
Formal Methods and

Functional Programming

-

Week 1

Ralf Sasse

February 18



General information

Basics:

I one exercise session per week

I one exercise sheet per week - due Monday by 11.00
I submit by email or drop in box in front of CNB F101

Content of exercise session:

I feedback on last exercise sheet hand-ins

I explain solutions of (parts of) that sheet

I give preview information about new exercise sheet



Haskell introduction

I installation

I pick text editor of choice

I workflow demonstrated shortly:

1. write/modify haskell source in text file
2. load in ghci
3. test your function definitions
4. repeat from 1

I debugging: typecheck + runtime
I mistakes demo



Demo

DEMO



Motivation message derivations

I Assume we have a network protocol which enables Alice
and Bob to talk to each other.

I They talk about sensitive things, so they protect the
messages using cryptography

I Charlie owns a router somewhere in the middle of the
network and he’d like to learn (at least some part of)
what Alice and Bob are talking about

I Can he combine the crypto messages he sees in some
clever way to get to the secret stuff?

I Alternatively: what messages can he derive from the
messages he sees?

I We’d like to reason about this formally



Crypto Messages

Let a set A of atomic messages be given. LM, the language of
messages, is the smallest set where:

I M ∈ LM if M ∈ A

I 〈A,B〉 ∈ LM if A,B ∈ LM (pairing)

I {M}K ∈ LM if M ,K ∈ LM (encryption)



Message Derivations

For a sequence of messages M1, . . . ,Mk , we call
M1, . . . ,Mk ` M a sequent.
Informally, this corresponds to the assertion:
M can be derived from the messages M1, . . . ,Mk .

Derivation rules:

Γ,M ` M
Ax

Γ ` A Γ ` B

Γ ` 〈A,B〉
Pair-I

Γ ` 〈A,B〉
Γ ` A

Pair-EL
Γ ` 〈A,B〉

Γ ` B
Pair-ER

Γ ` M Γ ` K

Γ ` {M}K
Enc-I

Γ ` {M}K Γ ` K

Γ ` M
Enc-E



Derivations

A derivation is a tree.
Consider the sequence of messages Γ = 〈k1, k2〉, {{s}k1}k2 ,
then the following tree is a derivation of the sequent Γ ` s.



Exercises I

I Derive the sequent k1, {k2}k1 , {s}k1 ` {s}k2 .

I Derive the sequent 〈a, 〈b, c〉〉, {s}〈〈a,b〉,c〉 ` s.

Derivation rules:

Γ,M ` M
Ax

Γ ` A Γ ` B

Γ ` 〈A,B〉
Pair-I

Γ ` 〈A,B〉
Γ ` A

Pair-EL
Γ ` 〈A,B〉

Γ ` B
Pair-ER

Γ ` M Γ ` K

Γ ` {M}K
Enc-I

Γ ` {M}K Γ ` K

Γ ` M
Enc-E



Knowledge proofs

We now define the language of knowledge formulas LF as the
smallest set where:

I M known ∈ LF if M ∈ LM (knowledge facts)

I A → B ∈ LF if A,B ∈ LF (implication)

We can now write formulas such as
〈a, b〉 known → {a}b known.



Proof rules

Γ,A ` A
Ax

Γ ` A known Γ ` B known

Γ ` 〈A,B〉 known
Pair-I

Γ ` 〈A,B〉 known
Γ ` A known

Pair-EL
Γ ` 〈A,B〉 known

Γ ` B known
Pair-ER

Γ ` M known Γ ` K known

Γ ` {M}K known
Enc-I

Γ ` {M}K known Γ ` K known

Γ ` M known
Enc-E

Γ,A ` B

Γ ` A → B
→-I

Γ ` A → B Γ ` A

Γ ` B
→-E



Proof

A proof of a formula F is a derivation of the sequent ` F .
Example: 〈a, b〉 known → {a}b known



Exercises II
I Prove a known → 〈{b}a, {s}{a}b〉 known → s known.
I Prove d known → ({s}b known → b known) →

{〈{{s}b}c , c〉}d known → s known.

Γ,A ` A
Ax

Γ ` A known Γ ` B known

Γ ` 〈A,B〉 known
Pair-I

Γ ` 〈A,B〉 known
Γ ` A known

Pair-EL
Γ ` 〈A,B〉 known

Γ ` B known
Pair-ER

Γ ` M known Γ ` K known

Γ ` {M}K known
Enc-I

Γ ` {M}K known Γ ` K known

Γ ` M known
Enc-E

Γ,A ` B

Γ ` A → B
→-I

Γ ` A → B Γ ` A

Γ ` B
→-E


