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1 Notations

We recall the following definitions from the main paper. The original tight relaxation of multi-label problems
[Chambolle et al., 2008] reads as

ECCP-I(u, q) =
∑
s,i

θi
s(u

i+1
s − ui

s) +
∑
s,i

(qi
s)

T∇ui
s (1)

s.t. ui
s ≤ ui+1

s , u0
s = 0, uL+1

s = 1, ui
s ≥ 0∥∥ j−1∑

k=i

qk
s

∥∥
2
≤ θij ∀s, i, j,

The corresponding version in terms of node-wise pseudo-marginals is given by

ECCP-II(x, p) =
∑
s,i

θi
sx

i
s +

∑
s,i

(pi
s)

T∇xi
s (2)

s.t.
∥∥pi

s − pj
s

∥∥
2
≤ θij , xs ∈ ∆ ∀s, i, j,

In the main paper we state the following primal energy of Eq. 2

Etight(x, y) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j

θij‖yij
s ‖2 (3)

s.t. ∇xi
s =

∑
j:j<i

yji
s −

∑
j:j>i

yij
s xs ∈ ∆ ∀s, i,

as well as this one,

E(x) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j

θij
∥∥xij

s + xji
s

∥∥
2

(4)

s.t. ∇xi
s =

∑
j:j 6=i

xji
s −

∑
j:j 6=i

xij
s , xs ∈ ∆, xij

s ≥ 0 ∀s, i.

2 Switching Between Superlevel and Indicator Representations

In this section we show the equivalence between Eq. 1 and Eq. 2. In the main paper we subsequently focus
on Eq. 2.
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We use ui
s to denote the superlevel representation and xi

s for the indicator representation of a label
assignment, i.e. xs = ∂ius, where we use backward differences for ∂i and u0

s = 0 as boundary condition.
With these definitions we obtain x1

s = u1
s and xi

s = ui
s − ui−1

s , which is desired. We have (in 2 dimensions,
but this generalizes to any dimension)

∇x∂ius =

(
(ui

s+(1,0) − ui−1
s+(1,0))− (ui

s − ui−1
s )

(ui
s+(0,1) − ui−1

s+(0,1))− (ui
s − ui−1

s )

)
=

(
(ui

s+(1,0) − ui
s)− (ui−1

s+(1,0) − ui−1
s )

(ui
s+(0,1) − ui

s)− (ui−1
s+(0,1) − ui−1

s )

)
= ∂i∇xus.

Since we have xs = ∂ius,

max
ps∈C
〈ps,∇xxs〉 = max

ps∈C
〈ps,∇x∂ius〉 = max

ps∈C
〈ps, ∂i∇xus〉 = max

ps∈C
〈∂T

i ps,∇xus〉,

where C is the constraint set C = {p : ‖pi − pj‖ ≤ θij}. Explicitly we have

∂iu
k
s =

{
u1

s if k = 1
uk

s − uk−1
s if 1 < k ≤ L.

For a 6-label problem the matrix corresponding to ∂i is
1
−1 1

−1 1
−1 1

−1 1
−1 1

 .

For the adjoint operator ∂T
i we have

∂T
i pk

s =

{
pk

s − pk+1
s if 1 ≤ k < L

pL
s if k = L.

The solution of ∂T
i ps = qs is of the form pk

s =
∑L

l=k ql
s (like an antiderivative), and the constraints expressed

in terms of qs are

θij ≥ ‖pi
s − pj

s‖ =
∥∥ L∑

l=i

ql
s −

L∑
l=j

ql
s

∥∥ =

{∥∥∑j−1
l=i ql

s

∥∥ if i < j∥∥∑i−1
l=j ql

s

∥∥ if i > j,
(5)

which are exactly the constraints used in the super-level representation Eq. 1.

3 The Primal of the Isotropic Tight Convex Relaxation

Since ECCP-II can be written as

ECCP-II(x) =
∑
s,i

θi
sx

i
s +

∑
s

max
pi

s

∑
i

(pi
s)

T∇xi
s (6)

s.t.
∥∥pi

s − pj
s

∥∥
2
≤ θij , xs ∈ ∆,

we only need to consider the point-wise problem

max
pi

s

∑
i

(pi
s)

T∇xi
s subject to

∥∥pi
s − pj

s

∥∥
2
≤ θij . (7)
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We will omit the subscript s and derive the primal of

max
pi

∑
i

(pi)T∇xi subject to
∥∥pi − pj

∥∥
2
≤ θij ∀i < j.

Fenchel duality (−f∗(−AT p)− g∗(p) f(y) + g(−Ay)) leads to the primal∑
i,j:i<j

θij
∥∥yij

∥∥
2

subject to Ay = ∇x, (8)

since the conjugate of f ≡ ı{‖·‖2 ≤ θ} is θ‖·‖2, and the conjugate of g ≡ aT · is ı{· = a}. The matrix −A
(which has rows corresponding to pi and columns corresponding to yij) has a -1 entry at position (pi, yij)
(for i < j) and a +1 element at (pj , yij) (i > j). Thus, the i-th row of −Ay reads as∑

j:j<i

yji −
∑
j:j>i

yij , (9)

and the purely primal form of Eq. 7 is given by

min
yij

s

∑
i,j:i<j

θij
∥∥yij

s

∥∥
2

(10)

s.t. ∇xi
s =

∑
j:j<i

yji
s −

∑
j:j>i

yij
s .

By replacing the inner maximization problem in Eq. 6 with this expression we obtain Etight.
We can express the primal energy also in terms of non-negative pseudo-marginals. We start with the

decoupled binary potentials from Eq. 4,

Es(x) =
∑

i,j:i<j

θij
∥∥xij

s + xji
s

∥∥
2

+
∑
i,j

ı{xij
s ≥ 0} (11)

s.t. ∇xi
s =

∑
j:j 6=i

xji
s −

∑
j:j 6=i

xij
s ,

and dualize Es. First, we note that every optimal solution satisfies complementarity constraints xij
s ⊥ xji

s ,
i.e. (xij

s )k(xji
s )k = 0 (otherwise one could strictly decrease the norm term by setting xij

s ← xij
s −min{xij

s , xij
s }

and xji
s ← xji

s −min{xij
s , xij

s } without affecting the marginalization constraint). Hence, we have

∥∥xij
s + xji

s

∥∥
2

=
√

((xij
s )1 + (xji

s )1)2 + ((xij
s )2 + (xji

s )2)2

=
√

((xij
s )1)2 + ((xji

s )1)2 + (xij
s )1(xji

s )1︸ ︷︷ ︸
=0

+((xij
s )2)2 + ((xji

s )2)2 + (xij
s )2(xji

s )2︸ ︷︷ ︸
=0

=
∥∥((xij

s )1, (xij
s )2, (xji

s )1, (xji
s )2)T

∥∥ =
∥∥∥∥xij

s

xji
s

∥∥∥∥
2

.

Consequently, Es above can be restated as

Es(x) =
∑

i,j:i<j

θij

∥∥∥∥xij
s

xji
s

∥∥∥∥
2

+
∑
i,j

ı{xij
s ≥ 0} (12)

s.t. ∇xi
s =

∑
j:j 6=i

xji
s −

∑
j:j 6=i

xij
s ,
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which seems to be more convenient to work with. Using the fact that the conjugate of f(x) = θ‖x‖2+ı{x ≥ 0}
is f∗(p) = ı{[p]+ ≤ θ} (see Section 4), we obtain the following dual of Es,

E∗
s (p) =

∑
i

(pi
s)

T∇xi
s s.t.

∥∥∥∥[pi
s − pj

s]+
[pj

s − pi
s]+

∥∥∥∥
2

≤ θij (13)

=
∑

i

(pi
s)

T∇xi
s s.t.

∥∥pi
s − pj

s

∥∥
2
≤ θij , (14)

which is exactly Eq. 7. Thus, we have shown the equivalence of the primal programs Eq. 3 and Eq. 4.

4 Dual Energies

If we consider the primal energy

Etight(x, y) =
∑
s,i

θi
sx

i
s +

∑
s

∑
i,j:i<j

θij‖yij
s ‖2 subject to

∇xi
s =

∑
j:j<i

yji
s −

∑
j:j>i

yij
s , xs ∈ ∆,

(15)

the dual energy is given by

E∗
tight-I(p) =

∑
s

min
i
{div pi

s + θi
s} −

∑
s

∑
i,j:i<j

ı
{
‖pi

s − pj
s‖2 ≤ θij

}
.

Note that we have redundant constraints on the primal variables yij
s ∈ [−1, 1] × [−1, 1] (since xi

s ∈ [0, 1]).
One could compute the dual of θij‖yij

s ‖2 + ı{‖yij
s ‖∞ ≤ 1}, but because of its radial symmetry the constraint

‖yij
s ‖2 ≤

√
2 seems to be more appropriate. Via(

x 7→ θ|x|+ ı[0,B](x)
)∗ (y) = max

x∈[0,B]
{xy − θ|x|} = B max{0, |y| − θ}

and the radial symmetry of terms in yij
s we obtain for the full dual energy in this setting

E∗
tight-II(p) =

∑
s

min
i
{div pi

s + θi
s}+

∑
s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2
}
.

The first term in E∗
tight-II,

∑
s mini{div pi

s + θi
s}, can also be replaced by penalty terms: if we move the

normalization constraint
∑

i xi
s = 1 to the linear constraints and introduce a respective Lagrange multiplier

qs, we obtain via (
x 7→ θx + ı[0,1](x)

)∗ (y) = [y − θ]+ and

(ı{x:Ax=b})∗(y) = ıim(AT )(y) + bT λ for y = AT λ

the dual energy in pi
s and qs:

E∗
tight-III(p, q) =

∑
s

qs +
∑
s,i

[
div pi

s + θi
s − qs

]
− +

∑
s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2
}
, (16)
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5 Proof of Observation 1

This section shows that for graph-based MRFs with truncated smoothness costs a compact representation
is equivalent to the full one. We have the full model,

Efull =
∑
s,i

θi
sx

i
s +

∑
(s,t)∈E

∑
i,j

θijxij
st

=
∑
s,i

θi
sx

i
s +

∑
(s,t)∈E

 ∑
i,j:|i−j|<T

θijxij
st + θ∗

∑
i,j:|i−j|≥T

xij
st

 (17)

subject to the marginalization constraints
∑

j xij
st = xi

s and
∑

i xij
st = xi

t. We assume θij = θ∗ for |i− j| ≥ T

(where T is the truncation point) and θij < θ∗. The reduced program reads as

Ered =
∑
s,i

θi
sx

i
s +

∑
(s,t)∈E

 ∑
i,j:|i−j|<T

θijxij
st +

θ∗

2

∑
i

(xi∗
st + x∗ist)

 (18)

with the slightly different marginalization constraints

xi
s =

∑
i,j:|i−j|<T

xij
st + xi∗

st and xj
t =

∑
i,j:|i−j|<T

xij
st + x∗jst .

If we have a minimizer of Efull, we can easily construct a solution of Ered with the same overall objective by
setting

xi∗
st =

∑
j:|i−j|≥T

xij
st and x∗jst =

∑
i:|i−j|≥T

xij
st,

since the pairwise truncated smoothness costs are the same

θ∗

2

∑
i

xi∗
st +

θ∗

2

∑
j

x∗jst =
θ∗

2

∑
i

∑
j:|i−j|≥T

xij
st +

θ∗

2

∑
j

∑
i:|i−j|≥T

xij
st = θ∗

∑
i,j:|i−j|≥T

xij
st. (19)

If we have a minimizer x of Ered, we have to construct a solution x̂ of Efull with the same objective. We set

x̂i
s = xi

s and x̂ij
st = xij

st ∀i, j : |i− j| < T.

Determining xij
st for i, j : |i − j| ≥ T is more difficult. In the following we consider a particular edge

st and omit the subscript. We use the north-west corner rule-like to assign x̂ij for i, j : |i − j| ≥ T :

x̄i∗ ← xi∗

x̄∗j ← x∗j

while some x̂ij is not assigned do
Choose i and j (with |i− j| ≥ T ) such that x̂ij is not assigned
x̂ij ← min{x̄i∗, x̄∗j} {x̂ij ≥ 0}
x̄i∗ ← x̄i∗ − x̂ij {x̄i∗ ≥ 0}
x̄∗j ← x̄∗j − x̂ij {x̄∗j ≥ 0}

{xi
s =

∑
j:(i,j) assigned x̂ij + x̄i∗}

{xj
t =

∑
i:(i,j) assigned x̂ij + x̄∗j}

end while
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The updates ensure that x̂ij , x̄i∗ and x̄∗j stay non-negative and that the following modified marginalization
constraints are still satisfied after each iteration:

x̂i
s =

∑
i,j:|i−j|<T

x̂ij +
∑

j:|i−j|≥T

x̂ij + x̄i∗ =
∑

j

x̂ij + x̄i∗

x̂j
t =

∑
i:|i−j|<T

x̂ij +
∑

i:|i−j|≥T

x̂ij + x̄∗j =
∑

i

x̂ij + x̄∗j .

We show that all x̄i∗ and x̄∗j are 0 after termination of this algorithm. First, it cannot be that x̄i∗ > 0 and
x̄∗j > 0 for some i and j: if this is the case for i, j : |i−j| < T , we can increase x̂ij and simultaneously strictly
lowering the overall smoothness cost, thus contradicting that our initial solution was optimal. If x̄i∗ > 0 and
x̄∗j > 0 for some i, j : |i − j| ≥ T , this contradicts the instructions (x̂ij ← min{x̄i∗, x̄∗j}, x̄i∗ ← x̄i∗ − x̂ij ,
x̄∗j ← x̄∗j − x̂ij) in the algorithm above, which sets one of x̄i∗ or x̄∗j to zero. W.l.o.g. some of the x̄i∗ are
strictly greater than 0, but all x̄∗j are 0. We have

1 =
∑

i

x̂i
s =

∑
i

∑
j

x̂ij + x̄i∗ =
∑

j

x̂j
t + x̄i∗ = 1 + x̄i∗,

which is a contradiction. Hence all x̄i∗ and x̄∗j have to be 0 at the end of the algorithm. We further have∑
j:|i−j|≥T

x̂ij = xi∗ and
∑

i:|i−j|≥T

x̂ij = x∗j

and the pairwise smoothness costs are the same for x and x̂ (similar to Eq. 19) and both overall objectives
for Efull(x̂) and Ered(x) coincide. Thus, we have proved Observation 1.

6 Proof of Observation 2

We show that if we are given an optimal primal/dual solution pair generated by the refinement procedure
satisfying the assumption stated in the observation, a primal-dual pair of optimality certificates can be
constructed for the tight model, Etight.

Note that the only difference between the dual of the tight model,

E∗
tight-I(p) =

∑
s

min
i
{div pi

s + θi
s} s.t. ‖pi

s − pj
s‖2 ≤ θij , (20)

and the weaker model for truncated costs,

E∗
fast(p) =

∑
s

min
i
{div pi

s + θi
s} (21)

s.t. ‖pi
s − pj

s‖2 ≤ θij ∀s,∀i, j : |i− j| < T

‖pi
s‖ ≤ θ∗/2 ∀s, i,

is the set of constraints. We assume that θij = θ∗ of |i − j| > T in Eq. 20 and that θ∗ ≥ θij , since we
consider truncated smoothness cost. Consequently we have that the constraints in Eq. 21 are a superset of
those in Eq. 20, due to ‖pi

s‖ ≤ θ∗/2 implies ‖pi
s − pj

s‖ ≤ θ∗. The essential fact to prove observation 2 is,
that if only two phase transitions are active, i.e. yi1∗

s 6= 0 and yi2∗
s 6= 0 for some i1 and i2, it must hold

that yi1∗
s = −yi2∗

s (the boundary normal of the entering phase must be opposite to the one of the leaving
phase). This can be easily seen and is intuitive for the Potts smoothness cost. Extending that fact to general
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truncated smoothness priors can be seen as follows:

0 = ∇
∑

i

xi
s =

∑
i

∇xi
s =

∑
i

 ∑
j:i−T<j<i

yji
s −

∑
j:i<j<i+T

yij
s − yi∗

s


=

∑
i,j:i−T<j<i

yji
s −

∑
i,j:i<j<i+T

yij
s − yi1∗

s − yi2∗
s

=
∑

i,j:i<j<i+T

yij
s −

∑
i,j:i<j<i+T

yij
s − yi1∗

s − yi2∗
s

= −yi1∗
s − y

i∗2
s .

Note that from the normalization constraint,
∑

i xi
s = 1, it follows that ∇

∑
i xi

s = 0. Further, by assumption
we have yi∗

s = 0 for i 6= i1, i2. First order optimality conditions yi∗
s ∈ ∂ı{‖−pi

s‖2 ≤ θ∗/2} (i.e. yi1∗
s ∝ −pi1

s

and yi2∗
s ∝ −pi2

s ) imply that pi1
s = −pi2

s . Together with ‖pi1
s ‖ = ‖pi2

s ‖ = θ∗/2 we obtain ‖pi1
s − pi2

s ‖ = θ∗.
In the following we assume i1 < i2 w.l.o.g. Given now the primal solution obtained from the refinement

approach, we construct a feasible primal solution for the tight energy, i.e. we have to determine yij
s for

i, j : |i − j| ≥ T . We set in this case yi1i2
s = yi1∗

s , and yij
s = 0 for i, j : |i − j| ≥ T otherwise. It can be

easily checked that this choice for yij
s satisfies the marginalization constraints, i.e. one half of the optimality

conditions. The dual variables p are a certificate for optimality, since yi1i2
s 6= 0 implies ‖pi1

s − pi2
s ‖ = θ∗ (i.e.

the inequality constraint is tight), and for i, j : |i − j| ≥ T we have yij
s = 0 and ‖pi

s − pj
s‖ ≤ θ∗. Overall,

the other half of optimality conditions, yij
s 6= 0 =⇒ ‖pi

s − pj
s‖ = θij , and we have shown optimality of the

constructed solution with respect to the tight energy Etight.

7 Notes on smoothing-based optimization

7.1 A smooth version of hθ(z) =
√

2
[
‖z‖2 − θ]+

By construction we know that the convex conjugate of hθ is given by

(hθ)∗(x) = θ‖x‖2 + ı{‖x‖ ≤
√

2}.

Thus, a smooth version of hθ is the convex conjugate of

(hθ
ε)
∗(x) = θ‖x‖2 + ı{‖x‖2 ≤

√
2}+

ε

2
‖x‖22.

Consequently,

hθ
ε(z) = max

x:‖x‖2≤
√

2
xT z − θ‖x‖2 −

ε

2
‖x‖22.

If we fix ‖x‖, then an x colinear with z is maximizing the expression, hence we can reduce the problem by
restricting x to be x = cz for some c ≥ 0. Hence, the above maximization problem is equivalent to

hθ
ε(z) = max

c≥0:c‖z‖2≤
√

2
c‖z‖22 − cθ‖z‖2 −

ε

2
c2‖z‖22.

We have hθ
ε(0) = 0, and in the following we assume z 6= 0, i.e. ‖z‖2 > 0. We have to analyze three cases:

• c ∈ (0,
√

2/‖z‖2): First order conditions on c yield

‖z‖22 − θ‖z‖2 − εc‖z‖22
!= 0

7



i.e.

c =
‖z‖2 − θ

ε‖z‖2
and hθ

ε(z) =
1
2ε

(
‖z‖2 − θ

)2
in this case. Note that c > 0 if ‖z‖2 > θ.

• c = 0: This case is effective if ‖z‖2 ≤ θ, and in this case we have

hθ
ε(z) = 0.

• c =
√

2/‖z‖2: In this case we obtain

hθ
ε(z) =

√
2
(
‖z‖2 − θ

)
− ε.

This case is in effect if c = ‖z‖2−θ
ε‖z‖2 ≥

√
2

‖z‖2 , i.e. ‖z‖ ≥ θ +
√

2ε.

Overall we obtain the smooth version of hθ as stated in the main text.

7.2 Bound on the operator norm of A

To get the Lipschitz constant we again look at the A matrix and get an upper bound for ‖A‖2 via ‖A‖22 ≤
‖A‖1‖A‖∞. Note that ‖A‖1 is the maximum absolute column sum, and ‖A‖∞ is the maximum absolute row
sum. The columns of A are indexed by the unknowns ((pi

s)1, (pi
s)2 and qs), and the rows of A correspond to

the terms in E∗
tight-III (or its smooth version),

E∗
tight-III(p, q) =

∑
s

qs +
∑
s,i

[
div pi

s + θi
s − qs

]
− +

∑
s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2
}
.

Since all occurrences of pi
s and qs have a +1 or −1 coefficient, it is sufficient to just count the occurrences of

each variable. Since at most 5 variables appear in one term (rows corresponding to [div pi
s + θi

s − qs

]
−), we

have ‖A‖∞ = 5. qs appears in L + 1 terms (in qs and in
∑

i

[
div pi

s + θi
s − qs

]
−), and e.g. (pi

s)1 occurs also
at most in L + 1 terms (in the divergence terms with respect to s and s − (1, 0) and in L − 1 expressions∑

i,j:i<j

√
2 min

{
0, θij − ‖pi

s − pj
s‖2
}
), hence ‖A‖1 = L + 1. Overall we have the bound ‖A‖22 ≤ 5(L + 1).

7.3 Extracting the primal solution from the smooth dual

We recall the smooth dual energy and indicate the correspondence between the terms in the dual energy and
the respective primal variable,

−E∗
tight-III,ε(p, q) =

∑
s

−qs +
∑
s,i

[
qs − div pi

s − θi
s

]
+,ε︸ ︷︷ ︸

,xi
s

+
∑

s

∑
i,j:i<j

hθij

ε (pi
s − pj

s)︸ ︷︷ ︸
,yij

s

. (22)

First order optimality conditions require that the corresponding primal unknowns are given by

xi
s =

d

dz

[
z − θi

s

]
+,ε
|z=qs−div pi

s

and

yij
s = ∇zh

θij

ε (z)|z=pi
s−pj

s
.

This allows to obtain primal estimates for iterative dual optimization methods, but the marginalization
constraints between xs and ys will be only fulfilled after convergence.
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Figure 1: Energy evolution and distance to the final solution for the Tsukuba stereo pair.

8 Numerical Convergence and Visual Comparison Between Etight

and Efast

We use the standard Tsukuba stereo pair for illustration. The data term (unary potential) is

λ
∑

c∈{R,G,B}

|Ic
left(x)− Ic

right(x + d)|

In Fig. 1 the evolution of the energies and of the distance to a converged solution is depicted (with λ = 20 and
the Potts smoothness prior). The graphs are shown for direct optimization of the full model Eq. 3 and for
the iterative refinement method (Section 4.1 in the main submission). Although there is very little difference
in the visual results after a few 100 iterations, numerical convergence is slow (as usual for first-order methods
applied on non-strict convex problems). Fig. 2 illustrates the visual difference between the tight and the
efficient model for truncated linear smoothness costs. The values of λ are varying for the different truncation
values in order to have roughly the same visual appearance. In real situations the difference between the
tight and the efficient relaxations are smaller than for the triple junction inpainting example (due to the
presence of the unary data term).
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Figure 2: Visual comparison between the efficient and the tight relaxation. Top row: Efast, bottom row:
Etight. 1st column: Potts model, λ = 5. 2nd column: truncated linear with truncation at 2, λ = 10. 3rd
column: truncated linear with truncation at 4, λ = 15.
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