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Abstract

Repetitive and ambiguous visual structures in general
pose a severe problem in many computer vision applica-
tions. Identification of incorrect geometric relations be-
tween images solely based on low level features is not al-
ways possible, and a more global reasoning approach about
the consistency of the estimated relations is required. We
propose to utilize the typically observed redundancy in the
hypothesized relations for such reasoning, and focus on the
graph structure induced by those relations. Chaining the
(reversible) transformations over cycles in this graph al-
lows to build suitable statistics for identifying inconsistent
loops in the graph. This data provides indirect evidence for
conflicting visual relations. Inferring the set of likely false
positive geometric relations from these non-local observa-
tions is formulated in a Bayesian framework. We demon-
strate the utility of the proposed method in several appli-
cations, most prominently the computation of structure and
motion from images.

1. Introduction
Computing the geometric relations from unorganized

image sets purely from visual features is a difficult task.
In order to obtain a tractable method, usually a pairwise
matching procedure is applied first, which is followed by
a fusion step to merge the initially obtained pairwise re-
lations into some global reference frame. The approaches
proposed in the literature vary widely in the details of this
latter upgrade procedure. Since the first pairwise match-
ing step uses only very limited information, the reported
pairwise relations are susceptible to inconsistencies due to
visual ambiguities, and the subsequent fusion method must
be able to cope with such erroneous input. We do not re-
strict the notion of pairwise matching solely to images, but
also consider e.g. mutual alignment of 3D point sets.

In this work we propose to detect and remove conflict-
ing pairwise relations, and thereby cleaning the input for
the subsequent upgrade step from incorrect data. The prin-
cipal components are illustrated in Figure 1. The pairwise

Figure 1. The original set of images (a) is robustly matched yield-
ing a graph containing all potential pairwise relations (b). Acquisi-
tion of deviation statistics over loops results in non-local error ob-
servations (c), from which the incorrect relations are inferred (d).
Large error and erroneous relations are indicated by dark edges.
Observe that the central and the top right image look similar, but
actually show different sides of the building.

relations generated by the preceding matching stage are typ-
ically highly redundant, which enables checking the intrin-
sic geometric consistency of these relations. The set of
reported pairwise relations corresponds directly to a graph
structure associating its edges with the relations (Fig.1(b)).
Most classes of pairwise relations relevant in computer vi-
sion applications—e.g. homographies, relative pose, Eu-
clidean and similarity transformations—allow the concate-
nation of geometric relations to hypothesize new, poten-
tially not directly observed relations. Large deviations be-
tween predicted (chained) and actually observed transfor-
mations indicate at least one conflicting edge among the in-
volved relations. Under the weak assumption of invertible
transformations we can restrict the focus on cycles in the
graph structure. Concatenating the transformations along
a loop in the graph should return the identity function in
an ideal, noise-free setting. Again, the likelihood of hav-
ing at least one incorrect edge in the loop is strongly re-
lated to the deviation of the chained transformation from
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(a) 3D model using all visual relations (b) 3D model using only consistent relations

Figure 2. Distorted and correct output of a robust structure and motion pipeline using all geometrically verified epipolar relations (a) and
using only those satisfying loop consistency (b).

the identity map. Collecting these statistics over loops in-
directly points to potentially incorrect edges. The statistics
for correct edges is generally contaminated by false posi-
tives also participating in the cycles, hence the conflicting
edges cannot be read directly e.g. from the mean deviations
(see Fig. 1(c)). Our proposed method uses a Bayesian net-
work to infer the most likely set of incorrect transformations
in the graph (Fig. 1(d)).

In this work we propose a solution towards resolving
the two conflicting goals encountered in 3D computer vi-
sion: creating as connected results as possible (i.e. max-
imizing the recall), while simultaneously avoiding incor-
rectly merged components (maximizing the precision). We
augment robust vision methods addressing these issues with
explicit reasoning steps on the geometric consistency in or-
der to increase the recall while maintaining the precision.
The objective of the proposed method is avoiding distorted
results as seen in Figure 2(a) by removing conflicting visual
relations as preprocessing step (Figure 2(b)).

2. Related Work

Extracting information from erroneous data is generally
the goal of robust estimation; in computer vision random
sampling [7] and its subsequent extension are practical ap-
proaches to robustly estimate a small set of parameters from
data contaminated with outliers. In certain problem setting
the L∞ cost function can be used to identify outliers in the
given data [19], but usually robust cost functions like the
Huber or Cauchy cost function are used in larger scale pa-
rameter estimation tasks (like bundle adjustment [22]). In-
consistencies in the visual relations are only implicitly ad-
dressed and may result in arbitrarily distorted outputs.

Correctly separating unrelated structure-from-motion
models, which are otherwise merged into an incorrect sin-
gle representation due to visual similarities, is addressed
in [23, 15]. An explicit Bayesian framework to detect false
positive epipolar relations from undetected features is pro-
posed in [23], which uses belief networks for view triplets
to assess the correctness of epipolar relations. The proce-

dure to generate a 3D model is very conservative and po-
tentially leads to unnecessarily many separate models by as-
suming that detected false positive edges always link com-
pletely unrelated models. False positives found by means
of [23] may also refer to incorrect relations within the
same model. A method to disambiguate visually similar
copies of well-known landmarks reconstructed from com-
munity photo collections is presented in [15]. A combi-
nation of appearance-based clustering and geometric veri-
fication techniques is utilized to filter relevant images from
unrelated ones, resulting in multiple unrelated instances or
copies of widely known landmarks correctly being recon-
structed.

In order to have an efficient method, we employ
Bayesian inference on the abstract level of transformations
between nodes (images, locally reconstructed models) and
do not reconsider the association between e.g. image fea-
tures and corresponding 3D points. In [2] also the corre-
spondence between image observations and latent variables
is re-evaluated and possibly reverted, but this is applied
only on smaller sub-problems incorporating the recently ob-
served data. The states of the latent variables and the associ-
ations are optimized by alternating minimization, therefore
resembling the ICP method.

The method presented in [10] tries to identify consis-
tent relative rotations before determining global camera ori-
entations using a RANSAC scheme by sampling spanning
trees from the epipolar graph. The estimated hypothesis
parameters are the global orientations of all involved cam-
eras. Evidently, the size of the epipolar graph that can be
handled in such an approach is rather limited, and the au-
thor uses a sliding-window procedure to reduce the problem
size. In this work we demonstrate that accumulating suit-
able statistics over cycles in the respective graph directly
points to problematic edges, e.g. relative orientations. Fur-
ther, Bayesian inference is much more tractable than ran-
dom sampling for such a large hypothesis space.

Loops generated by linking smaller sub-maps are an im-
portant cue in robotics, in particular in simultaneous local-
ization and mapping approaches. Upgrading the relative



orientations between sub-maps to absolute orientations in
a common coordinate frame using explicit loop constraints
is proposed in [5]. We utilize a different approach fol-
lowing [9, 16] to obtain globally consistent transformations
from relative ones (see Section 5). Recently, the same au-
thors suggest to consider only “compact” loop constraints
derived from minimum cycle bases [6].

3. Our Method

This section describes the inference of false positive re-
lationships between images from observation gathered by
chaining local transformations. First, we describe the un-
derlying generative model based on loop inconsistencies,
followed by a depiction of how these loops are sampled.

Inference from Loop Inconsistencies Let i and j be in-
dices of images (or some entity derived from images), and
Tij is a hypothesized geometric relation between i and j
e.g. obtained by robust estimation from feature correspon-
dences. Tij might be the relative pose, a homography, or
a similarity transformation between locally reconstructed
models. We require that Tij is invertible, i.e. for a given
Tij the reverse transformation Tji can be determined. In
principle, it is not necessary that Tji = T−1

ij holds exactly
(e.g. both directions can be estimated separately), but for the
sake of simplicity we assume that Tji is the exact inverse of
Tij in the following.

If a set of transformations {Tij} = {Te} is given, such
that the underlying undirected graph G = (V,E) with
E = {e = (i, j)} has cycles, then chaining all transforma-
tions along a loop should result into the identity transfor-
mation (if one ignores noisy measurements for now). Let
L = (e1, e2, . . . , e|L|) denote an arbitrary loop in G with
length |L| and starting with edge e1, and TL the accumu-
lated transformation, TL = Te|L| ◦ · · · ◦ Te1 . If the trans-
formations Te are subject to measurement noise, then the
deviation between TL and the identity I follows some noise
characteristic, which can be modeled for particular problem
instances. We will measure the discrepancy between TL and
I using a non-negative function d(TL).

Observe that with G being a loopy graph in most ap-
plications, there is some redundancy in the set of hypoth-
esized transformations {Te}. If TL deviates substantially
from the identity map for a loop L, this strongly suggest
that at least one of the individual transformations Te in the
loop is incorrect and should be discarded. By accumulat-
ing these deviations over a large set of loops one can obtain
the statistics needed to infer the the set of false positives. If
we visualize the mean deviations for a small example (re-
call Figure 1(c)), then one observes that one incorrect edge
influences all loops containing this particular edge, and the
mean error attributed to all edges in the graph is “blurred.”
The main question is now how to infer the false positives

d(TL)

xe

P
`
d(TL)|{xe : e ∈ L}

´

P (Te|xe)

Te

Figure 3. The Bayesian network for cycle inference.

from observation over cycles?
Obviously this problem can be casted as a Bayesian in-

ference task. We introduce latent binary variables xe for
every edge, such that xe = 1 indicates a false positive edge.
The event that at least one of the loop edges is a false pos-
itive is abbreviated by xL = 1, i.e. xL = maxe∈L xe. We
have to model two prior probabilities:

• The likelihood observing the deviation d(TL) for a
loop under the assumption that none of the edges in
the loop is incorrect, P (d(TL)|xL = 0). This distribu-
tion is induced by the assumed noise model.

• The probability measuring d(TL) if at least one of the
edges is a false positive, P (d(TL)|xL = 1). As com-
monly employed in the literature, we generally model
this likelihood by a uniform, least informative distribu-
tion. In our applications the range of d(·) can be easily
bounded, and therefore P (d(TL)|xL = 1) has finite
support.

Optionally, a prior likelihood P (xe) can be provided for ev-
ery edge, which can be determined e.g. from the confidence
in the estimated transformation Te. In our experiments we
did not use the prior likelihoods (corresponding to a uniform
prior on the unknowns). The structure of this belief network
is illustrated in Figure 3. We are interested in an assignment
for all the edge variables xe ∈ {0, 1} maximizing the joint
probability∏
L∈L

P
(
{xe}e∈L|d(TL)

)
∝
∏
e

P (xe)
∏
L∈L

P
(
d(TL)|xL

)
.

(1)

We have several options to perform (approximate) infer-
ence in this network. First, the Bayesian network can be
directly converted to a factor graph representation by intro-
ducing factor nodes corresponding to the loops (and option-
ally factors for the unary priors). Loopy belief propagation
(LBP) [14] is an efficient method for approximate inference
in such graphs. We utilize LBP implementation provided
by the libDAI library [17].

Since the node variables and factors and are tightly con-
nected, and LBP does not provide quality guarantees, we



(a) Homography deviations (b) Rotation deviations (in degrees) (c) Alignment errors

Figure 4. Histograms of empirical deviations from the respective identity map. The inlier portion of the histogram roughly follows an
exponential distribution.

also explored inference directly based on optimizing the en-
ergy functional corresponding to the joint probability Eq. 1.
The log-likelihood of Eq. 1 reads as

E({xe}) :=
∑
e

l(xe) +
∑
L

l
(
d(TL)|xL

)
=
∑
e

(
xe l(xe = 1) +

(
1− xe l(xe = 0)

))
+
∑
L

xL l
(
d(TL)|xL = 1

)
+
∑
L

(1− xL) l
(
d(TL)|xL = 0

)
,

with xL := maxe∈L{xe}. We abbreviate the cost coeffi-
cients of xe and xL by

ρe := l(xe = 1)− l(xe = 0) and

ρL := l
(
d(TL)|xL = 1

)
− l
(
d(TL)|xL = 0

)
,

which leads to

E({xe}, {xL}) =
∑
e

ρexe +
∑
L

ρLxL + const (2)

subject to xe ∈ {0, 1} and xL = maxe∈L{xe}. In order to
obtain a convex problem, we replace the non-convex con-
straints xe ∈ {0, 1} by xe ∈ [0, 1]. Next, the (non-convex)
constraint set

C :=
{
(xL, xe1 , . . . , xe|L|) ∈ [0, 1]|L|+1 : xL = max

e
{xe}

}
,

linking xL and the edge variables xe, is replaced by the con-
vex constraints

xL ≥ xe ∀e ∈ L, xL ≤
∑
e∈L

xe, xL ∈ [0, 1], xe ∈ [0, 1].

Overall, determining the optimal xe in the convex relaxation
setting is now a linear program, for which efficient solvers
are available. In our experiments we observed that most or
even all variables xe are either 0 or 1, and only a few vari-
ables attain fractional values. Hence, a branch and bound

method is also a viable (and exact) inference procedure for
this set of problems.

One interesting aspect of Eq. 2 is that the global solution
(e.g. found by branch and bound) explains all inconsistent
loops and there is no need to iterate the inference to detect
additional conflicting edges. This can be seen as follows:
Let x∗ = ({x∗e}, {x∗L}) be the optimal solution of Eq. 2,
and I be the indices of inconsistent edge and loop variables,
i.e. xk = 1 iff k ∈ I. The energy Eq. 2 can be split into
two parts, E({xk}) =

∑
k∈I ρkxk+

∑
k/∈I ρkxk. Iterating

the inference procedure corresponds to fixing xk to one for
all k ∈ I and only optimizing over the unknowns {xk}k/∈I .
Clearly,

E({x∗k}) ≤ min
{xk}k/∈I

(∑
k/∈I

ρkxk

)
+
∑
k∈I

ρk,

since x∗k is the global minimizer of E(·) and x∗k = 1 for
k ∈ I. Equality is attained by setting xk = 0 for k /∈ I,
hence no additional conflicting edges are reported by re-
peating the inference.1 Since loopy belief propagation does
generally not report global solutions, repeating the infer-
ence procedure may label additional edges as conflicting.
We observed only minimal changes after the first inference
pass.
Cycle Generation Generating all cycle in a loopy graph
is obviously intractable, hence we need to restrict the num-
ber of inspected loops to a more manageable amount. In
several graph-related applications the notion of cycle bases
(optionally also augmented with minimality in some sense,
see e.g. [13]) plays an important role. Cycle bases allow
the generation of all loops in a graph by simple vector arith-
metic in Z2. We use the exhaustive set of cycles with length
three together with loops induced by a so-called spanning
tree bases. These cycle bases are derived from spanning
trees of a (connected) graph by forming loops using non-
tree edges. Thus, every edge in a graph not appearing in
the spanning tree creates a loop together with the unique
path on the tree between the respective nodes. In order to
avoid explicit modeling of the transformation uncertainties

1Here we ignore the possibility of different, equally global solutions.



(a) Unrelated images, 228 matches (b) Snapped to the wrong repetition, 331 matches

Figure 5. Rejected image pairs passing geometric verification using homographies. The yellow arrows indicate a few matching positions
to assist the interpretation.

with respect to the cycle length, we limit the maximal loop
length to six.

Since in our application we strive for redundancy in the
loop statistics, we use a sequence of spanning trees to gather
more cycles in the graph. The first spanning tree is a mini-
mum spanning tree induced by estimated edge uncertainties
(i.e. derived from the number of inlier correspondences).
Drawing loops using a spanning tree cycle basis leads to
very uneven sampling of edges in the graph, since tree
edges are part of cycles much more frequently than non-
tree edges. Hence, we assign the weights used to determine
the subsequent spanning trees inversely proportional to the
number of sampled loops containing the respective edge.
This approach ensures, that loop statistics over edges are ac-
quired roughly uniformly. If several components of a graph
are connected by only a few edges, data for these edges is
still sampled very frequently. But these edges are usually
very important e.g. to connect weakly linked parts of a 3D
reconstruction, and acquiring well supported statistics for
those links is a welcome feature.

4. Application: Homography Matching
This section discusses the specific details of our ap-

proach, when the geometric transformation between nodes
(i.e. images) is described by homographies. In contrast to
the fundamental or essential matrix used as primary trans-
formation associated with edges described in the next sec-
tion, homographies provide a very strong cue to verify
their mutual consistency via chaining transformations along
loops. If a set of hypothesized homographies He between
two images i and j forming the edge e = (i, j) in the graph
network is given, then we haveHL = He|L| ◦· · ·◦He1 ∝ I ,
ei ∈ L, in the ideal, noise-free case. A simple, but effec-
tive way to measure the deviation of HL from the identity
matrix I is

d(HL) := min
α
‖αHL − I‖F = ‖H̃L − I‖F

with α determined as α = tr(HL)/‖HL‖2F , and H̃L :=
αHL. Observe that d(HL) is bounded by

√
3, since the

elements of H̃ have magnitude less or equal one. In order
to obtain numerically stable results, all He’s are computed
from normalized feature positions in [−1, 1]2 (i.e. translated

with respect to the image center and scaled by the reciprocal
image width). This ensures roughly equal magnitudes for
all the elements of He.

For real data, the deviations d(HL) between the concate-
nated homographies and the identity map is a sharply de-
creasing function for correct transformations (see Fig. 4(a)).
Hence, we observe that d(HL) is much smaller than

√
3 for

inliers, and the prior likelihood P (d(HL)|xL = 0) can be
modeled by an exponential distribution (we set its mean to
0.01). The observations d(HL) under presence of erroneous
edges in the loop is generated by the least informative, uni-
form distribution, i.e. P (d(HL)|xL = 1) ∼ U [0,

√
3].

Figure 5 displays a few image pairs passing the geomet-
ric verification, but failing the stronger consistency check
proposed in this section. This image sequence shows a
highly repetitive, roughly planar facade (see Figure 6(b) for
the 3D structure and camera path).

The currently dominant application for homography-
based image alignment is the generation of panoramic im-
ages. The requirement of zero baseline between the image
leads to a restricted class of homographies, for which spe-
cific minimal solvers and refinement procedures exist [4].
In turns out, that the zero-baseline constraint is already quite
strong, since it essentially rules out matching e.g. repetitive
visual structures residing on the same facade. Future appli-
cations of homography verification are the extension of [1]
from captured videos to unorganized image collections, and
the enhancement of relative pose verification discussed in
the following section.

5. Application: Screening the Epipolar Graph

The prototypical example for removing incorrect pair-
wise geometric relations between images is computing a 3D
model from visual input. In [20] several failure cases of the
widely known Photo Tourism software [21] are presented
and discussed. In particular, the confusion of the struc-
ture and motion pipeline due to similar visual structures and
scene repetitions is addressed. Due to the incremental struc-
ture of the Photo Tourism approach, failure cases are not
solely induced by erroneous relations between images, but
can also be the result of drift in the camera poses, or due to
numerous outliers at the feature correspondence level.



(a) W/o edge filtering (143 views registered) (b) With edge filtering (all 189 views registered)

Figure 6. Model generated by Bundler for a facade with highly repetitive elements (a) without using epipolar graph filtering, and (b) with
epipolar filtering solely using relative rotations.

This section discusses the detection of conflicting edges
in the epipolar graph obtained by pairwise image match-
ing and subsequent geometric verification. By assuming
(potentially only roughly) calibrated cameras, each edge
e = (i, j) in the epipolar graph is associated with a relative
transformation (Rij , tij) = (Re, te) relating the coordinate
frames of views i and j. Since merely the direction, but not
the length of the baseline te is known, only the relative ro-
tations Re can be directly chained along a path. Similar to
image-to-image homographies we have a consistency crite-
rion over loops L,

RL = Re|L| × · · · ×Re1 = I ei ∈ L (3)

in a noise-free setting. In principle, there are (relatively
weak) consistency conditions for the translation vectors te
(e.g. [8, 3]), but we restrict the discussion in this section to
the rotation component. The next section describes stronger
verification criteria, if the (relative) lengths of the baselines
are known.

In a noisy setting, Eq. 3 holds only approximately, and
the deviation of RL from I is related to the likelihood for
the correctness of the loop L. We use the rotation angle
αL of RL, i.e. cos(αL) = (tr(RL)− 1)/2, as the observed
quantity for the sampled loops in the epipolar graph. For
the inference procedure we need to model P (αL|xL). If
the loop L is contaminated by an incorrect epipolar edge
(xL = 1), then we adopt αL ∼ U(0, π), since arbitrary
accumulated rotations RL can be generated in this case. If
the loop is presumed to contain no error (xL = 0), then the
empirically observed angular errors can be approximately
modeled by an exponential distribution (see Fig. 4(b)). We
discovered in our experiments, that the exact choice of pa-
rameters for the fitted distribution (from a reasonable range)
has a minor effect on the result of the inference. In our ex-
periments we choose the mean to be 2 degrees.

In addition to extending our own structure and motion
pipeline with loop consistency checks (see Section 6), we
incorporated a “black-list” feature to the freely available
Bundler software2, which discards epipolar matches found

2http://phototour.cs.washington.edu/bundler/

to be incorrect by the proposed epipolar graph verifica-
tion. Due to the specific incremental structure and motion
approach employed in the Bundler software, the provided
epipolar black-list is not fully utilized avoiding erroneous
results. Nevertheless, solely verifying the epipolar graph
can improve the resulting 3D model drastically as shown
in Fig. 6. The reconstruction of a highly ambiguous fa-
cade is severely distorted without filtering the pairwise im-
age matches (Fig. 6(a)) and correctly modeled otherwise
(Fig. 6(b)). Figure 7 and 8 illustrate the identified “short-
cuts” visible in the epipolar graph due to incorrect matching
of repeating visual structures.

Using a holistic, non-incremental approach for structure
and motion computation as described in the next section di-
rectly benefits from epipolar graph screening. We utilize a
more global approach in order to avoid the problem of failed
loop closure due to accumulated drift in the camera poses
frequently affecting increment reconstruction methods.

6. Application: Structure and Motion
While filtering the epipolar graph solely based on the

consistency of relative rotation is already a powerful tool,
additional inference steps can be applied subsequently. In
particular, merging partial reconstructions obtained in ini-
tial steps of a structure and motion pipeline (e.g. as pro-
posed in [12, 11]) can benefit from verification of loop
consistencies. In the following we briefly summarize our
framework for structure and motion (SaM) computation3.
SaM Computation Overview SIFT features extracted
from the images are fed into a generic vocabulary tree in or-
der to obtain a set of potentially matching images. Geomet-
ric verification based on essential matrix computation [18]
is applied on these image pairs using either the known in-
trinsics or approximate values from the EXIF tags. These
steps required to generate the epipolar graph consume about
70% of the processing time, and the subsequent stages are
computationally cheaper. The epipolar graph is filtered us-

3Corresponding software will be made publicly available at
http://www.inf.ethz.ch/personal/chzach.



ing the method discussed in Section 5, and the remaining
epipolar edges are used to generate image triplets. These
triplets are geometrically verified. In order to be able to
robustly handle undetected incorrect triplets, our approach
is based on generating a set of small submodels (at most
15 views) first. These submodels are generated by random
growth from a starting view and are highly redundant, such
that every image participates in 10 submodels. Similarity
transformations between triplets belonging to the same sub-
model are robustly determined, and the consistency of these
transformations is verified as follows.
Triplet Verification Screening the homographies (Sec-
tion 4) and epipolar relations (Section 5) identifies erro-
neous transformations, i.e. relations between visual enti-
ties. Inconsistent loops in the triplet graph indicate in-
correctly established image triplets rather than erroneous
transformations between triplets. Hence, we modify the in-
terpretation of the latent variables (now xk, where k is a
triplet) to represent the validity of image triplets in contrast
to edges/transformations between triplets. The generative
model Eq. 1 remains the same otherwise. This conversion
also lowers the number of latent nodes by orders of mag-
nitude, since the number of edges in a triplet graph grows
combinatorially with the connectivity in the epipolar graph.

It remains to discuss the utilized deviation d(TL) for
chained similarity transformations TL = Te|L| ◦ · · · ◦ Te1 .
TL reads as 4-by-4 matrix, TL =

(
sLRL tL

0 1

)
, with sL =∏

k sk, RL =
∏1
|L|Rk, and

tL =
∑
k

tk

 |L|∏
j=k

sj

 k+1∏
j=|L|

Rj

 , (4)

where sk, Rk, and tk are the scale, rotation and transla-
tion components of Tek

. As in Section 4 we use essentially
d(TL) = ‖TL − I‖F to quantify the geometric inconsis-
tency. Since the uncertainty (variance) in the relative trans-
lations tk is multiplied by the respective factor in Eq. 4,

we scale tL by
(∑

k

∏|L|
j=k sj

)−1/2

to bring the translation
component to a normalized range. The empirical distribu-
tion of d(TL) is illustrated in Fig. 4(c).

After verification of triplet correctness based on their
relative transformations in the same submodel, the image
triplets are upgraded into a common coordinate frame and
a few (at most 10) iterations of a local bundle adjustment
are performed. Subsequently, similarity transformations be-
tween the submodels can be hypothesized using 3D point
correspondences, which can be filtered by repeating the
loop inference.
Results Upgrading the triplets in a submodel into a com-
mon coordinate frame can still fail due to undetected erro-
neous visual relations. Such cases are discovered if a sub-
stantial fraction (25%) of the triangulated points are out-

Figure 7. The epipolar graph with verified (light gray) and dis-
carded (black) edges for the “Block” dataset (see also Figure 2),
and selected image pairs corresponding to discarded edges.

liers (with respect to the reprojection error) or very few 3D
points are visible in one of the cameras. Such submodels
are discarded and not considered in the final model genera-
tion. Table 1 summarizes the performance figures for sev-
eral datasets with varying complexity. Adding this triplet
verification step raises the number of submodels passing
this criterion, and thus increases the size of the largest con-
nected component in the final result.

Figure 8. Epipolar graph with filtered edges (bottom left) and the
reconstructed model (bottom right). The arrows indicate the ap-
proximate position of the erroneously matched images (top row, at
the wings and at the central structure, respectively).

7. Discussion and Future Work
We demonstrate that enforcing the consistency of geo-

metric relations estimated from visual input identifies con-
flicting relations and assists in generating improved final re-
sults in several applications. An interesting extension of



Dataset #views #submodels #components largest component inference time (B&B)
Abbey 126 81/84 1 126 views / 29229 pts 0.6s

84/84 1 126 views / 29250 pts 0.6s + 10s
Block 479 176/229 3 238 views / 23126 pts 17s

215/229 1 476 views / 56230 pts 17s + 27s
Block2 3482 786/1152 26 395 views / 42686 pts 256s

982/1152 29 550 views / 56233 pts 256s + 80s
Table 1. The effect of additional screening of similarity transformations between submodels. The first row for each dataset displays the
characteristics only with epipolar graph filtering, and the second one shows the figures with all verification steps enabled. The inference
times (last column) are provided separately for epipolar screening (first number) and triplet verification (second value).

this work is the propagation of faulty relations detected by
some other method (e.g. using the one proposed in [23] or
even by user interaction) through consistent loops. This al-
lows to infer additional erroneous visual relations by iden-
tifying only a very small set of incorrect transformations.
The method proposed in this work specifically exploits the
redundancy in the matching graph, but future research will
address other sources of redundant information, e.g. visibil-
ity constraints that need to be satisfied when merging sepa-
rately reconstructed 3D models.
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