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Abstract—Image-based computation of a 3D map for an
indoor environment is a very challenging task, but also a
useful step for vision-based navigation and path planning for
autonomous systems, and for efficient visualization of interior
spaces. Since computational stereo is a highly ill-posed problem
for the typically weakly textured, specular, and even sometimes
transparent indoor environments, one has to incorporate very
strong prior assumptions on the observed geometry. A natural
assumption for building interiors is that open space is bounded
(i) by parallel ground and ceiling planes, and (ii) by vertical
(not necessarily orthogonal) wall elements. We employ this
assumption as a strong prior in dense depth estimation from
stereo images. The additional assumption of smooth vertical
elements allows our approach to fill in plausible extensions of
e.g. walls in case of (non-vertical) occlusions. It is also possible
to explicitly detect non-vertical regions in the images, and to
revert to more general stereo methods only in those areas. We
demonstrate our method on several challenging stereo images
of office environments.

Keywords-computational stereo, 3D reconstruction, dynamic
programming

I. INTRODUCTION

Having a 3D representation of the surrounding environ-
ment is essential for robot navigation and path planning.
Obtaining such a representation becomes very challenging,
if active sensors are not available and the 3D virtual model
has to be generated solely from image data. In particular,
man-made environments, which are typically comprised of
few visually salient objects and tend to have only weak
textures, are very demanding for automated image-based 3D
modeling. Office-like indoor environments often also contain
specular or even transparent objects violating the Lambertian
surface assumption, thus making image-based reconstruction
even harder. Sophisticated methods for computational stereo
can overcome some of these difficulties, but those methods
come at a high computation cost and are therefore less
suitable e.g. for obstacle avoidance and online navigation
of autonomous systems.

In order to obtain a sufficiently accurate, but computa-
tionally cheap 3D map of the environment, suitable prior
knowledge on the encountered surrounding is necessary. In
man-made environments the Manhattan-world assumption
(i.e. that the major surfaces are parallel with either the
ground plane, or with one of two orthogonal planes) is
recently utilized as a strong prior in several approaches
for image-based modeling. We replace the Manhattan-world

assumption by a related, but somewhat different prior for in-
door environments: the open/maneuverable space is bounded
by parallel ground and ceiling planes, and by purely vertical
structures (i.e. mostly walls). Further, vertical elements are
assumed to be (piecewise) smooth in 3D. Under this assump-
tion our method is able to “hallucinate” the most probable
vertical structure whenever it is obscured by non-vertical
elements (e.g. people or furniture), or alternatively it can
detect non-vertical objects and insert depth measurements
from a different source (e.g. local stereo).

We illustrate the difficulties of obtaining a meaningful
depth map in an indoor environment in Figure 1, where a
stereo pair depicting a hallway is shown (Figures 1(a) and
(b)). Columns in the images already correspond to vertical
structures in 3D. The floor and the ceiling have significant
view-dependent highlights, and the scene is partially weakly
textured. These properties result in poor depth maps using
local (best cost) and scanline optimization (Figures 1(c)
and (d)). Incorporating a strong piece-wise planarity prior
(Figure 1(e)) or even global optimization for stereo (Fig-
ure 1(f)) returns visually appealing disparity maps, but both
methods have major difficulties in the ground region (due to
the specularities). Explicit incorporation of a vertical world
assumption significantly stabilizes depth estimation with and
even without vertical smoothness (Figures 1(g) and (h)).

In this work we explore the utility of the vertical struc-
ture prior for challenging indoor environments. Due to
the substantial simplification of the overall problem we
propose to employ efficient dynamic programming to obtain
a depth map suitable e.g. for autonomous system navigation.
Further, we introduce an optional model selection stage to
detect image columns violating the vertical assumption. All
processing steps run at interactive frame rates.

In the following Section II we cover related work, whereas
Section III explains the underlying idea of a vertical structure
and needed preprocessing steps. Next, the utilization of
vertical structures in the algorithm is outlined in Section IV,
followed by the incorporation of smoothness assumptions
via dynamic programming in Section V. Experiments, illus-
trating the effectiveness of our approach, are presented in
Section VI. Finally Section VII concludes with a summariz-
ing and prospective discussion.



(a) Left image (b) Right image (c) Best cost depth (d) Depth using scanline opt. [1]

(e) Depth from libELAS [2] (f) Depth using global opt. [3] (g) Depth using vertical aggregation (h) Our result (with DP)

Figure 1. The difficulty of dense stereo in indoor environments. Note the outputs in (e) and (f) are disparity rather than depth maps, explaining the
differences in visual appearance.

II. RELATED WORK

Reconstructing man-made environments from images typ-
ically requires strong assumptions, i.e. scene priors, to be
able to handle texture-less regions successfully. In particular
this applies to indoor environments where weakly textured,
homogeneous surfaces (e.g. uniform walls) are dominant
in the image. Consequently, several strong priors for re-
constructing urban environments and building interiors are
proposed in the literature.

Man-made outdoor environments are usually composed of
mainly piece-wise planar surfaces. This strong assumption
can be incorporated at different steps in the image-based
reconstruction process: first, computation of the matching
costs between images can be improved by considering
several surface orientations (derived e.g. from dominant
vanishing directions or from a sparse 3D point model) [4],
[5]. Further, the robustness of depth map extraction and
the efficiency of 3D model representation can be signif-
icantly enhanced [6], [7]. A different, but usually even
stronger model for outdoor urban environments assumes
purely vertical facades emerging from a ground plane [8].
The corresponding computation and representation of depth
maps is extremely efficient: after image alignement with the
vertical direction only one depth value per image column
needs to be determined and stored in the depth map. Further,
depth map computation is very robust, since the matching
costs along a complete image column can be (robustly) fused
to determine the single required depth value. Due to these
advantages our work is heavily inspired by [8] .

Reconstructing indoor environments, e.g. office spaces
or corridors, from images poses even a more challenging
task, since texture-less or only weakly textured surfaces are

predominant. In many cases line structures corresponding to
(orthogonal) vanishing directions allow the inference of sim-
ple planar, Manhattan-like models from single images [9],
[10]. Unfortunately, these methods are not suitable for (near)
real-time applications due to the expensive inference stage to
determine the most likely 3D configuration. Fusing several
depth maps, generated under the Manhattan-world assump-
tion, can give impressive results [11]. Since our application
is targeted towards robot navigation and path planning, such
a high-quality approach is not feasible because of run-time
constraints, and the potential lack of required redundancy in
the captured image data (e.g. if a stereo setup is utilized).

In order to handle weakly textured regions, dense corre-
spondence methods typically utilize some prior model on
the resulting depth map. Usually, this prior is very generic
and formulated in terms of pairwise (sometimes higher
order) clique potentials in a Markov random field favoring
small depth discontinuities (see e.g [1] for a review of
computational stereo methods). The assumption of piece-
wise planarity of the imaged environment can be explicitly
incorporated by assigning locally planar depth hypothe-
ses to image regions induced by super-pixel segmentation
(e.g. [12], [13], [14]). A fast stereo method strongly using
the piecewise planar assumption was recently proposed
in [2]. This approach first determines a sparse set of very
confident correspondences, and uses the induced Delaunay
triangulated surface model as strong prior for the generation
of a complete depth map. [15] extends the piecewise planar
model and explicitly introduces an additional label for non-
planar surfaces. Images are segmented into planar and non-
planar regions by means of photoconsistency and learned
appearance, and finally non-planar regions are modeled with
a standard stereo approach.



Figure 2. Layout of a vertical structure in 3D and its representation
in the image domain. Corresponding ceiling and floor points (Xc,Xf )
are coupled via their common depth d, resulting in a general coupling of
image points v′, v and finally of boundary points i, j (describing a vertical
structure).

III. PREPROCESSING STEPS

We want to start our explanation by motivating for the
layout of a vertical structure in the scene and its represen-
tation in the image domain. According to the illustration
in Figure 2 let us assume for the left camera that (i) the
optical axis is parallel to the ground plane, (ii) it has extrinsic
parameters [I 0] and thus defines the reference coordinate
system, (iii) vertical structures in the scene posses a vertical
layout in the image domain, and (iv) that the hight of
ceiling and ground plane are known. Sections III-A, III-B
will explain how we can guarantee these requirements, but
first it is important to note that under these assumptions the
intersection points of a purely vertical element (which can
be seen as an upright line in 3D) with the ground and ceiling
plane share the same depth.

Given heights hc and hf for ceiling and floor plane with
plane normal ey = (0, 1, 0)T , two corresponding points are
Xf = (x, hf , d)T and Xc = (x, hc, d)T . Thus, we obtain
for the respective image positions

(u, v, d)
T

= KXf and (u′, v′, d)
T

= KXc,

with K =

fx s px
0 fy py
0 0 1


describing the camera intrinsics. Since Xc = Xf + (0, hc−
hf , 0)T we are only interested in the parameter change in y
direction. Given Xf/d = K−1(u/d, v/d, 1)T and Xc/d =

K−1(u′/d, v′/d, 1)T the respective projections on ey are

Xf/d · ey = hf/d = f−1y v/d− f−1y py

Xc/d · ey = hc/d = f−1y v′/d− f−1y py.

Due to the upper triangle structure of K−1 the above relation
is independent from the horizontal image locations u/d and
u′/d. In the remainder of the paper we will denote indices

i =
v′

d
=
hc
d
fy + py and j =

v

d
=
hf
d
fy + py (1)

for ceiling and floor boundary, respectively. These quantities
are dependent on the depth d and define the mapping

i =
hc
hf
j +

(
1− hc

hf

)
py. (2)

Thus, with known camera intrinsics and heights hc, hf either
d, i or j allows to fully specify a vertical structure.

A. Image Alignment with Vertical Direction

This simple relation between image projections of cor-
responding points on the floor and the ceiling plane only
holds for cameras aligned with the vertical direction. This
constraint is not fulfilled a priori, but can be met by
warping images by an appropriate homography. We utilize
the vertical vanishing point to determine the upright direc-
tion by first detecting edges, followed by a line growing
and clustering step, and finally by rejecting outliers via a
RANSAC approach [16].

Vertical scene structures match with image columns if the
corresponding vertical vanishing point vv lies at infinity,
i.e. at (0, 1, 0)T . Let rv = K−1vv be the ray in the
vertical vanishing direction, then the needed homography
is represented via a camera coordinate system rotation,
aligning ey = (0, 1, 0)T with rv . The remaining axes of
the new coordinate system are chosen to be orthogonal to
rv . Assuming the original reference camera system was
the identity matrix (ex, ey, ez), the new coordinate system
coincides with the 3D rotation

Rv =

 rv × e3
rv

rv × e3 × rv

 ,

and the homography in the image domain is given via

Hv = KRvK
−1.

The pose of the second stereo image P = [R t] changes
accordingly to Pv =

[
R−1v R t

]
.

B. Identification of Floor and Ceiling plane

Knowledge of the ceiling and floor heights hf , hc is
important, since they define the relation between hypoth-
esis depths and vertical structures. We take a data driven
approach, where the mapping of boundary points, i.e. the
ratio hc/hf of Eq. (2), is determined by robustly voting



for corresponding points on edges above and below horizon
(in one image) [10], thereby relying on strong edges at
structural boundaries. Next we fit vertical structures (see
following Section IV) with random boundary pairs (i, j)
in the matching cost volume and determine the depth with
minimum vertical cost. Implicitly we retrieve corresponding
ceiling and floor heights and in this way vote for the most
likely ground and ceiling configuration. Alternatively, in
robotics it is likely that the height of the camera(s) above
ground is fixed and known. A sampling of ground contact
points similar to [8] will give a stable estimate of the
ground plane over time. A line based reconstruction scheme
(inspired by [17]) may also be utilized for the estimation of
corresponding plane heights. It is applicable if at least two
boundary points lie on the same edge.

C. Calibration and Stereo Image Matching

Calculation of matching costs for various depths requires
the knowledge of camera poses and intrinsics. In our target
setting in robotics we can assume that either the robot
is equipped with a calibrated stereo camera pair, or that
structure from motion/visual SLAM is applied for self
localization. Therefore, we can assume camera poses and
intrinsics are given.

Matching costs for different depth hypotheses may be
calculated along scan lines for a rectified image pair. In
general, aligning the cameras with vertical elements in
the images usually destroys the rectified setup, hence we
employ a plane sweep approach [4] to calculate the matching
cost volume. Sweeping directions are set along the optical
axis (i.e. fronto-parallel and thus aligned with column-wise
vertical structures) and in direction of the vertical axis to
match ceiling and ground plane. Planes are chosen such
that depth hypothesis exhibit a linear spacing in the disparity
domain. In the following the resulting cost volume is denoted
by C(x, y,p), where p = (e, d) encodes the sweeping
direction e and distance (depth) d from the reference camera
center [I 0].

IV. VERTICAL STRUCTURE HYPOTHESIS

Assuming a vertical structure along an image column k,
its start point i, end point j and depth d can be used synony-
mously for parametrization as was described in Section III.
In this way all possible depth hypotheses d relate to index
pairs (i, j), i.e. d 7→ (i, j) according to Eq. (1), and encode
the cost table Dk for column k.

The cost for an assumed vertical structure in image
column k is given by the sum over individual matching costs
at its depth hypothesis d via

DV
k (d) =

j∑
r=i

C(k, r, (ez, d)).

If boundary points (i, j) lie within the image, the support
of accumulated matching costs along the fixed ceiling and

floor plane can be facilitated with

DC
k (d) =

i−1∑
r=0

C(k, r, (ey, hc))

DF
k (d) =

m−1∑
r=j+1

C(k, r, (ey, hf )).

For the calculation of DC
k and DF

k we make use of the
cumulative structure along the ceiling and floor plane, i.e.
we calculate running sums of matching costs. For DV

k cost
accumulation is not possible, since each depth d in the cost
volume is just considered only once.

Consequently the combined cost Dk for a vertical struc-
ture at depth d and image column k is described by the
aggregation of previous three terms by

Dk(d) = DC
k (d) +DV

k (d) +DF
k (d).

The most suitable combination of vertical structures simpli-
fies to solving for the column-wise minimum over possible
depths

d∗k = arg min
d
Dk(d) ∀k ∈ {0, . . . ,m− 1} (3)

Figures 5(c) and 6(c) illustrate the depth maps obtained by
this local optimization.

V. OPTIMIZATION VIA DYNAMIC PROGRAMMING

Given the best cost solution obtained via Eq. (3) one
can observe undesired depth discontinuities, especially at
locations where the solution is ambiguous. In this section we
will present how smoothness between neighboring vertical
structures can be enforced and how the optimization problem
can be solved efficiently via dynamic programming.

In general dynamic programming guarantees to find the
global optimum for an energy function like

E = D0(l0) +

n−1∑
k=1

{
Dk(lk) + V (lk, lk−1)

}
,

with labels lk ∈ L, unary terms Dk(lk) and binary terms
V (lk, lk−1). In the simplest setting L contains the set of pos-
sible depths and we have lk = dk. Then Dk(dk) is the cost
for a vertical structure at depth dk as computed in Section
IV. The resulting smoothness term V (dk, dk−1) constitutes a
penalty for large label changes, i.e. it penalizes deviations in
depth. It could be spatially varying with location k as well,
but we did not make use of this generalization. Note that
smoothness along columns is already encoded in the data
terms, because the vertical structure prior only allows one
single depth. In our setting we use a linear cost model for
V (·, ·) with slope λd and truncated by t to allow for large
depth changes, if the data term indicates so. The penalty for
a depth change reads as

V (dk, dk−1) = λd min (|dk − dk−1| , t) . (4)



The dynamic programming algorithm is traversing over
image columns, left to right, and accumulates costs up to
the current position. In column k for label dk it searches
over all previous depths dk−1 and selects the one with
minimum accumulated costs and regularization penalties.
The related dynamic programming cost table, denoted as
Ck(d), is written as (for better readability we will drop the
index from labels and depths in the following)

Ck(d) = Dk(d) + min
d̂

{
Ck−1(d̂) + V (d, d̂)

}
(5)

= Dk(d) + min
d̂

{
Ck−1(d̂) + λd min

(
|d− d̂|, t

)}
,

with the initialization C0(d) = D0(d). We use the fast min-
convolution [18] to update Ck(d) for all depths d in linear
time. The optimal solution is found by backtracking over
Ck for k = m− 1 . . . 0.

A. First Extension: Slope based Smoothness Term

The regularization term in Eq. (4) prefers structures with
constant depths, which is not always suitable for the often
observed piecewise linear assembly of vertical structures
(recall Figure 1). Directly adding a curvature regularization
as proposed in [19] via ternary cliques is expensive due
to the quadratic complexity in the number of labels. The
alternative is to extend the labels by a slope value, hence a
label lk = (dk, sk) consists of a depth and a respective local
slope value. Thus, the binary cliques for the smoothness are
sufficient. We obtain a speed-up by limiting the values of
sk to a small range. The smoothness term now reads as

V (lk, lk−1) = λs|sk − sk−1|+ λd|dk − dk−1 − sk−1|.

Consequently changes in direction and depth discontinuities
(compensated by the local slope value) are penalized.

Similar to Eq. (5) the search for the best previous state
in a dynamic programming step now has to consider both,
previous depths and slopes:

Ck(d, s) =Dk(d) + min
l̂=(d̂,ŝ)

{
Ck−1(d̂, ŝ) + V (l, l̂)

}
=Dk(d) + min

ŝ

{
λs|s− ŝ|

+ min
d̂

{
Ck−1(d̂, ŝ) + λd · |d− d̂− ŝ|

}}
.

The minimization over d̂ has the same structure as before-
hand and thus can be speeded up again by efficient compu-
tation of the lower envelope [18]. Due to the introduction of
the slope variable we face a two-dimensional minimization
problem. However, the number of possible slopes is quite
small, e.g. S = {−2,−1, 0, 1, 2}. For each slope the min-
convolution can be executed separately, which increases
complexity by a factor of |S|. Figure 3 shows the improved
recovery of depths with the slope-based regularization (by
means of a smoother and more accurate intersection bound-
ary between a vertical structure and floor).

Figure 3. Improvement by introducing slope-based regularization (coutout
from lower left part of scene in last row of Figure 6). Left to right: best
cost, DP without slope, DP with 5 slopes.

(a) Left stereo image (b) Hallucinated vertical structures

(c) Difference in matching costs (d) Non-vertical parts (in green)

Figure 4. Model selection between vertical and non-vertical structures.
(c) illustrates the matching cost difference between the pixel-wise best cost
solution and the fitted vertical structures from (b); clearly visible is the
error in columns containing the info screen.

B. Second Extension: Model Selection

Given that a scene contains a non-vertical structure, the
algorithm tries to fit the best vertical model in terms of
matching costs. Figure 4 illustrates such a case and shows
the result for the vertical approximation in (b). In (c) we are
comparing pixel-wise best matching costs (minimum in cost
volume over all depth hypotheses) with the matching costs
at depths described by the optimal fitted vertical structure.
The result highlights exactly these areas where non-vertical
structures (and also occlusions) are present. We can make
use of this property by adding a new label to the optimization
problem describing a non-vertical structure. The goal in the
optimization then is to decide for a certain depth (assuming
a vertical structure) or for a non-vertical structure.

The cost for a non-vertical structure along a column is the
sum over pixel-wise minimal matching costs as motivated
before. This sum will always be smaller than any cost
aggregation over vertical structures; therefore, we add a
constant bias B leading to

Dk(l = non-vertical) = B +

m−1∑
r=0

min
d

C(k, r, (ez d)).



In the regularization a constant penalty t2 is added for a
label change between a vertical an a non-vertical structure
and visa verse. Since we do not optimize for specific start
and end points of a non-vertical structure, linearity terms are
omitted. The final smoothness term results in

V̄ (lk, lk−1) =

{
V (lk, lk−1) if lk, lk−1 are vertical
t2 otherwise.

VI. EXPERIMENTS

In our experimental setup, we capture a scene from several
view points. First, we run a structure from motion (SfM)
pipeline to estimate camera poses. A pair of images is
chosen from the sequence and aligned with the vertical
direction. Second, we execute a plane sweep stereo matching
to generate the cost volume; thereby 256 plane hypotheses
are tested. Intensity differences are measured via SAD in a
7×7 matching window. Finally, costs for vertical structures
are calculated and an optimal sequence is retrieved via
dynamic programming. We optimize over 256 discrete depth
values, resulting from the number of plane sweep planes.
Costs for vertical structures are normalized to lie in the
range [0, 1]; the same applies for disparity values. With that
λd = 3 and smoothness terms are truncated above t = 0.2.
The bias for costs supporting a non-vertical structure was
set to B = 1200 (before normalization) and the penalty for
a change between vertical and non-vertical models was set
to t2 = 0.2. We incorporate 5 possible slopes with λs = 0.5.

In Figure 5 results are illustrated for scenes predominantly
featuring vertical structures. Computed depth maps are not
absolutely accurate due to the strong vertical structure
presumption, but provide dense depth estimates without
artifacts for texture-less regions. Results for scenes were
vertical and non-vertical structures coexist are shown in
Figure 6. Occlusions and non-vertical structures correctly
cause a model change. Finally, Figure 7 exhibits scenes were
our depth estimation fails. It mainly occurs if the vertical
assumption is clearly hurt or matching costs are inaccurate
because of specular, transparent environments.

In terms of speed our plane sweep algorithm (GPU
implementation) requires 160ms to generate the cost volume
for images of sizes 768 × 576. The cost calculation for
vertical and non-vertical structures takes 50ms (CPU based).
Finally, basic dynamic programming is executed in 5ms;
using 3 and 5 slope values execution times are 46ms
and 120ms, respectively. Based on this measurements our
approach is well suited for real time applications. Global
stereo optimization [3] in comparison takes 2 seconds on a
GPU processing down-sampled images of size 384×256. By
comparison ELAS [2] is also very fast and has a run-time
of 320ms (but takes rectified images as input). Full scanline
optimization for stereo [1] (with GPU accelerated matching
cost calculation) requires about 1.4s.

VII. DISCUSSION

In addition to the approach presented in Section V we
explored additional, potentially more powerful methods.
First, for an image aligned with the vertical direction the
semantic layout of floor, middle, and ceiling regions is a
tiered one [20]. Hence the simultaneous determination of
floor and ceiling boundaries in the image, and deciding
whether the pixel column in between has either a vertical
or a general depth structure is in principle possible in one
dynamic programming pass. We initially considered using
a label set consisting of depth values (for vertical columns)
and index pairs indicating the floor and ceiling boundaries
(for general columns). Using similar acceleration techniques
as presented in [18] the complexity of dynamic programming
is O(n(L+2m)) for an m×n image and considering L depth
values, which we decided is too expensive for our target
application. As reference, the presented implementation has
a complexity of O(nL).

Since the computationally most expensive step is the
matching cost calculation, one aims on replacing the gen-
eral, expensive plane-sweep approach by a cheaper method.
The plane-sweep method is only fast, if hardware support
(e.g. a GPU providing fast texture sampling) is available.
Otherwise, a standard stereo setup with aligned scanlines is
preferable. This can be achieved, but only if the baseline be-
tween the cameras is parallel to the ground plane (or is very
close of being parallel). In such a setting changing the depth
of a fronto-parallel 3D plane amounts to shifting the image
in horizontal direction. With the appropriate samples of
depth values (corresponding to integral disparities), subpixel
access can be avoided. This simplification is only available
e.g. for driving robots, but not for humanoid (walking) ones
or micro aerial vehicles.

VIII. CONCLUSION

We presented a stereo algorithm, which utilizes a strong
vertical structure prior for dense depth map estimation. The
prior is encoded by calculating costs along image columns,
which are aligned with vertical 3D structures. This allows
to employ a single dynamic programming optimization step
over image columns to estimate the depth map. To account
for planar structures we introduced a slope based regulariza-
tion, and extended the approach to automatically detect areas
where the vertical assumption is not met; in addition, the
algorithm is also able to fill in these regions with plausible
vertical elements. Finally, robust depth estimation for several
scenes was demonstrated, and fast execution times enable
the application of the proposed method in interactive and
autonomous systems.
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(a) Upright images (b) Best cost depth (c) Depth using vertical aggregation (d) Our result with DP

Figure 5. Depth maps for less textured indoor environments. Images also exhibit small non-vertical parts, e.g. ceiling, open doors and structured walls.
Our depth maps in column (d) show a visually pleasing fit of vertical structure to the scenes.

(a) Upright images (b) Best cost depth (c) Best vertical depth after DP (d) Labeling of non-vertical structures

Figure 6. Depth calculation for scenes containing non-vertical, general structures. Column (d) illustrated detected non-vertical areas and occlusions with a
green overlay. The blue line indicates the best sequence of indices (i, j) after DP. In red the likelihood (base on an exponential mapping of costs Dk(d))
for an index (i, j) is shown. (best viewed in color)



(a) Upright images (b) Best cost depth (c) Detected non-vertical structures (d) Depth, best vertical assumption

Figure 7. Failure cases. First row: Reflections on the glass and structure behind the arches violate the vertical structure assumption. Second row: The
floor boundary of the vertical structures is set too high, since book shelves posses holes at their bottom resulting in less support for a vertical structure
continuation. As a consequence DP wrongly estimates large parts of the scene as non-vertical. (best viewed in color)
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