 or more views.
Exact polyhedral visual hulls (EPVH) as computed by [5]
contain all the facets constituting the broken rim segments
as shown in Figure 7(f). These segments can be recovered
from EPVH by checking its facets for co-planarity with the
camera center and then sorting them on the apparent con-
tour. These cone-strip segments are then ordered along the
apparent contour. The broken cone-strips can be repaired
(see Figure 7(g)) by finding the unique sequence of edges

in the visual hull polyhedra, that project onto the apparent
contour and lie between the end points of the image of the
two cone-strip segments to be connected. We will call these
the rim edges. The rim edges are important since they must
belong to both the visual hull and the actual surface. Fron-
tier elements can now be recovered by computing intersec-
tion between a pair of repaired cone-strips (circular list of
rim edges and cone strip segments ordered on the apparent
contour). Frontier elements are either (1) a view edge (2) a
set of consecutive rim edges or (3) the end points of cone
strips. Its image on the apparent contour could overlap with
other frontier elements. A consistent ordering is enforced
by using the epipolar tangency constraint in the images.

While our graph-cut formulation can be generalized to
complex closed 2-manifolds (its rim mesh is always 2-
colorable), the current rim mesh algorithm only works for
genus-0 objects. While all viewpoints for convex surfaces
are acceptable, for non-convex surfaces, only viewpoints
where the rim is free of self-occlusion are allowed (corre-
sponding apparent contour is free of T-junctions).

4. Experimental Results

We solve max-flow using an algorithm shown to work
efficiently on grid graphs [11]. The visibility regions
are computed using segment-triangle intersection tests but
this could be accelerated by multi-resolution methods and
graphics hardware based volume rasterization. We demon-
strate results on synthetic sequences (512 × 512 images):
Pear and Sphere and a real data (502× 760 images): Head.

Pear Sequence: Rows 1 and 2 of Figure 8: Figure 8(a,c)
shows the visual hull computed from 4 views and the cor-
responding rim mesh containing 10 frontier points is shown
in Figure 8(e). 12 color images were used with minimum
visibility k set to 5 views. The reconstruction was done on
a 100 × 130 × 130 grid; the resulting graph had 0.4 mil-
lion vertices and 1.1 million edges and the reconstructed
surface had 43K points. The reconstruction took about 6
minutes but max-flow used only 10 − 12 seconds. Most
of the time was spent in computing the photo-consistency
costs in different visibility regions and the graph cut itself
is much faster. Figure 8(b,d) shows the 2-coloring of the
reconstructed surface separated from each other by the re-
constructed rims (in white). Figure 8(f) shows the recon-
structed surface with texture while Figure 8(g,h) show the
ground truth and reconstructed mesh model respectively.

Sphere Sequence: Row 3 of Figure 8: The visual hull
was built from 6 silhouettes while 12 color images were
used with k = 4 for computing photo-consistency. A
100 × 100 × 100 grid produced a graph with 0.44 million
vertices and 1.3 million edges and a reconstructed surface
with 40K points. Two different reconstructions are shown
in Figure 8(b,c) with a higher value of λ in (b) followed by
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a lower value in (c). The rim curves have a higher curvature
for a lower value of smoothness cost λ. The reconstructed
triangulated sphere model is shown in Figure 8(d).

Head Sequence: Rows 4 and 5 of Figure 8: This is a
turntable sequence with 36 images; Figure 8(a) shows four
of them. 8 images were used to build the visual hull (see
Figure 8(b). The rim mesh (see Figure 8(c)) has 56 fron-
tier elements and 58 faces. Many faces are clustered at
the top and bottom of the head model and contribute very
small or degenerate patches to the final model. k set to 10
views with the inlier fraction, rk = 0.8 in order to deal
with self-occlusions while computing photo-consistency. A
120 × 160 × 170 grid produced a graph with 1.47 million
vertices and 4.5 million edges and a reconstructed surface
with 108K points. Running time was 75 minutes with max-
flow using only about 30 − 50 seconds. The reconstructed
model recovers surface detail and is rendered from different
views alongwith texture in Figure 8(d-h).

5. Conclusions and Future Work
We presented a multi-view surface reconstruction approach
which uses color-consistency and silhouettes to reconstruct
a closed surface while exactly satisfying silhouette con-
straints and minimizing an energy function based on photo-
consistency and smoothness. We transformed the recon-
struction problem into solving max-flow / min-cut on a ge-
ometric graph derived from the rim mesh of the object.
This framework which enforces silhouette constraints ex-
actly and excludes it from the energy minimization is the
main contribution of this paper. We have demonstrated our
approach on real and synthetic data. Future work will con-
sist of improving the efficiency and robustness of the pho-
toconsistency measure as well as developing better shape
priors. Work is also needed on robust computation of the
rim mesh for more complex surfaces so that our work can
be extended to objects with arbitrary topology.
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Figure 8: (Rows 1,2) Pear: 12 images: (a) Visual hull (b) 2-colored reconstructed surface (rim curves are white). (c &
d) Visual Hull and the reconstructed surface in another view. (e) The rim mesh (10 frontier element, 12 faces). (f) The
reconstructed surface with texture. (g,h) Ground truth and reconstructed mesh respectively.(Row 3) Sphere: 12 images: (a)
Visual hull (b) Reconstruction with higher smoothness cost; (c) with lower smoothness cost. (The rims curves on the surface
have different curvature) (d) Reconstructed mesh. (Rows 4,5) Head: 36 images: (a) 4 of them shown (b) Visual hull from 8
silhouettes (c) Rim mesh (56 frontier elements, 58 faces). (d) Reconstructed point cloud (e-h) shown with texture.
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