This ICCV2013 paper is the Open Access version, provided by the Computer Vision Foundation.

The authoritative version of this paper is available in IEEE Xplore.

Live Metric 3D Reconstruction on Mobile Phones

Petri Tanskanen, Kalin Kolev, Lorenz Meier, Federico Camposeco, Olivier Saurer, Marc Pollefeys

ETH Zurich, Switzerland

Abstract

In this paper, we propose a complete on-device 3D re-
construction pipeline for mobile monocular hand-held de-
vices, which generates dense 3D models with absolute scale
on-site while simultaneously supplying the user with real-
time interactive feedback. The method fills a gap in current
cloud-based mobile reconstruction services as it ensures
at capture time that the acquired image set fulfills desired
quality and completeness criteria. In contrast to existing
systems, the developed framework offers multiple innova-
tive solutions. In particular, we investigate the usability of
the available on-device inertial sensors to make the tracking
and mapping process more resilient to rapid motions and
to estimate the metric scale of the captured scene. More-
over, we propose an efficient and accurate scheme for dense
stereo matching which allows to reduce the processing time
to interactive speed. We demonstrate the performance of the
reconstruction pipeline on multiple challenging indoor and
outdoor scenes of different size and depth variability.

1. Introduction

The flexible and accurate generation of 3D models of
real-world environments has been a long-term goal in com-
puter vision. Research efforts on 3D content creation from
still images has reached a certain level of maturity and
has emerged to popular industrial solutions like Autodesk’s
123D Catch. While high-quality 3D models can be ob-
tained with such systems, the selection of an image set,
which ensures the desired accuracy and completeness, is
not a trivial task. Occlusions, complex reflectance prop-
erties and shading effects often lead to failure in the recon-
struction process but their appearance is difficult to predict
in advance, especially for non-experts. This challenge is
addressed by monocular real-time capable systems which
can provide useful feedback to the user in the course of
the reconstruction process and guide his movements. Im-
pressive results were obtained with video cameras [7] and
depth sensors [15, 8]. However, those systems require mas-
sive processing resources like multi-core CPUs and power-

65

Figure 1. Live 3D reconstruction in a museum. The smartphone
display shows the dense 3D model registered to the object. Full
results in Fig. 7.

ful GPUs. As a result, their usability is limited to desktop
computers and high-end laptops, which precludes applica-
tions of casual capture of 3D models in the wild. Moreover,
the produced 3D models are determined only up to an over-
all scale and are not provided in metric coordinates. This
burdens their applicability in areas where precise physical
measurements are needed.

In the last few years, remarkable progress was made
with mobile consumer devices. Modern smartphones and
tablet computers offer multi-core processors and graphics
processing cores which open up new application possibili-
ties. Additionally, they are equipped with micro-electrical
sensors, capable of measuring angular velocity and linear
acceleration. The design of methods for live 3D reconstruc-
tion able to make use of those developments seems a natu-
ral step. While first attempts for interactive 3D reconstruc-
tion on smartphones have already been presented [9, 3],
their applicability is limited and their performance is still
far from that of desktop systems.

In this paper, we propose the first dense stereo-based sys-
tem for live interactive 3D reconstruction on mobile phones
(see Fig. 1). We leverage the resources offered by current
smartphones and address the challenges posed by the under-
lying hardware limitations with multiple novel solutions. In
particular:

e The system is fully automatic and does not require
markers or any other specific settings for initialization.

e We perform feature-based tracking and mapping in
real time but leverage full inertial sensing in position
and orientation to estimate the metric scale of the re-
constructed 3D models and to make the process more
resilient to sudden motions.

e The system offers an interactive interface for casual
capture of scaled 3D models of real-world objects by
non-experts. The approach leverages the inertial sen-
sors to automatically select suitable keyframes when
the phone is held still and uses the intermediate mo-
tion to calculate scale. Visual and auditory feedback is
provided to enable intuitive and fool-proof operation.

e We propose an efficient and accurate multi-resolution
scheme for dense stereo matching which makes use of
the capabilities of the GPU and allows to reduce the
computational time for each processed image to about
2-3 seconds.

2. Related Work

Our work is related to several fields in computer vision:
visual inertial fusion, simultaneous localization and map-
ping (SLAM) and image-based modeling.

Visual inertial fusion is a well established technique [1].
Lobo and Dias align depth maps of a stereo head using
gravity as vertical reference in [6]. As their head is cal-
ibrated, they do not utilize linear acceleration to recover
scale. Weiss et al. [23] developed a method to estimate
the scaling factor between the inertial sensors (gyroscope
and accelerometer) and monocular SLAM approach and the
offsets between the IMU and the camera. Porzi et al. [12]
demonstrated a stripped-down version of a camera pose
tracking system on an Android phone where the inertial
sensors are utilized only to obtain a gravity reference and
frame-to-frame rotations.

Recently Li and Mourikis demonstrated impressive re-
sults on visual-inertial visual odometry, without recon-
structing the environment [5].

Klein and Murray [3] proposed a system for real-time
parallel tracking and mapping (PTAM) which was demon-
strated to work well also on smartphones [4]. Thereby, the
maintained 3D map is built from sparse point correspon-
dences only. Newcombe et al. [7] perform tracking, map-
ping and dense reconstruction on a high-end GPU in real
time on a commodity computer to create a dense model of
a desktop setup. Their approach makes use of general pur-
pose graphics processing but the required computational re-
sources and the associated power consumption make it un-
suitable for our domain.

66

As the proposed reconstruction pipeline is based on
stereo to infer geometric structure, it is related to a myr-
iad of works on binocular and multi-view stereo. We refer
to the benchmarks in [16], [17] and [19] for a representa-
tive list. However, most of those methods are not applicable
to our particular scenario as they don’t meet the underly-
ing efficiency requirements. In the following, we will focus
only on approaches which are conceptually closely related
to ours.

Building upon previous work on reconstruction with a
hand-held camera [10], Pollefeys et al. [11] presented a
complete pipeline for real-time video-based 3D acquisition.
The system was developed with focus on capturing large-
scale urban scenes by means of multiple video cameras
mounted on a vehicle. A method for real-time interactive
3D reconstruction was proposed by Stuehmer et al. [20].
Thereby, a 3D representation of the scene is obtained by
estimating depth maps from multiple views and convert-
ing them to triangle meshes based on the respective con-
nectivity. Another approach for live video-based 3D recon-
struction was proposed by Vogiatzis and Hernandez [22].
Here, the captured scene is represented by a point cloud
where each generated 3D point is obtained as a probabilis-
tic depth estimate by fusing measurements from different
views. Even though the aforementioned techniques cover
our context, they are designed for high-end computers and
are not functional on mobile devices due to some time-
consuming optimization operations.

Recently, the first works on live 3D reconstruction on
mobile devices appeared. Wendel er al. [24] rely on a dis-
tributed framework with a variant of [4] on a micro air vehi-
cle. All demanding computations are performed on a sepa-
rate server machine that provides visual feedback to a tablet
computer. Pan et al. [9] demonstrated an interactive system
for 3D reconstruction capable of operating entirely on a mo-
bile phone. However, the generated 3D models are not very
precise due to the sparse nature of the approach. Prisacariu
et al. [13] presented a shape-from-silhouette framework
running in real time on a mobile phone. Despite the im-
pressive performance, the method suffers from the known
weaknesses of silhouette-based techniques, e. g. the inabil-
ity to capture concavities. In contrast, the proposed system
does not exhibit these limitations since it relies on dense
stereo.

3. System Overview

Our system consists of three main blocks: inertial track-
ing, visual pose estimation and dense 3D modeling, as de-
picted in Fig. 2. All three blocks operate asynchronous and
thus allow us to optimally make use of the multi-core ca-
pabilities of the device. We take two main input streams:
camera frames with resolution of 640 x 480 at tracking
rates typically between 15-30 Hz and inertial sensor infor-

input frames
camera calibration —

pose

estimation
A

dense 3D
SD mOde‘

dense frame
decision

pose prediction
absolute scale

inertial

accelerometer — tracking

gyroscope —™!

Figure 2. Interconnections between the main building blocks.

mation (angular velocity and linear acceleration) at 200 and
100 Hz respectively. The inertial tracker provides camera
poses which are subsequently refined by the visual track-
ing module. The dense 3D modeling module is supplied
with images and corresponding full calibration information
at selected keyframes from the visual tracker as well as met-
ric information about the captured scene from the inertial
tracker. Its processing time is typically about 2-3 seconds
per keyframe. The system is triggered automatically when
the inertial estimator detects a salient motion with a mini-
mal baseline. The final output is a 3D model in metric co-
ordinates in form of a colored point cloud. All components
of the system are explained in more detail in the following
sections.

4. Visual Inertial Scale Estimation

Current smartphones are equipped with a 3D gyroscope
and accelerometer, which produce (in contrast to larger in-
ertial measurement units) substantial time-dependent and
device-specific offsets, as well as significant noise. To es-
timate scale, we first need to estimate the current world to
body/camera frame rotation Rp and the current earth-fixed
velocity and position using the inertial sensors. The estima-
tion of this rotation is achieved through a standard Extended
Kalman Filter. As the magnetometer and GPS are subject
to large disturbances or even unavailable indoors as well as
in many urban environments, we rely solely on the gyro-
scope and update the yaw angle with visual measurements
mp. We scale the gravity vector gp to the unit-length vec-
tor zp and estimate yp and x p using the additional heading
information

9B 2B X Mp
2B = y TyB = y TaB = TyB X T:B,
lgsll 725 x mp|
(D
with Rp and dynamics given as
Rp = [rop,1yB,7.8] € SO(3), Rp=4&R. (2)

67

The filter prediction and update equations are given as

Rp =

Pl = Fip + Lik(2i — Fip) with i € (z,y, 2),

3)
“)

where the Kalman gain matrix Ly, is computed in every time
step with the linearized system.

The camera and IMU are considered to be at the same
location and with the same orientation. In the case of orien-
tation, this is valid since both devices share the same PCB.
As for the case of the location, this is a compromise between
accuracy and simplicity. For the proposed framework, ne-
glecting the displacement between sensors did not notice-
ably affect the results.

We initialize the required scale for visual-inertial fusion
by first independently estimating motion segments. In or-
der to deal with the noise and time-dependent bias from
the accelerometer, an event-based outlier-rejection scheme
is proposed. Whenever the accelerometer reports signifi-
cant motion, we create a new displacement hypothesis Z.
This is immediately verified by checking a start and stop
event in the motion. These are determined given that for
sufficiently exciting handheld motion, the acceleration sig-
nal will exhibit two peaks of opposite sign and significant
magnitude. A displacement is then estimated and compared
to the displacement estimated by vision (3) at the start and
stop events, yielding a candidate scale. Due to visual or in-
ertial estimation failures, outlier rejection is needed. Each
new measurement pair is stored and the complete set is re-
evaluated using the latest scale by considering a pair as in-
lier if || Z; — Ay;|| is below a threshold. If the new inlier set
is bigger than the previous one, a new scale A is computed
in the least-squares sense using the new set [as

arg;nin: ZH@ —Mi|% ®)

i€l

Otherwise, the displacements are saved for future scale can-
didates.

As soon as the scale estimation converges, we can up-
date the inertial position with visual measurements. In ad-
dition to providing an estimate of the scene scale, we pro-
duce a filtered position estimation as show in Fig 3. This
can be leveraged to process frames at lower rates or to mit-
igate intermediate visual tracking issues e.g. due to motion
blur. Since the sample rate of the accelerometer is higher
than the frame rate of the camera, we predict the position of
the phone with each new accelerometer sample and update
with the visual information whenever a new measurement is
available. With every new IMU sample, the accelerometer
data is rotated and the gravity is accounted for in the in-
ertial frame. This acceleration is integrated using Velocity
Verlet, which is in turn used for a decaying velocity model

Position (z-axis) Effects of filter (Z-axis)

0
84 86

9 10 11 12 138 14 15 16
time [seconds]

88 9 92 94 9 98 100
time [seconds]

Estimated scale
Real scale
107 i | | I e
20 25 30 35 40 45 50
time [seconds]

Figure 3. Left: simple inertial prediction and decaying velocity
vs ground truth. Right: visual-inertial estimate allows to partially
reject tracking losses. Bottom: Convergence of scale estimation.

of handheld motion

T =0 + TAtRE (@f — gB) - (6)
Here 7 accounts for timing and sensor inaccuracies (inher-
ent of the operating system available on mobile phones) by
providing a decaying velocity model, preventing unwanted
drift at small accelerations (see Fig 3). To adapt to the vi-
sual data, it is first scaled to metric units using A and then
fused with the inertial prediction using a simple linear com-
bination based on the variances of both estimations

Tf =K (0;2)@] + 0’14_21_';) . 7
Here the subscripts f, v and ¢ denote fused, vision and in-
ertial position estimates, respectively, and x is the normal-
izing factor.

The visual updates become available with a time offset,
so we need to re-propagate the predicted states from the
point, at which the vision measurement occurred, to the cur-
rent one [23]. This is done by storing the sates in a buffer
and, whenever a visual measurement arrives, looking back
for the closest time-stamp in that buffer, updating and prop-
agating forward to the current time.

Fig 4 shows the results of the combined vision and iner-
tial fusion in a freehand 3D motion while tracking a table-
top scenario. It is evident that scale and absolute position
are correctly estimated throughout the trajectory.

To evaluate the estimated scale accuracy, metric recon-
struction of a textured cylinder with a known diameter was
performed. In a qualitative evaluation with multiple tries,
the scale was estimated to have an error of up to 10-15%.
This is mostly due to the inaccuracy in the magnitude of the
measurements of the consumer-grade accelerometer on the

68

Scaled 3D trayectory

—+— scaled pose
VICON
* scaled map points

[Table

-0.05

0.05

Z[m]

0.1

y[m]

Figure 4. Visual inertial pose estimate vs. ground truth.

device. It should be noted that the accuracy of those mea-
surements could be improved by calibrating the accelerom-
eter with respect to the camera beforehand, but such inves-
tigations are left for future work.

S. Visual Tracking and Mapping
5.1. Two View Initialization

The map is initialized from two keyframes. ORB fea-
tures [14] are extracted from both frames and matched. Out-
liers are filtered out by using the 5-point algorithm in com-
bination with RANSAC. After that, relative pose optimiza-
tion is performed and the point matches are triangulated.
The rest of the initialization follows the design of [3]: In
order to get a denser initial map, FAST corners are then ex-
tracted on four resolution levels and for every corner a 8x8
pixel patch at the respective level is stored as descriptor.
The matching is done by comparing the zero-mean sum of
squared differences (ZSSD) value between the pixel patches
of the respective FAST corners along the epipolar line. To
speed up the process, only the segment of the epipolar line
is searched that matches the estimated scene depth from the
already triangulated points. After the best match is found,
the points are triangulated and included to the map which
is subsequently refined with bundle adjustment. Since the
gravity vector is known from the inertial estimator, the map
is also rotated such that it matches the earth inertial frame.

5.2. Patch Tracking and Pose Refinement

The tracker is used to refine the pose estimate from the
inertial pose estimator and to correct drift. For every new
camera frame FAST corners are extracted and matched with

the projected map points onto the current view using the in-
ertial pose. The matching is done by warping the 8x8 pixel
patch of the map point onto the view of the current frame
and computing the ZSSD score. It is assumed that its nor-
mal is oriented towards the camera that observed it for the
first time. For computing the warp the appropriate pyra-
mid level in the current view is selected. The best matching
patch in a certain pixel radius is accepted. The matches are
then optimized with a robust Levenberg-Marquart absolute
pose estimator giving the new vision-based pose for the cur-
rent frame. If for some reason the tracking is lost the small
blurry image relocalization module from [3] is used.

5.3. Sparse Mapping

New keyframes are added to the map if the user has
moved the camera a certain amount or if the inertial position
estimator detects that the phone is held still after salient mo-
tion. In either case, the keyframe is provided to the mapping
thread that accepts the observations of the map points from
the tracker and searches for new ones. To this end, a list of
candidates is created from non maximum suppressed FAST
corners that have a Shi-Tomasi score [18] above a certain
threshold. To minimize the possibility that new points are
created at positions where such already exist, a mask is cre-
ated to indicate the already covered regions. No candidate
is added to the map if its projection is inside a certain pixel
radius. Since the typical scene consists of an object in the
middle of the scene, only map points that were observed
from an angle of 60 degrees or less relative to the current
frame are added to this mask. This allows to capture both
sides of the object but still reduces the amount of duplicates.

Similar to [3], the mapper performs bundle adjustment
optimization in the background. Its implementation is based
on the method using the Schur complement trick that is
described in [2]. After a keyframe is added, a local bun-
dle adjustment step with the closest 4 keyframes is per-
formed. With a reduced priority, the mapper optimizes the
keyframes that are prepared for the dense modeling module.
Frames, that have already been provided to the module, are
marked as fixed. With lowest priority, the mapping thread
starts global bundle adjustment optimization based on all
frames and map points. This process is interrupted if new
keyframes arrive.

6. Dense 3D Modeling

At the core of the 3D modeling module is a stereo-based
reconstruction pipeline. In particular, it is composed of
image mask estimation, depth map computation and depth
map filtering. In the following, each of these steps is dis-
cussed in more detail. Finally, the filtered depth map is back
projected to 3D, colored with respect to the reference image
and merged with the current point cloud.

69

6.1. Image Mask Estimation

The task of the maintained image mask is twofold. First,
it identifies pixels exhibiting sufficient material texture.
This allows to avoid unnecessary computations which have
no or negligible effect on the final 3D model and reduces
potential noise. Second, it overcomes the generation of re-
dundant points by excluding regions already covered by the
current point cloud.

A texture-based mask is computed by reverting to the
Shi-Tomasi measure used also at the visual tracking stage
(see Section 5). The mask is obtained by thresholding the
values at some \,,;, > 0. In our implementation, we set
Amin = 0.1 and use patch windows of size 3 x 3 pixels. Ad-
ditionally, another mask is estimated based on the coverage
of the current point cloud. To this end, a sliding window,
which contains a set of the recently included 3D points, is
maintained. All points are projected onto the current image
and a simple photometric criterion is evaluated. Note that
points, that belong to parts of the scene not visible in the
current view, are unlikely to have erroneous contribution to
the computed coverage mask. The final image mask is ob-
tained by fusing the estimated texture and coverage mask.
Subsequent depth map computations are restricted to pixels
within the mask.

6.2. Depth Map Computation

Multi-resolution scheme. We run binocular stereo by
taking an incoming image as a reference view and match-
ing it with an appropriate recent image in the provided se-
ries of keyframes. Instead of applying a classical technique
based on estimating the optimal similarity score along re-
spective epipolar lines, we adopt a multi-resolution scheme.
The proposed approach involves downsampling the input
images, estimating depths, and subsequently upgrading and
refining the results by restricting computations to a suitable
pixel-dependent range.

Similar to the visual tracking stage (see Section 5), we
rely on computations at multiple pyramid resolutions. At
each level 7 € {0,..., L}, respective images are obtained
by halving the resolution of their versions at level 7 — 1 in
each dimension. Thereby, ¢ = 0 contains the original im-
ages. Starting at the top of the pyramid, the multi-resolution
approach estimates a depthmap D; : Q; € Z2 - R C R
to each level 7 based on the image data at that level and
the depth map from the consecutive level D; 1. While ex-
haustive computations have to be performed for the highest
level L, subsequent computational efforts can be reduced
significantly by exploiting the previously obtained coarse
result. In particular, we apply an update scheme based on
the current downsampled pixel position and three appropri-
ate neighbors. For example, for pixel (z,y) € Q; with z
mod 2 =1 and y mod 2 = 1 (the remaining cases are han-
dled analogously) we consider the following already pro-

Figure 5. Single- vs. multi-resolution depth map estimation. From
left to right: The reference image of a stereo pair, correspond-
ing depth map estimated with a classical single-resolution winner-
takes-all strategy and result obtained with the proposed multi-
resolution scheme.

vided depth values
DYy, = z+1(Ly
D}y =Dii(a' +1,y) ®)
Dz+1_Dz+1< +1 Y +1)

D} =Dia(a),y +1),

where (2/,y") = (|z/2], |y/2]) € Qi+1. We estimate the
depth D;(x, y) by searching an appropriate range given by
the minimum and maximum value in { D!, | [l =0,...,3}.
Thereby, depth values, that are not available due to bound-
ary constraints or the maintained image mask, are omitted.
In order to take into account uncertainties due to the coarse
sampling at higher pyramid levels, we additionally include
a small tolerance in the estimated ranges. As the uncer-
tainty is expected to increase with increasing depth due to
the larger jumps of the values from pixel to pixel, we use
a tolerance parameter which is inversely proportional to the
local depth DY, ;.

In our implementation, we used images of size 640 x 480
pixels and 3 resolution levels (i.e. L = 2). It should be
noted that all estimated depth maps rely on a predefined
range R C R which can be determined by analyzing the
distribution of the sparse map constructed in the camera
tracking module (see Section 5).

The multi-resolution scheme comes along with some
important advantages. First, it entails significant effi-
ciency benefits compared to traditional methods as epipo-
lar line traversals at higher image resolutions are restricted
to short segments. Second, when applying a winner-takes-
all strategy, potential mismatches can be avoided due to
the more robust depth estimates at low image resolution.
Third, regions in the image, which belong to distant scene
parts outside of the range of interest, can be discarded
at the lowest resolution level and subsequent refinement
operations can be avoided for them. To illustrate these
aspects, we present a comparison between the classical
single-resolution winner-takes-all strategy and the devel-

70

oped multi-resolution technique on an example image pair
(see Fig. 5). While both results look genuinely similar,
a closer look reveals that the proposed multi-resolution
scheme confers a higher degree of robustness by producing
less outliers. Note that for the above example a conserva-
tive depth range was used so as to capture the entire field
of view. However, the real benefit from it becomes evident
when comparing the respective runtimes. In practice, the
multi-resolution approach is about 5 times faster than the
single-resolution counterpart.

GPU acceleration. Despite the utilization of a multi-
resolution scheme, the developed method for dense stereo is
not efficient enough to meet the requirements of the applica-
tion at hand. For this reason, we made use of the paralleliza-
tion potential of the algorithm with a GPU implementation
(based on GLSL ES), which reduces the overall runtime of
the 3D modeling module to about 2-3 seconds per processed
image. More concretely, we estimate depth maps at differ-
ent pyramid levels in separate rendering passes. Thereby,
some care should be taken due to the precision limitations
of current mobile GPUs. We address this difficulty by using
the sum of absolute differences (SAD) as a similarity mea-
sure in the matching process (over 5 x 5 image patches) and
transferring triangulation operations to get the final depth
estimates to the CPU.

Image pair selection. A crucial step in binocular stereo is
the choice of an appropriate image pair. An ideal candidate
pair should share a large common field of view, a small but
not too small baseline and similar orientations. As we have
an ordered image sequence, a straightforward methodology
would be to match each incoming image with its predeces-
sor. Yet, this strategy is suboptimal in some cases, for ex-
ample when the user decides to move back and recapture
certain parts of the scene. Instead, we propose to maintain a
sliding window containing the last N,, provided keyframes
(N, = 5 in our implementation) and pick the one maximiz-
ing a suitable criterion for matching with the current view.
For two cameras j and k this criterion is defined as

C(j. k) = cos 7%, - cos g% . cos o, 9)
where 9%’;56 denotes the angle between the viewing rays of

both cameras at the midpoint of the line segment connect-

ing the mean depth range points along the camera principal
. . k:

rays, Hmew is the angle between the principal rays and 67

is the angle between the up vectors of both cameras. Addi-

tionally, we impose the following constraints

< 45°,0° < 6%

view

50 < ojk:

ik
pose — < 450700 S eip S 300
An input image is discarded and not processed if none of
the images in the current sliding window satisfy those con-
straints with respect to it.

6.3. Depth Map Filtering

The final step in the proposed 3D modeling pipeline con-
sists in filtering the estimated depth map. The applied pro-
cedure is inspired by [21] and is based on checking consis-
tency over multiple views. In particular, a sliding window
containing the last Ny depth maps is maintained. The depth
value at each pixel of the current map is tested on agree-
ment with the maps in the sliding window, i.e. it is warped
to the corresponding views and compared with the values
stored there. The depth is considered consistent if the esti-
mated difference is within a certain tolerance for at least N,
views. In our implementation, we set Ny = 5 and N, = 2.
It is important to note that the unfiltered depth maps have
to be maintained here because parts of the scene, not vis-
ible in the views included in the current sliding window,
would never get the chance to be reconstructed otherwise.
This simple but very powerful filtering procedure is able to
remove virtually all outliers and build a clean 3D model.

7. Experimental Results

All experiments were conducted on a Samsung Galaxy
SIIT I9300GT with Samsung Exynos 4 quad core CPU and
ARM Mali-400 MP4 GPU and processed in real time.

The first set represents a typical use case for mobile 3D
reconstruction: non-movable objects for which no 3D ge-
ometry exists yet. To this end, multiple objects were cap-
tured from the collection of a museum. Fig. 6 shows the
generated model of a tribal mask which was created inter-
actively on-device during the normal opening hours of the
museum. Fig. 7 depicts an additional object from the same
collection: an ancient Shakyamuni Buddha statue. Both
results were obtained under normal exhibition conditions.
They illustrate the suitability for a number of practical cases
where 3D objects cannot be simply taken to a full-fledged
3D scanning device.

To evaluate the generality of our approach, we complete
the evaluation with two additional scenarios that were not
envisioned initially: outdoor environments (see Fig. &) and
human faces (see Fig. 9).

See the accompanying video for additional reconstruc-
tion results and a demo of the developed system in action.

8. Conclusion

We presented the first interactive on-device system for
dense stereo-based 3D reconstruction on mobile phones.
In order to address the major challenges posed by the un-
derlying hardware limitations and to meet the robustness
and efficiency requirements of the application, we inte-
grated multiple novel solutions. In particular, we explored
the capabilities of the inertial sensors available on mod-
ern mobile devices to improve the resilience of the camera

71

Figure 6. Photo and front and right view of the reconstructed 3D
model of a 0.5 m tall African tribal mask.

Figure 7. Photo and front and left views of reconstructed 3D model
of a 1.6 m tall Shakyamuni Buddha statue.

Figure 8. Photo and reconstructed 3D model of a building facade
captured at street-level.

tracking process to rapid motions and to automatically cap-
ture keyframes when the phone is static. Additionally, we

Figure 9. Front and left view of a reconstructed 3D model of a
human face, including a corresponding photo of the test person.

showed how this sensor information can be exploited to de-
rive the metric measures of the captured scene. Moreover,
we proposed an efficient and accurate method for binocu-
lar stereo based on a multi-resolution scheme. The perfor-
mance of the system was demonstrated on various indoor
and outdoor scenes.

Acknowledgments

We thank Amael Delaunoy for technical support and use-
ful comments. Tobias Négeli provided support and input on
inertial attitude estimation. This work is funded by the ETH
Zurich Postdoctoral Fellowship Program, the Marie Curie
Actions for People COFUND Program and ERC grant no.
210806.

References

[1] P.Corke, J. Lobo, and J. Dias. An introduction to inertial and
visual sensing. The Intl. Journal of Robotics, 2007. 2

R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2004. 5

G. Klein and D. Murray. Parallel tracking and mapping for
small ar workspaces. ISMAR, pages 225-234, 2007. 2,4, 5
G. Klein and D. Murray. Parallel tracking and mapping on a
camera phone. ISMAR, pages 83-86, 2009. 2

M. Li and A. I. Mourikis. High-precision, consistent EKF-
based visual-inertial odometry. Infernational Journal of
Robotics Research, 32(6):690-711, May 2013. 2

J. Lobo and J. Dias. Inertial sensed ego-motion for 3d vision.
Journal of Robotic Systems, 21(1):3-12, 2004. 2

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In IEEE
International Conference on Computer Vision (ICCV), pages
2320-2327,2011. 1,2

R. A. Newcombe et al. Kinectfusion: Real-time dense sur-
face mapping and tracking. In ISMAR, pages 127-136, 2011.
1

(2]

(3]

(4]

(3]

(6]

(7]

(8]

72

(]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Q. Pan, C. Arth, E. Rosten, G. Reitmayr, and T. Drum-
mond. Rapid scene reconstruction on mobile phones from
panoramic images. In ISMAR, pages 55-64, 2011. 1,2

M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch. Visual modeling with
a hand-held camera. Int. J. Comput. Vision, 59(3):207-232,
2004. 2

M. Pollefeys et al. Detailed real-time urban 3d reconstruction
from video. Int. J. Comput. Vision, 78(2-3):143-167, 2008.
L. Porzi, E. Ricci, T. Ciarfuglia, and M. Zanin. Visual-
inertial tracking on android for augmented reality appli-
cations. In IEEE Workshop on Environmental Energy
and Structural Monitoring Systems (EESMS), pages 3541,
2012. 2

V. A. Prisacariu, O. Kaehler, D. Murray, and I. Reid. Simul-
taneous 3D tracking and reconstruction on a mobile phone.
In ISMAR, 2013. 1,2

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb:
An efficient alternative to sift or surf. In IEEE International
Conference on Computer Vision (ICCV), pages 2564-2571,
2011. 4

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy. Real-time
3D model acquisition. In SIGGRAPH, pages 438-446, New
York, NY, USA, 2002. ACM. |

D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int. J.
Comput. Vision, 47(1-3):7-42, Apr. 2002. 2

S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 519-528, 2006.
J. Shi and C. Tomasi. Good features to track. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 593-600, 1994. 5

C. Strecha, W. von Hansen, L. V. Gool, P. Fua, and U. Thoen-
nessen. On benchmarking camera calibration and multi-view
stereo for high resolution imagery. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Anchor-
age, AK, USA, 2008. 2

J. Stuehmer, S. Gumbhold, and D. Cremers. Real-time dense
geometry from a handheld camera. In Pattern Recognition
(Proc. DAGM), pages 11-20, 2010. 2

E. Tola, C. Strecha, and P. Fua. Efficient large-scale multi-
view stereo for ultra high-resolution image sets. Mach. Vi-
sion Appl., 23(5):903-920, 2012. 7

G. Vogiatzis and C. Hernndez. Video-based, real-time multi-
view stereo. Image Vision Comput., pages 434—441, 2011.
S. Weiss and R. Siegwart. Real-time metric state estimation
for modular vision-inertial systems. In JCRA, pages 4531—
4537,2011. 2,4

A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof.
Dense reconstruction on-the-fly. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1450-1457,2012. 2

