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Abstract—In this work we present a unified view on Markov random fields and recently proposed continuous tight convex relaxations
for multi-label assignment in the image plane. These relaxations are far less biased towards the grid geometry than Markov random
fields (MRFs) on grids. It turns out that the continuous methods are non-linear extensions of the well-established local polytope MRF
relaxation. In view of this result a better understanding of these tight convex relaxations in the discrete setting is obtained. Further,
a wider range of optimization methods is now applicable to find a minimizer of the tight formulation. We propose two methods to
improve the efficiency of minimization. One uses a weaker, but more efficient continuously inspired approach as initialization and
gradually refines the energy where it is necessary. The other one reformulates the dual energy enabling smooth approximations to be
used for efficient optimization. We demonstrate the utility of our proposed minimization schemes in numerical experiments. Finally, we
generalize the underlying energy formulation from isotropic metric smoothness costs to arbitrary non-metric and orientation dependent
smoothness terms.
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1 INTRODUCTION

Assigning labels to image pixels or regions e.g. in order
to obtain a semantic segmentation, is one of the major
tasks in computer vision. The most prominent approach
to solve this problem is to formulate label assignment as
Markov random field (MRF) on an underlying pixel grid
incorporating local label preference and smoothness in a
local neighborhood. Since in general label assignment is
NP-hard, finding the true solution is intractable and an
approximate one is usually determined. One promising
approach to solve MRF instances is to relax the intrinsi-
cally difficult constraints to convex outer bounds. There
are currently two somewhat distinct lines of research
utilizing such convex relaxations: the direction, that is
mostly used in the machine learning community, is
based on a graph representation of image grids and uses
variations of dual block-coordinate methods [1], [2], [3],
[4] (usually referred as message passing algorithms in
the literature). The other set of methods is derived from
the analysis of partitioning an image in the continuous
setting (continuous domain and label space), i.e. varia-
tions of the Mumford-Shah segmentation model [5], [6].
Using the principle of biconjugation to obtain tight local
convex envelopes, [7], [8] obtains a convex relaxation of
multi-label problems with isotropic and metric transition
costs in the continuous setting. Subsequent discretization
of this model to finite grids yields strong results in prac-
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tice, but it was not fully understood what is optimized
in the discrete setting.

In this work we close the gap between convex formu-
lations for MRFs and continuous approaches by identi-
fying the latter methods as non-linear (but still convex)
extensions of the standard LP relaxation of Markov
random fields.

In summary the strong connection between LP re-
laxations for MRF inference and continuously inspired
formulations has the following implications:
• It is possible to stay close to the well understood

framework of LP relaxations for MRFs [3], [9], while
at the same time introducing smoothness terms that
are less affected by the underlying discrete pixel
grid.

• In [7] and related work [10], [11] the objective
to optimize is always a saddlepoint energy taking
both primal and dual variables as arguments. Since
the underlying optimization methods are iterative
in their nature, a natural stopping criterion is the
duality gap requiring the primal (Section 3.1) and
the dual energy (Section 3.3).

• The GPU-accelerated method for real-time label
assignment proposed in [12] is extended to trun-
cated smoothness costs, and the connection to other
convex relaxations is explored (Section 3.2), and
also exploited to obtain a new optimization method
(Section 4.1).

• The continuously derived labeling model [7] re-
quires the smoothness cost to be a metric [13] (see
also [10] for a discussion of the continuous setting).
This is an unnecessary restriction as pointed out in
Section 5.1.
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• Finally, a wider range of optimization methods be-
comes applicable for the continuously inspired for-
mulations, since convex primal and dual programs
can now be clearly stated. The ability to obtain
different but equivalent dual programs by utilizing
redundant primal constraints enables new options
for minimization (Section 4.2).

Thus, the results obtained in this work are of theoretical
and practical interest. In this exposition we restrict our-
selves to the 2-dimensional setting with image domains
being rectangular grids. It is straightforward to extend
all energy models and results to higher dimensions.
This manuscript is a substantially extended version
of [14]. The main theoretical addition to [14] is Sec-
tion 5 addressing multi-label problems with non-metric
smoothness costs (Section 5.1) and general Finsler-type
regularizers (Section 5.2). These smoothness regularizers
appear in several applications, e.g. preference of piece-
wise smooth solutions naturally leads to a non-metric
truncated quadratic penalizer. Favoring discontinuities
in the solution which are aligned with e.g. strong edges
in the image leads to smoothness terms discussed in
Section 5.2 and visually demonstrated in Section 5.3. We
further updated Section 4.2 to include an upper bound
on the difference between the non-smooth original and
smoothed energy suitable for accelerated optimization.

2 BACKGROUND

In the following section we summarize the necessary
background on discrete and continuous relaxations of
multi-label problems. We refer to [15], [16] for a concise
introduction to convex analysis, and to [3], [9] for an ex-
tensive review of Markov random fields and maximum
a posteriori (MAP) assignment.

2.1 Notations

In this section we introduce some notation used in the
following. For a convex set C we will use ıC to denote
the corresponding indicator function. i.e. ıC(x) = 0 for
x ∈ C and ∞ otherwise. We use short-hand notations
[x]+ and [x]− for max{0, x} and min{0, x}, respectively.
The unit (probability) simplex (of appropriate dimen-
sion) is denoted by ∆

def
= {x :

∑
i x

i = 1, xi ≥ 0}. For
an extended real-valued function f : Rn → R ∪ {∞} we
denote its convex conjugate by f∗(y) = maxx x

T y−f(x).
Finally, for a node (pixel) s on a 2-dimensional grid, we
denote its left, right, up and down neighbor with le(s),
ri(s), up(s), and dn(s), respectively.

2.2 Label Assignment, the Marginal Polytope and its
LP Relaxation

In the following we will consider only labeling problems
with unary and pairwise interactions between nodes. Let
V be a set of V = |V| nodes and E be a set of edges
connecting nodes from V . The goal of inference is to

assign labels Λ : V → {1, . . . , L} for all nodes s ∈ V
minimizing the energy

Elabeling(Λ) =
∑
s∈V

θΛ(s)
s +

∑
(s,t)∈E

θ
Λ(s),Λ(t)
st , (1)

where θ·s are the unary potentials and θ·st· are the pair-
wise ones. Usually the label assignment Λ is represented
via indicator vectors xs ∈ {0, 1}L for each s ∈ V , and
xst ∈ {0, 1}L

2

for each (s, t) ∈ E , leading to

EMRF(x) =
∑
s,i

θisx
i
s +

∑
s,t,i,j

θijstx
ij
st (2)

subject to normalization constraints
∑
i∈{1,...,L} x

i
s = 1

for each s ∈ V (one label needs to be assigned) and
marginalization constraints

∑
j x

ij
st = xis and

∑
i x

ij
st = xjt .

In general, enforcing xis ∈ {0, 1} is NP-hard, hence the
corresponding LP-relaxation is considered,

ELP-MRF(x) =
∑
s,i

θisx
i
s +

∑
s,t

∑
i,j

θijstx
ij
st (3)

s.t. xis =
∑
j

xijst, xit =
∑
j

xjist

xs ∈ ∆, xijst ≥ 0 ∀s, t, i, j,

The last two constraints will repeatedly throughout the
manuscript, thus we introduce

C def
=
{
x : xs ∈ ∆, xijst ≥ 0 ∀(s, t) ∈ E , ∀i, j

}
. (4)

Since we focus on discrete image domains that are
regular lattices, the set E consists of horizontal and
vertical edges connecting neighboring pixels. In order
to have a more intuitive correspondence between MRFs
on discrete grids and continuously inspired formulations
on the image plane as explained in Section 3.1, we
introduce xijs

def
= (xijst, x

ij
sr)

T , where (s, t) is a horizontal
edge originating at pixel s, and (s, r) is the respective
vertical edge. Analogously, we also group θijst and θijsr to
form θijs . Thus, the specialization of ELP-MRF for regular
pixel grids can be stated as

EGrid-LP-MRF(x) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j

(θijs )Txijs (5)

s.t. xis =
∑
j

xijs,1 xis =
∑
j

xjile(s),1

xis =
∑
j

xijs,2 xis =
∑
j

xjiup(s),2 x ∈ C

There are several corresponding dual programs of
ELP-MRF depending on the utilized (redundant) con-
straints. If we explicitly add the box constraints xijst ∈
[0, 1] the corresponding dual is

E∗LP-MRF(p) =
∑
s

min
i

{
θis +

∑
t∈Nt(s)

pist→s +
∑

t∈Ns(s)

pits→s
}

+
∑
s,t

∑
i,j

min
{

0, θijst − pist→s − p
j
st→t

}
,
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where we defined Nt(s) := {t : (s, t) ∈ E} and Ns(t) :=
{s : (s, t) ∈ E}. The particular choice of (redundant)
box constraints xijst ∈ [0, 1] in the primal program leads
to an exact penalizer for the usually obtained capacity
constraints. If only non-negativity constraints on xijst are
enforced, one obtains more familiar dual programs incor-
porating capacity constraints (e.g. [3]). Different choices
of primal constraints lead to different duals, we refer to
Section 3.3 for further details.

Since ELP-MRF is a convex relaxation dropping integral-
ity constraints, the solution of the relaxed problem may
be fractional and therefore reveal little information, how
labels should be assigned. Whether the relaxed solution
is integral or not depends heavily on the shape of the
pairwise potentials θijs . For some classes of pairwise costs
it is known that integral minimizers of ELP-MRF can be
expected [17], [18]. In other cases, the relaxations can be
tightened by enriching the linear program [19], [20], [21].

2.3 Continuously Inspired Convex Formulations for
Multi-Label Problems

In this section we briefly review the convex relaxation
approach for multi-label problems proposed in [7]. In
contrast to the graph-based label assignment problem in
Eq. 3, Chambolle et al. consider labeling tasks directly
in the (2D) image plane. Their proposed relaxation is
inspired by the (continuous) analysis of Mumford-Shah
like models [6], and is formulated as a primal-dual
saddle-point energy

Esuperlevel(u,q) =
∑
s,i

θis(u
i+1
s − uis) +

∑
s,i

(qis)
T∇uis

s.t. uis ≤ ui+1
s , u0

s = 0, uL+1
s = 1, uis ≥ 0∥∥ j−1∑

k=i

qks
∥∥

2
≤ θij ∀s, i, j, (6)

which is minimized with respect to u and maximized
with respect to q. Here u is a super-level function ideally
transitioning from 0 to 1 for the assigned label, i.e. if label
i should be assigned at node (pixel) s, we have ui+1

s = 1
and uis = 0. Consequently, u ∈ [0, 1]V L in the discrete
setting of a pixel grid. q ∈ R2V L are auxiliary variables.
The stencil of ∇ depends on the utilized discretization,
but usually forward differences are employed for ∇ (e.g.
in [7], [11]). θij are the transition costs between label i
and j and can assumed to be symmetric w.l.o.g., θij = θji

and θii = 0. At this point we have a few remarks:

Remark 1. The saddle-point formulation in combination
with the quadratic number of “capacity” constraints
‖
∑j−1
k=i q

k
s ‖2 ≤ θijst makes it difficult to optimize effi-

ciently. In [7] a nested, two-level iteration scheme is
proposed, where the inner iterations are required to
enforce the capacity constraints. The inner iterations cor-
respond to Dykstra’s projection algorithm [22] requiring
temporarily O(L2) variables per pixel. In [11] Lagrange
multipliers for the dual constraints are introduced in

order to avoid the nested iterations, leading to a “primal-
dual-primal” scheme. In Section 3.1 we will derive the
corresponding purely primal energy enabling a larger
set of convex optimization methods to be applied to this
problem.
Remark 2. The energy Eq. 6 handles triple junctions (i.e.
nodes where at least 3 different phases meet) better than
the (more efficient) approach proposed in [12]. Again,
by working with the primal formulation one can give a
clearer intuition why this is the case (see Section 3.2).
Remark 3. The energy in Eq. 6 can be rewritten in terms
of (soft) indicator functions xs per pixel, leading to the
equivalent formulation (see the supplementary material
or [11]):

Esaddlepoint(x,p) =
∑
s,i

θisx
i
s +

∑
s,i

(pis)
T∇xis (7)

s.t.
∥∥pis − pjs∥∥2

≤ θij , xs ∈ ∆ ∀s, i, j,

x and p are of the same dimension as u and q. By intro-
ducing “node marginals” xis replacing the superlevel val-
ues uis, Esaddlepoint establishes already some connection to
the local polytope relaxation for MRFs, ELP-MRF (Eq. 3),
since the terms corresponding to the unary potentials
(data costs),

∑
s,i θ

i
sx
i
s, are the same in both models.

Hence, Esaddlepoint is the starting point for our further
investigations in the next sections.

3 CONVEX RELAXATIONS FOR MULTI-LABEL
MRFS REVISITED

In this section we derive the connections between the
standard LP relaxation for MRFs, ELP-MRF, and the
saddle-point energy Esaddlepoint, and further analyze the
relation between Esaddlepoint, and a weaker, but more
efficient relaxation. We will make heavy use of Fenchel
duality, minx f(x) + g(Ax) = maxz−f∗(AT z) − g∗(−z),
where f and g are convex and l.s.c. functions, and A is a
linear operator (matrix for finite dimensional problems).
We refer e.g. to [15] for a compact exposition of convex
analysis.

3.1 A Primal View on the Tight Convex Relaxation
It seems that the saddle-point formulation in Eq. 6
and Eq. 7, respectively, were never analyzed from the
purely primal viewpoint. Using Fenchel duality one can
immediately state the primal form of Eq. 7, which has a
more intuitive interpretation (detailed in Section 3.2):

Observation 1. The primal of the saddlepoint energy
Esaddlepoint (Eq. 7) is given by

Etight(x,y) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

θij‖yijs ‖2 (8)

s.t. ∇xis =
∑
j:j<i

yjis −
∑
j:j>i

yijs , xs ∈ ∆ ∀s, i,

where yijs ∈ R2 represents the transition gradient between a
region with label i and the one with label j. yijs is 0 if there is
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no transition between i and j at node (pixel) s. The last set of
constraints are the equivalent of marginalization constraints
linking transition gradients yijs with label gradients ∇xis.

Proof: Since Esaddlepoint can be written as

Esaddlepoint(x) =
∑
s,i

θisx
i
s +

∑
s

max
pis

∑
i

(pis)
T∇xis (9)

s.t.
∥∥pis − pjs∥∥2

≤ θij , xs ∈ ∆,

we only need to consider the point-wise problem

max
pis

∑
i

(pis)
T∇xis subject to

∥∥pis − pjs∥∥2
≤ θij . (10)

We will omit the subscript s and derive the primal of

max
pi

∑
i

(pi)T∇xi s.t.
∥∥pi − pj∥∥

2
≤ θij ∀i < j.

Fenchel duality leads to the primal∑
i,j:i<j

θij
∥∥yij∥∥

2
subject to Ay = ∇x, (11)

since the convex conjugate of f ≡ ı{‖·‖2 ≤ θ} is θ‖·‖2,
and the conjugate of g ≡ aT · is ı{· = a}. The matrix
−A (which has rows corresponding to pi and columns
corresponding to yij) has a -1 entry at position (pi, yij)
(for i < j) and a +1 element at (pj , yij) (i > j). Thus, the
i-th row of −Ay reads as∑

j:j<i

yji −
∑
j:j>i

yij , (12)

and the purely primal form of Eq. 10 is given by

min
yijs

∑
i,j:i<j

θij
∥∥yijs ∥∥2

s.t. ∇xis =
∑
j:j<i

yjis −
∑
j:j>i

yijs .

By replacing the inner maximization problem in Eq. 9
with this expression we obtain Etight.

Because xis ∈ [0, 1] we have that ∇xis ∈ [−1, 1]2.
Since among all solutions yijs satisfying the marginaliza-
tion constraints we search for the ones minimizing the
smoothness cost,

∑
θij‖yij‖, we can restrict yijs to be in

[−1, 1]2 without changing the set of minimizers. We can
interpret the variables yijs such that e.g. (yijs )1 = 1 iff
there is a horizontal transition from label i to label j,
and (yijs )1 = −1 if the reverse is the case (analogously
for the vertical component (yijs )2). Consequently, the
yijs variables correspond to signed pair-wise “pseudo-
marginals”, and proper pseudo-marginals [9] can be
obtained by setting (component-wise)

xijs := [yijs ]+ and xjis := −[yijs ]−

for i < j. xiis is e.g. given by xiis = (xis, x
i
s)
T −

∑
j:j 6=i x

ij
s .

Thus, the primal program equivalent to Eq. 8 (using the
fact that ‖y‖2 = ‖|y|‖2 and |y| = [y]+ − [y]−), but purely
stated in terms of non-negative pseudo-marginals, reads
as

Emarginals(x) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

θij
∥∥xijs + xjis

∥∥
2

(13)

s.t. ∇xis =
∑
j:j 6=i

xjis −
∑
j:j 6=i

xijs ,

and xs ∈ ∆, xijs ≥ 0 for i 6= j. This is very similar
to the standard relaxation of MRFs on regular lattices
(recall EGrid-LP-MRF in Eq. 5, after eliminating xiist in the
marginalization constraints1), the only difference being
the smoothness terms, which is

θij
∥∥xijs + xjis

∥∥
2

instead of θij
(
xijs,1 + xijs,2 + xjis,1 + xjis,2

)
.

Note that the expression on the right is equivalent to
θij‖xijs +xjis ‖1 (the anisotropic L1 norm), since xijs andxjis
are non-negative vectors. Hence the primal model Eq. 13
can be seen as isotropic extension of the standard model
Eq. 5 for regular image grids. Further, we have a com-
plementarity condition for every optimal solution xijs :
(xijs )Txjis = 0, i.e. (xijs )1(xjis )1 = 0 and (xijs )2(xjis )2 = 0. If
the complementarity conditions do not hold, the overall
objective can be lowered by subtracting the component-
wise minimum from xijs and xjis (and therefore satisfying
complementarity) without affecting the marginalization
constraint. Hence, we can also replace θij‖xijs + xjis ‖2 in

the primal objective by θij
∥∥∥∥xijsxjis

∥∥∥∥
2

, since

∥∥xijs + xjis
∥∥

2
=
√

(xijs,1 + xjis,1)2 + (xijs,2 + xjis,2)2

=

√√√√∑
k=1,2

(xijs,k)2 + (xjis,k)2 + 2xijs,kx
ji
s,k︸ ︷︷ ︸

=0

=
∥∥(xijs,1, x

ij
s,2, x

ji
s,1, x

ji
s,2)T

∥∥ =

∥∥∥∥xijxji
∥∥∥∥

2

.

Finally, observe that all primal formulations have a
number of unknowns that is quadratic in the number
of labels L. This is not surprising since the number of
constraints on the dual variables is O(L2) per node.

We conclude this section by discussing similarities and
differences between ELP-MRF (Eq. 3) Etight/Emarginals (Eq. 8
and Eq. 13, respectively):
Remark 4. The smoothness terms in Etight (and Emarginals)
are non-linear, which is in contrast to the pairwise terms
in ELP-MRF. Further, depending on the employed dis-
cretization for ∇, the smoothness terms in Etight depend
on higher order cliques of xs. If ∇ is discretized via one-
sided finite differences, three neighboring nodes, s, ri(s),
dn(s), contribute to the smoothness cost at node/pixel s.
If ∇ is discretized using a staggered grid representation,
a local 2 × 2 pixel grid constitutes the smoothness pe-
nalizer. Nevertheless, this is not equivalent to utilizing
higher-order cliques in ELP-MRF to model the smoothness
costs, since. . .
Remark 5. . . . in the continuously inspired energy Etight
one is interested in fractional values of xis at label
boundaries. This is the reason why continuously in-
spired approaches are claimed to be less affected by the
underlying grid representation (so called “metrication
artifacts”). In discrete MRF models one is interested

1. Note that the non-negativity constraint xii
s is also dropped, which

will be further discussed in Section 5.1
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in an unambiguous label assignment at each node, i.e.
in integral values for xis. On the other hand, replac-
ing the Euclidean norm in Emarginals with the L1-norm
yields ELP-MRF (but with slightly different marginaliza-
tion constraints). Overall, the LP relaxation of the dis-
crete labeling problems and the continuously inspired
one share the same underlying motivation. It is possible
to strengthen the relaxation ELP-MRF to return integral
solutions (e.g. by better outer bounds of the marginal
polytope [23], [19], [20], [21]), but the impact of such
tightening on Emarginals (which has a non-linear objective
function) is not immediately clear. What is clear is,
that precisely relaxing the integrality assumption on the
solutions makes continuously inspired formulations less
prone to grid artifacts.

Remark 6. The difference between the marginalization
constraints of ELP-MRF and Etight and the implications are
discussed in detail in Section 5.1.

Remark 7. The fact, that the objective e.g. in Emarginals
is non-linear also implies, that many efficient optimiza-
tion strategies developed for ELP-MRF are not applicable.
In particular, decomposing the image grid graph in a
(small) set of trees and exactly solving MAP inference
on trees as a subroutine (e.g. [1], [24]) is not possible.
Additionally, message passing methods based on dual
coordinate descent [1], [2], [3], [4], [25] are difficult to
derive for non-linear smoothness terms. Hence, we use
rather generic optimization methods for convex prob-
lems to optimize Etight in Section 4.

3.2 Truncated Smoothness Costs

If the transition costs θij have no structure, then one
has to employ the full representations Eq. 8 or 13. In
this section we consider the important case of trun-
cated smoothness costs, i.e. θij = θ∗ if |i − j| ≥ T
for some T , and θij < θ∗ if |i − j| < T . The two
most important examples in this category are the Potts
smoothness model (T = 1), and truncated linear costs
with θij = min{|i− j|, θ∗}.

It is tempting to combine the transition gradients
corresponding to “large” jumps from label i to label j
with |i − j| ≥ T into one vector yi∗s , where the star ∗
indicates a wild-card symbol, i.e.

yi∗s =
∑

j:j−i≥T

yijs −
∑

j:i−j≥T

yjis .

Thus, we can formulate a primal program using at most
O(TL) unknowns per pixel,

Etruncated(x,y) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j<i+T

θij‖yijs ‖2

+
θ∗

2

∑
s

∑
i

‖yi∗s ‖2

s.t. ∇xis =
∑

j:i−T<j<i
yjis −

∑
j:i<j<i+T

yijs − yi∗s (14)

and xs ∈ ∆. Since a large jump is represented twice via
yi∗ and yj∗, the truncation value appears as θ∗/2 above.
For the truncated linear smoothness cost the number of
required unknowns reduces further to O(L):

Etrunc-linear(x,y) =
∑
s,i

θisx
i
s +

∑
s,i

‖yi,i+1
s ‖2 +

θ∗

2

∑
s,i

‖yi∗s ‖2

s.t. ∇xis = yi−1,i
s − yi,i+1

s − yi∗s . (15)

These models generalize the formulation proposed
in [12] beyond the Potts smoothness cost. For the Potts
model it is demonstrated in [7] that Eq. 14 is a weaker
relaxation than Eq. 7 if three regions with different labels
meet (see also Fig. 1). Before we analyze the difference
between those models, we state an equivalence result:

Observation 2. If we use the 1-norm ‖·‖1 in the smoothness
term instead of the Euclidean one (i.e. we consider the standard
LP relaxation of MRFs using horizontal and vertical edges),
the formulations in Eqs. 8 and 14 are equivalent. Further, we
have equivalence between ELP-MRF (Eq. 3) and the following
reduced linear program:

Ered-LP-MRF =
∑
s,i

θisx
i
s +

∑
(s,t)∈E

∑
i,j:|i−j|<T

θijxijst

+
∑

(s,t)∈E

θ∗

2

∑
i

(xi∗st + x∗ist) (16)

s.t. xis =
∑

j:|i−j|<T

xijst + xi∗st, xjt =
∑

i:|i−j|<T

xijst + x∗jst .

The proof shows the equivalence by setting up a trans-
portation problem and is given in the supplementary
material. More generally, one can collapse the pairwise
pseudo-marginals for standard MRFs on graphs in the
case of truncated pairwise potentials, leading to substan-
tial reductions in memory requirements. We presume
this fact has probably been used in the MRF community,
but we are unaware of previous explicit use of the
described reduced construction.

The situation is different in the Euclidean norm set-
ting, such that equivalence does not hold anymore. In
the following we consider the Potts smoothness cost. If
we use forward differences for the gradient and compare
the smoothness costs assigned by Eq. 14 and Eq. 7 for
the discrete label configurations, we find out that for
triple junctions the formulation in Eq. 14 underestimates
the true cost: if label i is assigned to a pixel s, and
labels j and k are assigned to the forward neighbors
(see Fig. 2), then we have yi∗s = (−1,−1)T , yj∗s = (1, 0)T

and yk∗s = (0, 1)T , and the smoothness contribution of s
according to Eq. 14 is

1

2

(∥∥∥∥−1
−1

∥∥∥∥
2

+

∥∥∥∥1
0

∥∥∥∥
2

+

∥∥∥∥ 0
−1

∥∥∥∥
2

)
= 1 +

√
2

2

(see also Fig. 2(a)). On the other hand, the transition
gradients according to Eq. 7 are yijs = (−1, 0)T and
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yiks = (0,−1)T , and its smoothness contribution is∥∥∥∥−1
0

∥∥∥∥
2

+

∥∥∥∥ 0
−1

∥∥∥∥
2

= 2

(cf. Fig. 2(b)). It seems that Eq. 14 is a weaker model
than Eq. 7 due to the different cost contributions, but
the deeper reason is, that the former formulation can-
not enforce that all adjacent regions have opposing
boundary normals. In the model Eq. 14 (Etruncated) only
interface normals yi∗s with respect to a particular label are
maintained, whereas the tighter formulation Eq. 7 (Etight)
explicitly represents transition gradients yijs for all label
combinations (i, j). Another way to express the differ-
ence between the formulations is, that Etruncated penalizes
the length of segmentation boundaries (thereby being
agnostic to neighboring labels), and Etight accumulates
the length of interfaces between each pair of regions sep-
arately (i.e. label transitions have the knowledge of both
involved labels, see also Fig. 2(c)). The two models are
different (after convexification) when using a Euclidean
length measure, but not when using an anisotropic L1

length measure (recall Obs. 2).
One might ask how graph cuts with larger neighbor-

hoods (geo-cuts [26]) compare with the continuously in-
spired approaches Eq. 8 and Eq. 14 for the Potts smooth-
ness model. Since in this case geo-cuts will approximate
the interface boundary similar to Eq. 14, similar re-
sults are expected (which is experimentally confirmed in
Fig. 1(f)). In Fig. 1(d) and (e) we illustrate the (beneficial)
impact of using a staggered grid discretization (instead
of forward differences) for the gradient ∇.

3.3 The Dual View
A standard approach for efficient minimization of MRF
energies is to optimize the dual formulation instead of
the primal one. Recalling Section 2.2 we observe that
the dual energies have a number of unknowns that
scales linearly with the number of labels (and nodes),
but a quadratic number of terms (recall E∗LP-MRF). Con-
sequently, block coordinate methods for optimizing the
dual are very practical, and those methods are often
referred as message passing approaches (e.g. [2], [3], [1],
[4]). Thus, we consider in this section dual formulations
of the tight convex relaxation Eq. 8 and the more effi-
cient, but weaker one Eq. 14.

The dual energy of Etight can be derived (via Fenchel
duality) as

E∗tight-I(p) =
∑
s

min
i
{div pis + θis} s.t. ‖pis − pjs‖2 ≤ θij ,

(17)

with the divergence div = −∇T consistent with the
discretization of the gradient. If ∇ is e.g. computed
via forward differences, div is based on backward
ones. Note that we have redundant constraints on the
primal variables yijs ∈ [−1, 1] × [−1, 1] (since xis ∈
[0, 1]). One could compute the dual of θij‖yijs ‖2 +

ı{‖yijs ‖∞ ≤ 1}, but because of its radial symmetry the
constraint ‖yijs ‖2 ≤

√
2 seems to be more appropriate.

Via
(
x 7→ θ|x|+ ı[0,B](x)

)∗
(y) = maxx∈[0,B] {xy − θ|x|} =

Bmax{0, |y| − θ} and the radial symmetry of terms in
yijs we obtain for the dual energy in this setting

E∗tight-II(p) =
∑
s

min
i
{div pis + θis}

+
∑
s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pis − pjs‖2

}
, (18)

which has the same overall shape as E∗LP-MRF in Sec-
tion 2.2. In contrast to Eq. 17 the dual energy Eq. 18
uses an exact penalizer on the constraints and always
provides a finite value, which can be useful in some
cases (e.g. to compute the primal-dual gap in order to
have a well-established stopping criterion when using
iterative first-order optimization methods). We finally
state a variant of the dual energy, which is obtained by
explicitly introducing a Lagrange multiplier qs for the
normalization constraints

∑
i x

i
s = 1,

E∗tight-III(p,q) =
∑
s

qs +
∑
s,i

[
div pis + θis − qs

]
− (19)

+
∑
s

∑
i,j:i<j

√
2 min

{
0, θij − ‖pis − pjs‖2

}
.

Eq. 19 is much easier to smooth than Eq. 17 (which
can be smoothed via a numerically delicate log-barrier)
or Eq. 18 (where the exact minimum can be replaced
by a soft-minimum, e.g. using log-sum-exp). We discuss
appropriate smoothing of Eq. 19 and corresponding op-
timization in Section 4. Further, since for every optimal
(p∗,q∗) the objective remains the same for (p∗ + 1δ,q∗)
for a δ ∈ R, E∗tight-III has at least a one-dimensional space
of solutions. In order to remove this degree of freedom
in the solution, one can add a constraint on the average
value of pis, e.g.

∑
s

∑
i p
i
s = 0.

For completeness we also state the dual of the weaker
relaxation Eq. 14 in the constrained form:

E∗truncated(p) =
∑
s

min
i
{div pis + θis} (20)

s.t. ‖pis − pjs‖2 ≤ θij ∀s,∀i, j : |i− j| < T

‖pis‖ ≤ θ∗/2 ∀s, i.

In the dual the constraints set in Eq. 20 is a superset
of the constraints in the tight relaxation Eq. 17 (since
‖pis‖ ≤ θ∗/2 implies ‖pis − pjs‖2 ≤ θ∗), hence we have
E∗truncated ≤ E∗tight-I for their respective optimal solutions
(recall that the dual energies are maximized w.r.t. p).

In contrast to LP-MRF formulations we have non-
linear capacity constraints in the duals presented above.
Thus, optimizing these dual energies (in particular
Eq. 17) via block coordinate methods is more difficult,
and deriving message passing algorithms appears not
promising. In the supplementary material we present the
detailed derivations of the dual energies stated above
and report additional forms of the dual energy.
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(a) Input image (b) Forward diff. (c) Forward diff. (d) Staggered grid (e) Staggered grid (f) Geo-cut

Fig. 1. The triple junction inpainting example. (b) and (d) use the weaker relaxation Etruncated, and (c) and (e) are the
results of Etight. The geo-cut solution with a 32-neighborhood is shown in (f).

(a) (b) (c)

Fig. 2. Three regions meet in one grid point. (a) The situation as handled in Etruncated. (b) How Etight sees this situation.
(c) The different counting of region boundaries. Top row: Etruncated simply sums the lengths of region boundaries.
Bottom row: Etight considers interfaces between each pair of regions separately.

3.4 First-Order Optimality Conditions
In order to ensure optimality of a primal-dual pair and
to construct e.g. the primal solution from the dual one,
we state the generalized KKT conditions (see e.g. [15],
Ch. 3): if we have the primal energy E(x) = f(x) +
g(Ax) for convex f and g, and a linear map A, the dual
energy is (subject to a qualification constraint) E∗(z) =
−f∗(AT z)− g∗(−z). Further, a primal dual pair (x∗, z∗)
is optimal iff x∗ ∈ ∂f∗(AT z∗) and Ax∗ ∈ ∂g∗(−z∗). For
the tight relaxation Eq. 17 these conditions translate to

(x∗)s ∈ ∂max
i
{−div(p∗)is − θis} and

(y∗)ijs ∈ ∂ı
{∥∥(p∗)is − (p∗)js

∥∥
2
≤ θij

}
.

The first condition means, that −div(p∗)js − θjs <
maxi{−div(p∗)is − θis} for a label j implies (x∗)js = 0
(label j is strictly not assigned in the optimal solution at
s). If −div(p∗)js−θjs is strictly smaller than the maximum,
an infinitesimal change of −div(p∗)js does not affect the
maximal value, hence the j-component of the subdiffer-
ential ∂maxi{−div(p∗)is− θis} is 0. The second condition
states, that ‖(p∗)is − (p∗)js‖2 < θij implies (y∗)ijs = 0
(there is no transition between label i and j at pixel s). If
‖(p∗)is−(p∗)js‖2 = θij we have (y∗)ijs ∝ (p∗)is−(p∗)js. These
generalized complementary slackness constraints can be
used to set many values in the primal solution to 0. The
second part of the KKT conditions, Ax∗ ∈ ∂g∗(−z∗),
just implies that the primal solution has to satisfy the
normalization and marginalization constraints.

4 OPTIMIZATION METHODS

The primal (Eqs. 8 and 13) and dual (Eqs. 17 and 18)
programs of the tight relaxation are non-smooth convex
and concave energies, and therefore any convex opti-
mization method able to handle non-smooth programs

is in theory suitable for minimizing these energies. The
major complication with the tight convex relaxation is,
that it requires either a quadratic number of unknowns
per pixel in the primal (in terms of the number of
labels) or has a quadratic number of coupled constraints
(respectively penalizing terms) in the dual. The nested
optimization procedure proposed in [7] is appealing
in terms of memory requirements (since only a linear
number of unknowns is maintained per pixel, although
the inner reprojection step consumes temporarily O(L2)
variables), but as any other nested iterative approach it
comes with difficulties determining when to stop the in-
ner iterations. On the other hand, the methods described
in [27], [11] have closed form iterations, but require
O(L2) variables. This is also the case if e.g. Douglas-
Rachford splitting [28] (see also the recent survey in [29])
is applied either on the primal problem Eq. 8 or on
the always finite dual Eq. 18. We propose two methods
for efficiently solving the tight relaxation: the first one
addresses truncated smoothness costs (Section 3.2) and
starts with solving the efficient (but slightly weaker)
model Eq. 14. It subsequently identifies potential triple
junctions and switches locally to the tight relaxation
until convergence. The second proposed method ap-
plies a forward-backward splitting-like method on a
smoothened version of the dual energy Eq. 18, and
gradually reduces the smoothness parameter (and the
allowed time step).

4.1 Iterated Refinement of the Truncated Model

Our first proposed method to solve the tight convex
relaxation in an efficient way is based on the intuition
given in Section 3.2: the weaker relaxation Etruncated can
only be potentially strengthened where three or more
phases meet, i.e. at pixels s such that yi∗s 6= 0 for at least



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

three labels i. For these pixels the weaker model underes-
timates the true smoothness costs and does not guaran-
tee consistency of boundary normals (recall Fig. 2). For a
pixel s let As denote the set of labels with yi∗s 6= 0, and at
potentially problematic triple junctions we have |As| ≥ 3.
The underestimation of the primal smoothness translates
to unnecessarily strong restrictions on pis for i ∈ As, i.e.
all constraints ‖pis‖ ≤ θ∗/2 are strongly active for i ∈ As
(recall that yi∗s 6= 0 is a generalized Lagrange multiplier
for ‖pis‖ ≤ θ∗/2). Consequently, replacing the constraints
‖pis‖ ≤ θ∗/2 by the weaker ones of the corresponding
tight relaxation ‖pis − pjs‖ ≤ θ∗ for all i ∈ As allows the
dual energy to increase. In the primal this means, that
for active labels i the indiscriminative transition gradient
yi∗s is substituted by explicit transition variables yijs (for
j > i) and yjis (for j < i).2 The marginalization constraint
of Etruncated (Eq. 14)

∇xis =
∑

j:i−T<j<i
yjis −

∑
j:i<j<i+T

yijs − yi∗s

is replaced by one in Eq. 8,∇xis =
∑
j<i y

ji
s −
∑
j>i y

ij
s , for

active labels i ∈ As. After augmenting the energy for the
problematic pixels, a new minimizer is determined. In
practice most problematic pixels are fixed after the first
augmentation step, but not all, and there is no guarantee
(verified by experiments) that a global solution of the
tight model Eq. 8 is already reached after just one
augmentation. Hence, the augmentation procedure is
repeated until no further refinement is necessary. This
approach is guaranteed to find a global minimum of the
tight relaxation:

Observation 3. If for a primal solution (x∗,y∗) of the
augmenting procedure the set of active labels As = {i :
(y∗)i∗s 6= 0} has at most two elements for all pixels s ∈ Ω
(i.e. at most two different labels meet at “non-augmented”
pixels), then x∗ is also optimal for Etight.

The full proof is in the supplementary material. In the
proof the optimal primal variables (x∗,y∗) are extented
to a feasible primal solution of Etight, and it is shown that
the dual unknowns are still a certificate for optimality.

On planar grids at most four regions can meet in a
single node (only 3 if ∇ is discretized via one-sided
finite differences), one expects the augmentation proce-
dure to terminate with only few pixels being enhanced.
In theory, more phases could meet in a single pixel,
since we have to allow fractional values for xis. In a
few cases (pixels) we observed As = {1, . . . , L}. In
practice only a few augmentation steps are necessary
leading to a ≈ 10% increase of memory requirements
over the efficient model Eq. 14. We use the primal-dual
method [30] for minimization. See Figs. 3(a-c) and 4(a,b)
for the intermediate results and energy evolution, respec-
tively. All methods reach relatively fast a solution that is
visually similar to the fully converged one, but achieving

2. This techniques resembles column generation methods to solve
large-scale linear programs.

a significantly small relative duality gap (e.g. < 0.01%) is
computationally much more expensive for all methods.

4.2 Smoothing-Based Optimization

Recall that the dual energies of the tight relaxation
(Eq. 17 or 18) have only O(L) unknowns per pixel,
but a quadratic number of constraints/terms in the
objective. In terms of efficient memory use, a purely
dual or primal-dual method is desirable. Chambolle
et al. [7] utilize a primal-dual method requiring the
projection into the non-trivial feasible set. This projection
has no closed form solution and needs to be solved via
inner iterations (requiring temporarily O(L2) variables
per pixel). The dual energies, e.g. E∗tight-III with only
penalizer terms (recall Eq. 19), allows to smoothen the
dual energy in a numerically robust way. A principled
way to smooth non-smooth functions with bounds on
the Lipschitz constant of its gradient is presented in [31]:
for a non-smooth (convex) function f and a smoothing
parameter ε > 0, a smooth version fε of f with Lipschitz-
continuous gradient (and Lipschitz constant 1/ε) is given
by fε = (f∗ + ε‖·‖2/2)∗. We employ a quadratic prox-
function for smoothing rather e.g. the entropic one uti-
lized in [32], [33] for similar inference problems. It turns
out that our smooth energy yields better approximation
bounds to the unsmoothed energy than the one used in
the aforementioned work (see below).

In order to have convex instead of concave terms, we
minimize −E∗tight-III with respect to p and q,

−E∗tight-III(p,q) =
∑
s

−qs +
∑
s,i

[
qs − div pis − θis

]
+

+
∑
s

∑
i,j:i<j

√
2
[
‖pis − pjs‖2 − θij

]
+
. (21)

The second and third sums are non-smooth. First, the
[·]+ = max(0, ·) expressions in the second sum can
be replaced by a soft-maximum function. Especially in
the machine learning literature the logistic soft-hinge,
ε log

(
1+ex/ε

) ε→0→ [x]+, is often employed, but the expo-
nential and logarithm functions are slow to compute and
require special handling for very small ε. Similar to the
Huber cost, which is a smooth version of the magnitude
function, the smooth version of [·]+ can be easily derived
as

[x]+,ε :=


0 x ≤ 0

x− ε/2 x ≥ ε
x2/2ε 0 ≤ x ≤ ε.

Obtaining a smooth variant of expressions of the shape
hθ(z) :=

√
2[‖z‖2 − θ]+ appearing in the last summation

is more involved, but can be shown to be

hθε(z) =


0 if ‖z‖ ≤ θ
(‖z‖−θ)2

2ε if θ ≤ ‖z‖ ≤ θ +
√

2ε√
2(‖z‖ − θ)− ε if ‖z‖ ≥ θ +

√
2ε.

(22)
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(a) Etruncated (b) After 1 augm. (c) After 2 augm. (d) Smooth opt. (e) Exact solution Etight

Fig. 3. Stereo result using absolute color differences and the Potts discontinuity model. We want to emphasize, that
not the quality of the obtained disparity map, but the equivalence between (c), (d) and (e) is of importance.

We refer to the supplementary material for the deriva-
tion. Overall, the smooth energy corresponding to Eq. 21
reads as

−E∗tight-III,ε(p,q) =
∑
s

−qs +
∑
s,i

[
qs − div pis − θis

]
+,ε

+
∑
s

∑
i,j:i<j

hθ
ij

ε (pis − pjs). (23)

By construction (adding a quadratic penalizer in the
primal) we always have E∗tight-III,ε(p,q) ≥ E∗tight-III(p,q)

(or −E∗tight-III,ε(p,q) ≤ −E∗tight-III(p,q)). We can provide
an upper bound on the approximation error:

Observation 4. For an optimal solution (p∗,q∗) of E∗tight-III,ε
we have

E∗tight-III,ε(p
∗,q∗)− E∗tight-III(p

∗,q∗) ≤ 3ε|V|
2

, (24)

where |V| is the number of nodes in the underlying graph.

The proof is given in the supplementary material.
Note that, in contrast to [32], [33], the upper bound is
independent of the number of labels. Given a desired
accuracy δ to the optimal non-smooth energy, a neces-
sary smoothing parameter ε is given by ε ≤ 2δ

3|V| . This
bound, 3|V|ε/2, is a worst-case bound and often not
tight in practice. The proof reveals that the smoother the
resulting labeling the closer E∗tight-III,ε is to E∗tight-III.

In order to apply FISTA, we need an estimate of
the respective Lipschitz value: by using the chain rule,
∇xf(Ax) = AT∇yf(y)|y=Ax, for a differentiable function
f and a matrix A, the upper bound of the Lipschitz
constant of ∇xf(Ax) is given by L ≤ ‖A‖22Lf , where
Lf is the Lipschitz constant of ∇f and ‖A‖2 is the re-
spective operator norm of A. Consequently, the Lipschitz
constant of ∇E∗tight-III can be bounded by 5(L + 1)/ε,
since ‖A‖2 ≤ 5(L + 1) for the matrix A mapping
(p,q) to their appearances in the respective summands
(see the supplementary material for details). Thus, the
largest allowed timestep in forward-backward splitting
and related accelerated gradient methods is required
to be less or equal than ε/(5(L + 1)) in order to have
convergence guarantees. Note that Eq. 23 is completely
smooth and the backward step e.g. in forward-backward
splitting is a no-op. We considered and implemented
different dual energies leading to a smooth and a non-
smooth term in the objective, but none of these appears

to be superior to Eq. 23. Due to its guaranteed fast
convergence of the objective we employ the acceler-
ated proximal gradient method proposed in [34], known
as “fast iterated shrinkage thresholding algorithm” or
FISTA. In Fig. 4(c) and (d) we report the energy evolution
of Eq. 23 and the Euclidean distance to a converged,
ground-truth solution, respectively. For a given accuracy
δ in the obtained energy, FISTA achieves this accuracy
in O(1/δ) iterations. Unfortunately, the obtained upper
bound on the required number of iterations is very loose,
due to the large hidden constant (which is also instance-
dependent). Hence, we apply a two-stage “annealing”
approach, where an approximate dual solution is ini-
tially found by setting ε to a relatively large value aiming
for a 10% accuracy in the final energy. Since the true
optimal energy is not known, we use the best-cost energy
ignoring smoothness terms as lower bound for the true
optimal energy. After obtaining an initial approximate
solution, we soft-restart FISTA with the desired accuracy
of the energies. We aim for 0.5% accuracy in the final
values between the optimal non-smooth and smooth
energies, but the obtained energies are much closer in
practice. A clear advantage of using a smoothed energy
and a first order optimal method like FISTA is the
trivial implementation on GPUs, where we can expect
speedups of two orders of magnitude.

Optimizing the isotropic smoothness cost (Euclidean
norm) appears to converge much slower than the
anisotropic (L1) term. Fig. 5 illustrates the evolution
of the primal-dual gap for the (nonlinear) isotropic
formulation of Etight-III,ε and the otherwise equivalent
energy with ‖·‖2 replaced by ‖·‖1. After a comparable
performance to a about 1% relative duality gap, closing
the gap is much slower for the isotropic formulation than
for the anisotropic one. We hypothesize that in this stage
mostly the level curves of the solution are adjusted, but
the label assignment itself is unaffected. Nevertheless,
reaching a conservative duality gap is much harder for
isotropic smoothness terms.

5 EXTENSIONS
In this section we describe two extensions for the
smoothness terms of the labeling energy Eq. 27. Both
are based on the established connection discussed in
Section 3.1 between the ELP-MRF and Emarginals. In Sec-
tion 5.1 the “metrification” of the smoothness costs and
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(a) Etight vs. Etrunc.+ref. (b) Etight vs. Etrunc.+ref. (c) Etight vs. Etight-III,ε (d) Etight vs. Etight-III,ε

Fig. 4. Evolution of the energies and respective Euclidean distances to a converged ground truth solution for the tight
model Eq. 7, the refinement strategy (a,b), and FISTA applied on Etight-III,ε (c,d).

Fig. 5. Evolution of the relative duality gap (in percent) for
isotropic and anisotropic regularizers.

its cause is discussed, and in Section 5.2 extensions to
more general direction-dependent smoothness terms is
provided.

5.1 Non-Metric Smoothness Costs

Besides the non-linearity of the smoothness terms in
Eq. 13, the slightly different marginalization constraints
appearing in Eq. 3 and Eq. 13, respectively, yield to
different behaviors. In the standard local polytope re-
laxation Eq. 3 the marginalization constraints read as∑

j

xijst = xis,
∑
j

xjist = xit, xijst ≥ 0. (25)

One can eliminate xiis to arrive at “differential” marginal-
ization constraints,

xit − xis =
∑
j:j 6=i

xjist −
∑
j:j 6=i

xijst, (26)

but in Eq. 13 corresponding to the primal of Esaddlepoint
also the non-negativity constraint xiist = (xis, x

i
s)
T −∑

j:j 6=i x
ij
st ≥ 0 is dropped. The lack of the non-negativity

constraint on xiist implies that any non-metric smoothness
costs θijst is implicitly converted into a metric via the
following construction: assume that θiist + θi,i+1

st < θi,i+2
st .

If xis = 1 and xi+2
t = 1 (i.e. we have a jump from label

i to i+ 2 along edge (s, t)), then the desired smoothness
cost is θi,i+2

st . By setting xi,i+1
st = xi+1,i+2

st = 1 and
xi+1,i+1
st = −1 the differential marginalization constraints

Eq. 26 are still satisfied, but the contribution of edge (s, t)

to the smoothness cost is now θiist + θi,i+1
st < θi,i+2

st . The
argument can be generalized to any transition from label
i to label k, thus the true smoothness cost is potentially
underestimated in all models derived from Esaddlepoint
(or Esuperlevel, recall Eq. 6) for non-metric pairwise costs.
Consequently, Esaddlepoint is not suitable to solve labeling
problems with non-metric smoothness priors auch as (i)
truncated quadratic costs or (ii) inclusion of a “null” or
“background” label with constant transition costs to all
other “object” or “foreground” labels. Dropping the non-
negativity constraints xiist ≥ 0 implicitly introduces an
order on the labels such that e.g. a jump from label i to
i+2 is “larger” than one from i to i+1. This also means,
that permuting label values potentially leads to different
values of Esaddlepoint, which is not the case for ELP-MRF.

An instructive example is also the following: do not
penalize label jumps of height at most one (i.e. θii =
θi,i+1 = 0), and use arbitrary but strictly positive smooth-
ness costs otherwise (θij > 0 for |i − j| > 1). Then the
contribution of the smoothness term to the overal objec-
tive is always 0 for every solution, since any jump from
label i to label j > i can avoid the positive discontinuity
cost by setting xi,i+1

s = xi+1,i+2
s = · · · = xj−1,j

s = 1 and
xi+1,i+1
s = xi+2,i+2

s = · · · = xj−1,j−1
s = −1 in order

to satisfy the (differential) marginalization constraints
Eq. 26.

Using the standard marginalization constraints Eq. 25
or, equivalently, adding the constraint xis−

∑
j:j 6=i x

ij
st ≥ 0

(element-wise) to Eq. 26 resolves the issue. We restate
the stronger primal energy on the 2D image grid (corre-
sponding to Eq. 13),

Emarginals-II(x) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

θij
∥∥xijs + xjis

∥∥
2

s.t. xis =
∑
j

xijs,1 xis =
∑
j

xjile(s),1 (27)

xis =
∑
j

xijs,2 xis =
∑
j

xjiup(s),2 x ∈ C.

In contrast to Etight (Eq. 8) and Emarginals (Eq. 13) the
objective value is invariant under label permutation: if
σ is a permutation in {1, . . . , L}, then for any feasible
x we have that xσ def

= (x
σ(i)
s , x

σ(i),σ(j)
s ) is also feasible

and has the same energy value for permuted costs θσ def
=

(θ
σ(i)
s , θ

σ(i),σ(j)
s ). Hence, optimal solutions are unaffected
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by the exact mapping between label semantics (defining
the unary and pairwise costs) and label indices.

We illustrate the difference between Etight (resp.
Emarginals) and Emarginals-II for a small stereo instance with
the (non-metric) smoothness costs θii = 0, θi,i+1 = 1, and
θij = 10 for j > i + 1, respectively, in Fig. 6. Observe
that Etight is essentially “blind” to the true cost of larger
discontinuities, and the result in Fig. 6(a) shows many
more abrupt label changes than Fig. 6(b). The particular
choice of for the smoothness term strongly penalizes
larger discontinuities leading to an overly smooth result,
but at the same time makes the difference between
Figs. 6(a) and (b) clearly visible. The result in Fig. 6(a) es-
sentially corresponds to a solution with truncated linear
smoothness (see Fig. 6(c)) with truncation point θ∗ = 10.

In the following we state the dual of Emarginals-II and
refer to the supplementary material for its derivation:

E∗marginals-II(p) =
∑
s

min
i

{
θis + flow pis

}
(28)

s.t.

∥∥∥∥∥∥∥∥
[pis← + pjs→]+
[pis↑ + pjs↓]+

[pjs← + pis→]+
[pjs↑ + pis↓]+

∥∥∥∥∥∥∥∥
2

≤ θij , pis← + pis→ ≤ 0
pis↑ + pis↓ ≤ 0,

where flow pis
def
= pis← + pile(s)→ + pis↑ + piup(s)↓.

The difference between E∗marginals-II and E∗tight-I (Eq. 17),
is that the latter enforces pis←+pis→ = 0 and pis↑+p

i
s↓ = 0:

in this case one has∥∥∥∥∥∥∥∥
[pis← + pjs→]+
[pis↑ + pjs↓]+

[pjs← + pis→]+
[pjs↑ + pis↓]+

∥∥∥∥∥∥∥∥
2

≤ θij ⇐⇒

∥∥∥∥∥∥∥∥
[pis← − pjs←]+
[pis↑ − p

j
s↑]+

[pjs← − pis←]+
[pjs↑ − pis↑]+

∥∥∥∥∥∥∥∥
2

≤ θij

⇐⇒
∥∥∥∥pis← − pjs←pis↑ − p

j
s↑

∥∥∥∥
2

≤ θij ,

since
∥∥([x]+, [−x]+)T

∥∥ = ‖x‖. Enforcing equality con-
straints instead of inequality ones as in E∗marginals-II im-
plies that maxpE

∗
marginals-II(p) ≥ maxpE

∗
tight-I(p), but

equality needs not (and will not) hold in general. We
finish this section with a remark:
Remark 8. Instead of using the Euclidean norm, ‖·‖2, in
Emarginals-II (Eq. 27), one can employ any p-norm (p ≥ 1)

in the smoothness term. If we define δ def
= min{xijs , xjis } >

0 (element-wise), we have∑
k

((
xijs + xjis

)
k
− 2δk

)p ≤∑
k

((
xijs + xjis

)
k

)p
with strict inequality when some δk > 0 (due to the strict
monotonicity of (·)p). Consequently, if δ 6= 0, we have∥∥xijs + xjis − 2δ

∥∥
p
<
∥∥xijs + xjis

∥∥
p
.

If we assume that θii = 0, then every optimal solu-
tion of Emarginals-II using the p-norm naturally satisfies
the complementarity conditions. Otherwise the overall
objective can be reduced by increasing xiis and xjjs by

δ and decreasing xijs and xjis , respectively, in order
to satisfy the marginalization constraints. Due to the
complementarity of xijs and xjis , θij‖xijs + xjis ‖p can be

rewritten as θij
∥∥∥∥xijsxjis

∥∥∥∥
p

, leading to dual constraints of the

form ∥∥∥∥∥∥∥∥
[pis← + pjs→]+
[pis↑ + pjs↓]+

[pjs← + pis→]+
[pjs↑ + pis↓]+

∥∥∥∥∥∥∥∥
q

≤ θij

with 1/p+ 1/q = 1. This reduces e.g. to the standard LP
relaxation on a grid with 4-neighborhoods for p = 1.

5.2 Direction-Dependent Smoothness
In some applications it is desirable to penalize region
boundaries depending on the location and on the orien-
tation of the discontinuity. In [35] a saddle-point formu-
lation was proposed in order to generalize Eq. 7 beyond
isotropic smoothness terms. We start by replacing the
isotropic smoothness costs,

∑
s

∑
i<j θ

ij
s ‖yijs ‖2, in Eq. 8

with the following term,∑
s

∑
i,j:i<j

φijs
(
yijs
)
,

where φijs (·) is a convex, and positively 1-homogeneous
function. Since φijs can vary with the pixel and the
involved labels, the cost of a label transition can now be
modeled depending on the location (pixel), the source
and the destination label, and on the attained transition
direction. In the dual programs the capacity constraints
‖pis − pjs‖2 ≤ θij are replaced by constraints of the form

pis − pjs ∈Wφij
s
,

where Wφij
s

is sometimes called the Wulff shape of φijs
(see e.g. [36], [37], [38]). This follows from the fact that
the convex conjugate of a positively 1-homogeneous
function is the indicator function of a suitable convex
set. The full convex problem in the generalized setting
reads as

EFinsler(x,y) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

θijφijs
(
yijs
)

s.t. ∇xis =
∑
j:j<i

yjis −
∑
j:j>i

yijs , xs ∈ ∆ (29)

In view of [39] we call the location and direction de-
pendent regularizer a Finsler metric. As pointed out
also in [35] this energy shares the problem of con-
verting non-metric smoothness costs into metric ones
with Eq. 8 (which is due to the lack of non-negativity
constraints xiis ≥ 0 as explained in the previous section).
Unfortunately, in contrast to Section 5.1 we cannot sim-
ply introduce non-negative pseudo-marginals xijs and
replace φijs

(
yijs
)

by φijs
(
xijs + xjis

)
, since (among other

problems) xijs + xjis is symmetric. A transition between
label i and j in a particular direction will be penalized
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(a) Etight, energy ≈ 1843.5 (b) Emarginals-II, energy ≈ 1913 (c) Trunc. linear, energy ≈ 1848

Fig. 6. Stereo result using absolute color differences and a non-metric discontinuity model. The visual results and
the energy values obtained by minimizing Etight and Emarginals-II are quite significant. The final energy values of Etight is
much smaller than the one for Emarginals-II due to dropping the xiis ≥ 0 constraints in the former. (c) depicts the solution
obtained by optimizing the corresponding truncated linear smoothness using Emarginals-II.

exactly like the opposite jump. Further, the argument
to φijs is always in the non-negative quadrant, thus the
shape of φijs outside the positive quadrant is ignored.
Surprisingly, substituting yijs = xijs − xjis in Eq. 8 does
not weaken the relaxation, and we arrive at the following
convex program (after adding standard marginalization
constraints as in Section 5.1, or equivalently xiis ≥ 0):

EFinsler-II(x) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

φijs
(
xijs − xjis

)
(30)

subject to the same constraints as in Emarginals-II (Eq. 27).
In contrast to e.g. Eq. 13 we lose complementarity be-
tween xijs and xjis in optimal solutions. Nevertheless,
any minimizer x∗ of EFinsler-II can be converted into
a solution x̃ satisfying the complementarity conditions
x̃ijs ⊥x̃jis . We set δijs

def
= δjis

def
= min{(x∗)ijs , (x∗)ijs } (element-

wise) for i < j, x̃ijs
def
= (x∗)ijs − δijs for i 6= j, and

(x∗)iis
def
= (x∗)iis +

∑
j:j 6=i δ

ij
s . Node marginals stay the

same, x̃is
def
= (x∗)is. Clearly, we have x̃ijs ⊥x̃jis by con-

struction and the marginalization constraints are still
satisfied. Obviosuly, the unary terms are unaffected since
x̃is = (x∗)is. Further, the smoothness costs also remain the
same, since

x̃ijs − x̃jis = (x∗)ijs − δijs − (x∗)jis + δijs = (x∗)ijs − (x∗)jis .

Overall, we constructed a solution x̃ with the same
objective value and satisfying the complementarity con-
straints. The downside of the formulation in Eq. 30 is,
that the set of minimizers is enlarged leading to slightly
inferior convergence speed of iterative convex optimiza-
tion methods. At least for Riemann-type smoothness
costs φijs : R2 → R+

0 induced by quadratic forms one
can find a higher-dimensional extension Φ : R4 → R+

0

similar to the conversion from ‖xijs +xjis ‖ to ‖(xijs , xjis )T ‖
from Section 3.1. We refer to the supplementary material
for the construction.

5.3 Numerical Results
General non-metric and direction-dependent smooth-
ness terms are useful to encode preferred boundaries

between semantic categories. For instance, the interface
between ground and empty space is typically horizon-
tal, and such priors can be encoded using appropriate
positively 1-homogeneous penalizers φijs . We developed
a joint 3D reconstuction and semantic segmentation ap-
proach [40] building on the formulation EFinsler-II from
the previous section. However, in this section we con-
tinue to use the dense stereo problem and describe a
more classic application for location and orientation-
dependent smoothness. It is well known that incorporat-
ing strong edges in the input image is usually improving
the computational stereo result at true depth boundaries.
We modulate an underlying smoothness term (which we
choose to be a truncated linear or quadratic pairwise
costs in our experiments) with a Riemann metric induced
by the local edge structure, leading to the following
instance of EFinsler-II (Eq. 30),

Estereo(x) =
∑
s,i

θisx
i
s +

∑
s

∑
i,j:i<j

θijψs
(
xijs − xjis

)
(31)

subject to the same constraints as in Eq. 30. Here, θij =
min{θ∗, |i−j|} (truncated linear) or θij = min{θ∗, (i−j)2}
(truncated quadratic), respectively. Since the number
of labels in stereo applications tends to be large, we
introduce “wildcard” variables xi∗s and x∗is (in analogy
to Section 3.2), which leads to a slightly weaker but
tractable convex problem,

Ered-stereo(x) =
∑
s,i

θisx
i
s +

θ∗

2

∑
s,i

(
ψs
(
xi∗s
)

+ ψs
(
x∗is
))

+
∑
s

∑
i,j:i<j,|i−j|<T

θijψs
(
xijs − xjis

)
(32)

subject to

xis =
∑

j:|i−j|<T

xijs,1 + xi∗s,1 xis =
∑

j:|i−j|<T

xjile(s),1 + x∗ile(s),1

xis =
∑

j:|i−j|<T

xijs,2 + xi∗s,2 xis =
∑

j:|i−j|<T

xjiup(s),2 + x∗iup(s),2

and x ≥ 0,
∑
i x

i
s = 1, for an appropriate value of T . Let

Ĩ be the smoothed version of the left image IL (we use a
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piecewise smooth approximation Ĩ), and let ∇Ĩ⊥s be the
orthogonal vector to the image gradient ∇Ĩ at pixel s,
then we define

ψs(y)
def
=
√
yTDsy

with

Ds
def
=

1

‖∇Ĩ⊥s ‖2 + µ

(
∇Ĩ⊥s (∇Ĩ⊥s )T + µI

)
. (33)

This particular normalization of the diffusion tensor
leads to ψs(y) ≤ ‖y‖2 with its maximum attained for
y⊥∇Ĩs. µ > 0 is a parameter to guarantee that Ds

is strictly positive definite and is set to 1/100. This
choice of Ds makes jumps at strong image edges re-
gardless of the orientation never more expensive than
in textureless regions, i.e. strong edges only optionally
reduce the smoothness cost. As data term we utilize
λBT(IL(x), IR(x − (i, 0)T ), where BT is the sampling
insensitive matching cost from [41]. After rewriting√

(yTDsy) as
∥∥LTs y∥∥2

, where Ls is the Cholesky factor of
Ds, we introduce respective dual variables and use the
primal-dual algorithm [30] to determine the minimizer.

Fig. 7 illustrates the influence of a Riemann-type reg-
ularizer over a purely isotropic and uniform smoothness
term agnostic to image edges. We show results for
unmodified (Ds = I , Fig. 7(a)) and modulated (Ds as
in Eq. 33, Fig. 7(b)) regularizers. The truncated linear
smoothness term favors (as expected) piecewise con-
stant solutions, whose discontinuities are better aligned
with strong image edges in Fig. 7(b). Similar obser-
vations hold for a truncated quadratic pairwise term
(which favors piecewise smooth solutions) as displayed
in Figs. 7(c) and (d). We set λ = 6 for the truncated linear
cost and λ = 3 for the truncated quadratic one to obtain
visually similar results.

6 CONCLUSION

In [7] the question is raised, whether there is a simple
primal representation of the convex relaxation Eq. 6 for
multi-label problems. In this work we are able to give an
intuitive answer to that question at least in the discrete,
finite-dimensional setting. Thus, there is now a clearer
understanding what the tight convex formulation opti-
mizes on a discrete image grid, and how to improve the
computational efficiency. There are strong links between
the local polytope relaxation for MRFs and the convex
relaxations derived from a continuous setting. Both mod-
els can benefit from the established connection: discrete
approaches can largely avoid the grid bias intrinsic in
grid-based graphs by using isotropic regularizers, and
some shortcoming of continuously inspired formulations
can be fixed by a better understanding of the relation to
discrete approaches for MAP inference.

The starting point for continuous convex relaxations
is [6], where a saddle-point energy with a continuous
image domain and a continuous label space is dis-
cussed. We do not know whether it is easy to state

the corresponding primal program in such a continuous
setting. Eq. 8 provides the answer in the discretized
setting. There seem to be several sources of difficulties,
e.g. the marginalization constraint in its difference form,
∇xi =

∑
j<i y

ji −
∑
j>i y

ij , would read just as a linear
PDE, but there is the complication that xis is not smooth.
Analyzing the continuous setting and further extensions
of Eq. 8 are subject to future work. 3
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[10] J. Lellmann and C. Schnörr, “Continuous multiclass labeling
approaches and algorithms,” Heidelberg University, Tech. Rep.,
2010.

[11] E. Strekalovskiy, B. Goldluecke, and D. Cremers, “Tight convex
relaxations for vector-valued labeling problems,” in Proc. ICCV,
2011.

[12] C. Zach, D. Gallup, J.-M. Frahm, and M. Niethammer, “Fast global
labeling for real-time stereo using multiple plane sweeps,” in Proc.
VMV, 2008.

[13] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 11, pp. 1222–1239, 2001.
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