Policy Expressivity in the Anzere Personal Cloud

Oriana Riva1 Qin Yin2 Dejan Juric2
Ercan Ucan2 Timothy Roscoe2

Microsoft Research1

Systems Group, ETH Zurich2
The problem of personal data replication
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
The problem of personal data replication

Today data is replicated in an ad-hoc manner and directly by the user.
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
The problem of personal data replication
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
The problem of personal data replication

Today, data is manually replicated by the user in an ad-hoc manner.
Today, data is manually replicated by the user in an ad-hoc manner.
Online service providers (Facebook, Google, Yahoo) offer many advantages but also many drawbacks:

- Loss of privacy and control
- Lock-in
- Vulnerability to provider failures due to attacks or insolvency
A personal system for managing data

- Preserve growing body of personal data
- Make data available according to flexibly-specified policies
 - Recently-downloaded music on a device carried by the user
A personal cloud system for managing data

- Exploit (and decide when to acquire and release) virtual resources on demand
 - Recent files cached at 100 msec latency from the user’s phone
Challenges

In online, centralized solutions
- Focus on scale and throughput

In personal cloud systems
- Policy flexibility
- Heterogeneity of the device ensemble
- Changing set of devices (failure, theft, purchase of new hardware)
- Limited storage resources on some nodes (phones, tablets)
- Data durability
Hot topic

- Sync tools
 - Microsoft LiveMesh, Dropbox
- Content-based partial replication
 - Cimbiosys and Perspective
- Device transparency
 - Eyo
- Partial replication
 - PRACTI, Ficus
- Flexible consistency
 - PRACTI, Coda, Bayou, TACT
Hot topic

- Sync tools
 - Microsoft LiveMesh, Dropbox
- **Content-based partial replication**
 - Cimbiosys and Perspective
- **Device transparency**
 - Eyo
- Partial replication
 - PRACTI, Ficus
- Flexible consistency
 - PRACTI, Coda, Bayou, TACT, Paxos
- **Anzere:**
 - Expand the expressivity of policies, without sacrificing scalability
Anzere’s key principles

Device-neutral policies

- Based on device predicates rather than names
Anzere’s key principles

Device-neutral policies

- Based on device predicates rather than names
- Replicate photos on my mobile phone to my home server
Anzere’s key principles

Device-neutral policies

- Based on device predicates rather than names
- Replicate photos on my mobile phone to my home server
- Ensure at least one copy of every photo exists on a fixed server I own

Oriana Riva et al. Policy Expressivity in the Anzere Personal Cloud SOCC '11
Anzere’s key principles

Device-neutral policies

- Based on device predicates rather than names
- Replicate photos on my mobile phone to my home server
- Ensure at least one copy of every photo exists on a fixed server I own
- Make items modified in the last hour accessible at no more than 100 msec latency from the phone
Anzere’s key principles
Device-neutral policies

- Based on device predicates rather than names
- Replicate photos on my mobile phone to my home server
- Ensure at least one copy of every photo exists on a fixed server I own
- Make items modified in the last hour accessible at no more than 100 msec latency from the phone

Benefits
- Work across changes in the device set
- Automatically apply to new devices (unless radically different)
- Potentially reusable by other users
Anzere’s key principles

Policy stratification

Automatic extraction of metadata

item(flower.jpeg,'JPEG',1272466300,public,…).
device(nokiaN900,mobile,phone,owned,0,…).
Anzere’s key principles
Policy stratification

<table>
<thead>
<tr>
<th>picture_item(Itemid) :-</th>
</tr>
</thead>
<tbody>
<tr>
<td>item{itemid:Itemid,type:'JPEG'};</td>
</tr>
<tr>
<td>item{itemid:Itemid,type:'PNG'}.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>any_device(Resid) :-</th>
</tr>
</thead>
<tbody>
<tr>
<td>device{resid:Resid}.</td>
</tr>
</tbody>
</table>

Item and device predicates

<table>
<thead>
<tr>
<th>item(flower.jpeg,'JPEG',1272466300,public,...).</th>
</tr>
</thead>
<tbody>
<tr>
<td>device(nokiaN900,mobile,phone,owned,0,...).</td>
</tr>
</tbody>
</table>

Item and device metadata
Anzere’s key principles
Policy stratification

<table>
<thead>
<tr>
<th>Item predicates</th>
<th>Relation</th>
<th>Device predicates</th>
</tr>
</thead>
</table>
| picture_item(Itemid) :-
 item{itemid:Itemid,type:'JPEG'};
 item{itemid:Itemid,type:'PNG'}. |
| any_device(Resid) :- device{resid:Resid}. |
| item(flower.jpeg,'JPEG',1272466300,public,...). |
| device(nokiaN900,mobile,phone,owned,0,...). |

Policies

policy([[picture_item],[rep,#>,2],[[any_device]]).
Anzere’s key principles
Policy stratification

- Policies are expressed in **logic programming** (Prolog)
- Applications generate policies on users’ behalf
Make data modified in the last hour accessible at no more than 100 msec latency from the phone

% item_predicate
rec_item(Itemid):- item{id:Itemid,moddate:Moddate}, mod_within(Moddate,3600).

% device_predicate
close_dev(MyDevid,Devid,MaxLatency):- ollink{myid:MyDevid,id:Devid,_latency:Latency}, Latency $< MaxLatency.

% policy
policy([[rec_item]],[repany],[[close_dev,NokiaN900,100]]).
Fault tolerance:

Video backup on 2 fixed, owned devices

\[
policy([\text{[video_item]}],[\text{rep,\#}\geq,2],[\text{[fixed_device]}, \text{[owned_device]}]).
\]
Fault tolerance:

- Video backup on 2 fixed, owned devices

 \[
 \text{policy}([[\text{video_item}]],[\text{rep,}\#\geq,2],[[\text{fixed_device}], \text{[\text{owned_device}]]}).
 \]

Resource management:

- 5GB free storage on phone

 \[
 \text{policy}([[\text{any_item}]],[\text{size,}\#\leq,5000],[[\text{phone_device}]])
 \]
Expressivity of the policy language

- Fault tolerance:
 - Video backup on 2 fixed, owned devices
 policy([[video_item]], [rep,#>=,2],[[fixed_device], [owned_device]]).

- Resource management:
 - 5GB free storage on phone
 policy([[any_item]], [size,#=<,5000],[[phone_device]]).

- Privacy:
 - No private items in the cloud
 policy([[private_item]], [repnone],[[cloud_device]]).
Anzere system architecture

Office network
Home network
Application policies
Overlay network
Sensors
Data replication (PRACTI, Paxos)
copy & delete actions
acquire & release VM
Reasoning engine (ECLiPSe CLP)
KB
Actuators
Overlay network

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Anzere system architecture

- Office network
- Home network
- Application policies
- Overlay network
- Sensors
- Data replication (PRACTI, Paxos)
- Copy & delete actions
- Acquire & release VM
- Actuators
- Reasoning engine (ECLiPSe CLP)
- KB
- Overlay network

Reasoning engine
- Policies
- Acquire & release VM
- Copy & delete actions

Office network
- Home network

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Anzere system architecture

Office network
Home network
Application policies
Overlay network
Sensors
Data replication
(PRACTI, Paxos)
copy &
delete
actions
acquire &
release
VM
Reasoning engine
(ECLiPSe CLP)
KB
Actuators
Data replication
(PRACTI, Paxos)

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Anzere system architecture

- **Office network**
- **Home network**
- **Application policies**
- **Overlay network**
- **Sensors**
- **Data replication** (PRACTI, Paxos)
- **Copy & delete actions**
- **Acquire & release VM**
- **Reasoning engine** (ECLiPSe CLP)
- **KB**
- **Actuators**

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC ’11
Policy evaluation
Constraint satisfaction problem
Policy evaluation
Constraint satisfaction problem

Current data distribution

<table>
<thead>
<tr>
<th></th>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>i2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

#rep
- \(\geq 1 \)
- \(\geq 1 \)
- \(\geq 1 \)
- \(\geq 2 \)

size
- freemem
- \(\geq 2 \)G
- --
- --

constraints
Policy evaluation
Constraint satisfaction problem

Current data distribution

<table>
<thead>
<tr>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
<th>#rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>≥1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>≥1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>≥1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>≥2</td>
</tr>
</tbody>
</table>

size
freemem >2G | -- | -- |

Set of solutions

<table>
<thead>
<tr>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>{0,1}</td>
<td>{0,1}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Oriana Riva et al. Policy Expressivity in the Anzere Personal Cloud SOCC '11
Policy evaluation
Constraint satisfaction problem

Current data distribution

<table>
<thead>
<tr>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
<th>#rep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>≥1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>≥1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>≥1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>≥2</td>
</tr>
</tbody>
</table>

size
freemem >2G | -- | -- |

Set of solutions

<table>
<thead>
<tr>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>{0,1}</td>
<td>{0,1}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Constraints

Execution plan

copy (i2, phone, homePC)
delete (i2, phone)
copy (i4, homePC, laptop)

New data distribution

<table>
<thead>
<tr>
<th>phone</th>
<th>home PC</th>
<th>laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Anzere’s system architecture

Office network
Home network
Application policies
Overlay network
Sensors
Data replication
(PRACTI, Paxos)
copy & delete actions
acquire & release VM

Reasoning engine (ECLiPSe CLP)
KB

Application

Actuators

Overlay network

Data replication (PRACTI, Paxos)
Anzere’s system architecture

Office network
Home network
Application policies
Overlay network
Sensors Data replication (PRACTI, Paxos)
copy & delete actions
acquire & release VM
Reasoning engine (ECLiPSe CLP)
KB

Application policies

Reasoning engine (ECLiPSe CLP)

Data replication (PRACTI, Paxos)

Office network
Home network
Actuators
Overlay network

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC ’11
Acquirable resources

Factor the decision of acquiring cloud resources in the policy process

- Evaluate the states the system can achieve through acquirable resources

<table>
<thead>
<tr>
<th>items</th>
<th>constraints</th>
<th>devices</th>
<th>constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>i1</td>
<td></td>
<td>phone</td>
<td>0 {0,1} {0,1}</td>
</tr>
<tr>
<td>i2</td>
<td></td>
<td>laptop</td>
<td>{0,1} {0,1}</td>
</tr>
<tr>
<td>i3</td>
<td></td>
<td>cloud?</td>
<td>{0,1} {0,1}</td>
</tr>
<tr>
<td>i4</td>
<td></td>
<td></td>
<td>0 1 0</td>
</tr>
</tbody>
</table>

- acquire and release actions

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
Anzere’s system architecture

Office network
Home network
Application policies
Overlay network
Sensors
Data replication (PRACTI, Paxos)
copy & delete actions
acquire & release VM
Reasoning engine (ECLiPSe CLP)
KB
Actuators

Oriana Riva et al. Policy Expressivity in the Anzere Personal Cloud SOCC '11
Anzere’s system architecture

- **Office network**
- **Home network**
- **Application policies**
- **Overlay network**
- **Sensors**
- **Data replication** (PRACTI, Paxos)
- **Copy & delete actions**
- **Acquire & release VM**
- **Reasoning engine** (ECLiPSe CLP)
- **KB**
- **Actuators**

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Experimental evaluation

- **Testbed**
 - Home PC, Office PC, N900 phone, laptop, PlanetLab VMs, EC2 VMs

- **Policy sustainability**
 - Scales to large numbers of items
 - Low memory consumption: upper bound memory for 10000 items is 64 MB

- **Reactivity**
 - to device changes (e.g., home server crash)
 - to policy changes
 - to device mobility
Experimental evaluation

- Testbed
 - Home PC, Office PC, N900 phone, laptop, PlanetLab VMs, EC2 VMs

- Policy sustainability
 - Scales to large numbers of items
 - Low memory consumption: upper bound memory for 10000 items is 64 MB

- Reactivity
 - to device changes (e.g., home server crash)
 - to policy changes
 - to device mobility
Scalability

CLP solver execution time vs. number of items

ECLiPSe solver, 10 policies
Item equivalence classes

- Generated from the item predicates of the active policies
- \[\text{policy}([\text{music_item}], [\text{rec_item}], [\text{repany}], [\text{owned_dev}]) \].
 \[\rightarrow (\text{music_item}, \text{rec_item}), (\neg \text{music_item}, \text{rec_item}), (\text{music_item}, \neg \text{rec_item}), (\neg \text{music_item}, \neg \text{rec_item}) \]
- Reduce the problem space

<table>
<thead>
<tr>
<th>equiv classes</th>
<th>c4</th>
<th>c3</th>
<th>c2</th>
<th>c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phone</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>home PC</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>laptop</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Scalability

CLP solver execution time vs. number of items

- **ECLiPSe** solver, 10 policies
Scalability

CLP solver execution time vs. number of items

![Graph showing CLP solver execution time vs. number of items]

- ECLiPSe solver, 10 policies
Scalability

CLP solver execution time vs. number of items

- Scale with the policies’ complexity
Conclusion

- Anzere
 - Personal cloud system for data management
 - Supports policy-based replication
 - Scales to large numbers of data items
 - Integrates acquirable resources from the cloud

- It is an actual system
 - Trials on personal clouds: home and office PCs, N900 phones, laptops, PlanetLab and Amazon EC2
 - Source code at www.systems.ethz.ch/research/projects/anzere
Backup slides
Experimental evaluation

- **Testbed**
 - Home PC, Office PC, N900 phone, laptop, PlanetLab VMs, EC2 VMs

- **Policy sustainability**
 - Scales to very large numbers of items (shown before)
 - Low memory consumption: upper bound memory for 10000 items is 64 MB

- **Reactivity**
 - to device changes (e.g., home server crash)
 - to policy changes
 - to device mobility (policy([[picture_item],[mod_item,#<,86400]], [rep,#>=,1], [[fixed_device],[close_device,’laptop’,100]]))
Reactivity
to device failures: home server crash

Acquirable resources help the system stabilize and decrease its level of vulnerability
Reactivity
to mobility: laptop moves from EU to US

![Chart showing reactivity to mobility](chart.png)

Policy Expressivity in the Anzere Personal Cloud

Oriana Riva et al.
Reactivity
to mobility: laptop moves from EU to US

policy([[picture_item],[mod_item,#<,86400]], [rep,#>=,1],
[[fixed_device],[close_device,'laptop',100]]).

- Acquirable resources allow for improved performance
Optimization overhead

Time vs. number of items for an increasing number of policies
Baseline
Message overhead vs. consistency level

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Baseline
Message overhead vs. consistency level

Bandwidth utilization (kbit/s)

Consistency level

Overlay msg
Sensor msg
Paxos msg
Inval+control msg

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
A realistic dataset

<table>
<thead>
<tr>
<th>Data</th>
<th>HomePC</th>
<th>Laptop</th>
<th>OfficePC</th>
<th>Phone</th>
<th>Camera</th>
<th>Cloud</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photos</td>
<td>6958</td>
<td>3291</td>
<td>0</td>
<td>89</td>
<td>25</td>
<td>4492</td>
<td>9231</td>
</tr>
<tr>
<td></td>
<td>8.1G</td>
<td>7.2G</td>
<td>0</td>
<td>38.5M</td>
<td>56.5M</td>
<td>5G</td>
<td>13.2G</td>
</tr>
<tr>
<td>Music</td>
<td>4904</td>
<td>932</td>
<td>3997</td>
<td>868</td>
<td>0</td>
<td>0</td>
<td>4904</td>
</tr>
<tr>
<td></td>
<td>23.1G</td>
<td>5.7G</td>
<td>1.9G</td>
<td>4.3G</td>
<td>0</td>
<td>0</td>
<td>23.1G</td>
</tr>
<tr>
<td>Videos</td>
<td>53</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>4.7G</td>
<td>2.2G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>435M</td>
<td>6.8G</td>
</tr>
</tbody>
</table>

number and size of files
Acquirable resources

New issues

- **How many** acquirable resources to reason about?
 - depends on the maximum number of replicas in policies
- **Which** virtual resources to consider?
 - Differ in location, price, cloud providers, ...
- Follow changing **price structures** of cloud providers
Policy set

1. recent music on phones
policy([[audio_item], [mod_item,#<,86400], [repall], [[phone_device]])

2. photos on any fixed device
policy([[picture_item]], [repany], [[fixed_device]])

3. music on more than two personal devices
policy([[audio_item]], [rep,#>=,1], [[pc_device]])

4. videos on any home device
policy([[video_item]], [repany], [[home_device]])

5. public items on at least 2 devices
policy([[public_item]], [rep,#>=,2], [[any_device]])

6. private items on at least 2 fixed devices
policy([[private_item]], [rep,#>=,2], [[fixed_device]])

7. video items recently modified on at least one mobile device
policy([[video_item], [mod_item,#<,86400], [rep,#>=,1], [mobile_device]])

8. photos in the cloud
policy([[picture_item]], [repany], [[cloud_device]])

9. videos on a fixed device at 1-minute latency from the laptop
policy([[video_item], [mod_item,#<,86400], [rep,#>=,1], [[fixed_device], [close_device,'laptop1',100]])

10. no private items in the cloud
policy([[private_item]], [repnone], [[cloud_device]])

11. public photos in the cloud
policy([[public_item], [picture_item]], [repany], [[cloud_device]])
CLP memory consumption

![CLP memory consumption graph]

- Stack peak
- Heap used
- Memory usage upbound

Stack size (MB)

Number of items

Memory usage upbound

Oriana Riva et al.
Policy Expressivity in the Anzere Personal Cloud
SOCC '11
Steady-state tradeoffs
Item vulnerability vs. CLP solving period

- A phone takes 5 photos every 2 minutes (interleaved of 20 s)