
Automated Symbolic Proofs of Observational Equivalence

David Basin
Inst. of Information Security
Dept. of Computer Science

ETH Zurich, Switzerland
basin@inf.ethz.ch

Jannik Dreier
Inst. of Information Security
Dept. of Computer Science

ETH Zurich, Switzerland
jannik.dreier@inf.ethz.ch

Ralf Sasse
Inst. of Information Security
Dept. of Computer Science

ETH Zurich, Switzerland
ralf.sasse@inf.ethz.ch

ABSTRACT
Many cryptographic security definitions can be naturally
formulated as observational equivalence properties. How-
ever, existing automated tools for verifying the observational
equivalence of cryptographic protocols are limited: they do
not handle protocols with mutable state and an unbounded
number of sessions. We propose a novel definition of obser-
vational equivalence for multiset rewriting systems. We then
extend the Tamarin prover, based on multiset rewriting, to
prove the observational equivalence of protocols with muta-
ble state, an unbounded number of sessions, and equational
theories such as Diffie-Hellman exponentiation. We demon-
strate its effectiveness on case studies, including a stateful
TPM protocol.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; K.4.4 [Electronic Commerce]: Security

General Terms
Security, Verification

Keywords
Protocol verification, observational equivalence, symbolic model

1. INTRODUCTION
Security protocols are the backbone of secure communi-

cation in open networks. It is well known that their design
is error-prone and formal proofs can increase confidence in
their correctness. Most tool-supported proofs have focused
on trace properties, like secrecy as reachability and authenti-
cation as correspondence. But observational equivalence has
received increasing attention and it is frequently used to ex-
press security properties of cryptographic protocols. Exam-
ples include stronger notions of secrecy and privacy-related

.

properties of voting and auctions [14, 16, 17, 18], game-
based notions such as ciphertext indistinguishability [5], and
authenticated key-exchange security [6, 21].

Our focus in this paper is on symbolic models [4] for ob-
servational equivalence. The key advantage of using a sym-
bolic model is that it enables a higher degree of automation
in tools [9, 11, 8, 7, 29] for protocol analysis. These tools can
quickly find errors in protocols or demonstrate their correct-
ness with respect to symbolic abstractions. Moreover, they
do not require a manual, tedious, and error-prone proof for
each protocol. Unfortunately, none of the above tools are
capable of analyzing protocols with mutable state for an
unbounded number of sessions with respect to a security
property based on observational equivalence. Note that mu-
table state is a key ingredient for many kinds of protocols
and systems, for example to specify and analyze security
APIs for hardware security modules [22].

In this paper, we develop a novel and general definition of
observational equivalence in the symbolic setting of multiset
rewriting systems. We present an algorithm suitable for pro-
tocols with mutable state, an unbounded number of sessions,
as well as equational properties of the cryptographic opera-
tions, such as Diffie-Hellman exponentiation. Our algorithm
is sound but not complete, yet it succeeds on a large class of
protocols. We illustrate this through case studies using our
implementation of the algorithm in the Tamarin prover.

As case studies we verify the untraceability of an RFID
protocol, and find an attack on the TPM Envelope protocol
when using deterministic encryption. Note that some proto-
cols, such as TPM Envelope, have been analyzed before with
symbolic methods [15]. However, their analyses were carried
out with respect to weaker trace-based security properties
such as the unreachability of a state where the adversary
can derive secrets. Formulating security properties in terms
of observational equivalence is much closer to the properties
used in game-based cryptographic proofs than trace prop-
erties are. For example, game-based protocol analysis often
uses the standard test [24] of distinguishing real–or–random,
where the adversary is unable to distinguish the real secret
from an unrelated randomly generated value.

Contribution. We give a novel definition of observational
equivalence in the multiset rewriting framework and an as-
sociated algorithm which is the first that supports mutable
state, an unbounded number of sessions, and Diffie-Hellman
exponentiation. We implement this algorithm in an exten-
sion of the Tamarin prover and we demonstrate its practi-
cality in different case studies that illustrate its features.
The resulting proofs are largely automated, with limited

manual input needed to select proof strategies in some cases.
Structure. We introduce our general system model based

on multiset rewriting in Section 2. We motivate and de-
fine observational equivalence for multiset rewrite systems
in Section 3. We show how to prove observational equiv-
alence in Section 4 and sketch its implementation in the
Tamarin prover. Afterwards we present our case studies in
Section 5. We close with related work and draw conclusions
in Section 6.

2. PRELIMINARIES AND MODEL
Let S∗ denote the set of sequences over S. For a sequence

s, we write si for its i-th element, |s| for its length, and
idx(s) = {1, . . . , |s|} for the set of its indices. We use []
to denote the empty sequence, [s1, . . . , sk] to denote the se-
quence s of length k, and s · s′ to denote the concatenation
of the sequences s and s′.

We specify properties of functions by equations. Given a
signature ΣFun of functions and a set V of variables, TΣFun(V)
denotes the set of terms built using functions from ΣFun and
variables from V . Terms without variables are called ground
terms and denoted TΣFun . An equation over the signature
ΣFun is an unordered pair of terms s, t ∈ TΣFun(V), written
s ' t. An equational presentation is a pair E = (ΣFun;E) of
a signature ΣFun and a set of equations E. The correspond-
ing equational theory =E is the smallest ΣFun-congruence
containing all instances of the equations in E. We often
leave the signature ΣFun implicit and identify the equations
E with the equational presentation E . Similarly, we use =E

for the equational theory =E . We say that two terms s and
t are equal modulo E iff s =E t. We use the subscript E to
denote the usual operations on sets, sequences, and multi-
sets where equality is modulo E instead of syntactic equality.
For example, we write ∈E for set membership modulo E.

Example 1. To model symmetric key encryption, let ΣFun

be the signature consisting of the functions enc(·, ·) and
dec(·, ·) together with the equation dec(enc(x, k), k) ' x.

We model systems using multiset rewrite rules. These
rules manipulate multisets of facts which model the current
state of the system, with terms as arguments. Formally,
given a signature ΣFun and a (disjoint) set of fact symbols
ΣFact, we define Σ = ΣFun ∪ ΣFact, and we define the set of
facts as F = {F (t1, . . . , tn)|ti ∈ TΣFun , F ∈ ΣFact of arity n}.
We assume that ΣFact is partitioned into linear and persis-
tent fact symbols; a fact F (t1, . . . , tn) is called linear if its
function symbol F is linear, and persistent if F is persis-
tent. Linear facts model resources that can only be con-
sumed once, whereas persistent facts can be consumed as
often as needed. We denote by F] the set of finite multisets
built using facts from F , and by G] the set of multisets of
ground facts.

The system’s possible state transitions are modeled by
labeled multiset rewrite rules. A labeled multiset rewrite rule
is a tuple (id, l, a, r), written id : l−−[a]→r, where l, a, r ∈ F]
and id ∈ I is a unique identifier. Given a rule ri = id :
l−−[a]→r, name(ri) = id denotes its name, prems(ri) = l
its premises, acts(ri) = a its actions, and concs(ri) = r its
conclusions. Finally ginsts(R) denotes the ground instances
of a set R of multiset rewrite rules, lfacts(l) is the multiset
of all linear facts in l, and pfacts(l) is the set of all persistent
facts in l. We use mset(s) to highlight that s is a multiset,

and we use set(s) for the interpretation of s as a set, even if
it is a multiset. We use regular set notation {·} for multisets
as well, whenever it is clear from the context whether it is a
set or a multiset.

Example 2. The following multiset rewrite rules describe
a system that constructs terms containing nested applica-
tions of the functions one(·) and two(·) inside a fact built
with the symbol M using the first three rules below. Using
the final rule, Echeck, the system can compare a constructed
term with the value stored in the InEnv(·) fact.

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv(x)−−[]→OutEnv(true) }

In our semantics of multiset rewriting, we associate each
fact F with a recipe recipe(F), representing how this fact
was derived. This will be important for defining observa-
tional equivalence later. Specifically, we define a sequence
of the premises seq≤(l) and conclusions seq≤(r) of a rule
id : l−−[a]→r by ordering all facts under the total order ≤.
Usually, ≤ will just be the lexicographic order, where if the
same fact symbol appears repeatedly, we order the instances
of each such fact lexicographically by the terms inside the
fact. If these terms are also identical, the facts can appear
in any order. Given a rule id : l−−[a]→r, for a fact F ∈ r,
where k is the index of F in seq≤(r), and l1, . . . , ln = seq≤(l),
we have

recipe(F) = idk(newvars(F), [recipe(l1), . . . , recipe(ln)]),

where newvars(F) denotes the list of new variables. New
variables are those that appear in F but not in any of the
premises. Thus, we include their instantiations, e.g., [{a/x}]
for the list containing the new variable x instantiated with a.
This list is ordered by the appearance of the new variables
inside F . This definition requires computing the recipes for
the facts l1, . . . , ln recursively. Moreover, by abuse of nota-
tion, we define the recipe of a rule id as

recipe(id) = id([newvars(r1), . . . ,newvars(rm)],
[recipe(l1), . . . , recipe(ln)]),

where r1, . . . , rm = seq≤(r). It consists of the list of lists of
new variables and the list of all recipes of the premises. We
denote by ρ the set of all recipes of rules.

The semantics of a set of multiset rewrite rules P are given
by a labeled transition relation →P ⊆ G] × (G] × ρ) × G],
defined by the transition rule:

ri = id : l−−[a]→r ∈E ginsts(P)

lfacts(l) ⊆] S pfacts(l) ⊆ S

S
set(a)−−−−−−→

recipe(id)
P ((S \] lfacts(l)) ∪] mset(r))

Note that the initial state of an LTS derived from multiset
rewrite rules is the empty set of facts ∅. Each transition
transforms a multiset of facts S into a new multiset of facts,
according to the rewrite rule used. Moreover each transition
is labeled by the actions a of the rule, as well as the rule’s
recipe recipe(id). These labels are used in our definition of
observational equivalence below, for example that each in-
terface transition must be simulated by the same transition.
Since we perform multiset rewriting modulo E, we use ∈E

System Sys

Environment Env

InSys OutSys

Interface

IF

OutEnv InEnv

Figure 1: System model

for the rule instance. As linear facts are consumed upon
rewriting, we use multiset inclusion, written ⊆], to check
that all facts in lfacts(l) occur sufficiently often in S. For
persistent facts, we only check that each fact in pfacts(l)
occurs in S. To obtain the successor state, we remove the
consumed linear facts and add the generated facts.

Example 3 (Pairs). Consider two systems, where the
first system outputs a pair of identical values

SA = { A : −−[]→OutSys((x, x)) }

and the second system may output two different values

SB = { B : −−[]→OutSys((x, y)) } .

In SA, we have that

∅ −−−−−−−−→
A([{m/x}],[])

{OutSys((m,m))} .

In SB, we can either take a similar transition

∅ −−−−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}

or alternatively

∅ −−−−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))} .

3. OBSERVATIONAL EQUIVALENCE
Observational equivalence expresses that two systems ap-

pear the same to the environment. This can be used to
specify security properties such as the inability of an at-
tacker to distinguish between two instances of a protocol. It
also has applications in system verification, for example in
formalizing that the environment sees no difference between
interacting with an ideal system or a concrete implementa-
tion. To define observational equivalence, we must model
the system, the environment, and their interface.

In our model, depicted in Fig. 1, we model both the Sys-
tem Sys and the environment Env using multiset rewrite
rules. We require that the sets of facts and rules used by the
system and the environment are disjoint, and that their sig-
natures provide“communication facts”OutSys, InSys, OutEnv,
and InEnv as an interface for interaction. Their interaction
is described by the following interface rules.

OUT = {OUT : OutSys(M)−−[O]→InEnv(M)}
IN = {IN : OutEnv(M)−−[I]→InSys(M)}
IF = OUT ∪ IN

The OUT rule forwards the system’s output to the environ-
ment’s input and the IN rule forwards the environment’s
output to the system’s input.

In our interface rules, each input and output is labeled
using the action O, for system output, or I, for system
input. We model that the environment can only observe
these interactions, but not the internal state or transitions
within the system, which should be invisible to the environ-
ment. We reflect this in the recipes by defining the recipe
of the InEnv(M) fact as a conclusion of the OUT-rule differ-
ently from other facts in the system or environment rules.
Namely, we define recipe(InEnv(M)) = OUT1([], x), where x
is a new variable. Similarly we define the recipe of the rule as
recipe(OUT) = OUT([], x). This replaces the recipe of the
OutSys(M) fact, which is considered to be internal to the
system, with a variable. Note that this replacement makes
the book-keeping of recipes inside the system unnecessary;
however we keep them in our formalization as it simplifies
the definition of the LTS as we therefore do not need to
distinguish between system and environment transitions.

Example 4 (Pairs revisited). Consider the two sys-
tems from Example 3 and the following environment, which
can check whether the two values in a pair are equal:

Env = { C : InEnv(x, x)−−[]→OutEnv(true) } .

Then in SA ∪ IF ∪ Env we have

∅ −−−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−−→

OUT([],z)
{InEnv((m,m))}

−−−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv(true)} .

In SB ∪ IF ∪ Env we have similar transitions:

∅ −−−−−−−−−−−→
B([{m/x,m/y}],[])

{OutSys((m,m))}
O−−−−−−→

OUT([],z)
{InEnv((m,m))}

−−−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv(true)} .

Note that the first transition has a different recipe as we also
must instantiate y, but the output replaces this recipe with a
new variable z, which is the same on both sides. This hides
from the environment how the term was constructed. How-
ever, in SB∪IF∪Env we also have the following transitions:

∅ −−−−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−−→

OUT([],z)
{InEnv((m,n))} .

Note that the first transition has a different recipe as we
instantiate y differently, but again the output replaces this
recipe with a new variable z, which is the same on both sides.

3.1 Definition
We formalize observational equivalence in the context of

labeled transition systems (LTS) induced by two multiset
rewrite systems. Since the environment does not know with
which system it is interacting, each transition caused by an
environment rule must be matched by the same rule oper-
ating on facts with the same recipes, ensuring that the en-
vironment makes the same choices in both cases. Otherwise
the environment could trivially distinguish any two systems
by choosing transitions depending on which system it inter-
acts with. Similarly, all interface rules must be matched by

themselves, ensuring that an input can only be matched by
an input, and an output only by an output.

In contrast to the above, transitions inside one system can
be matched by any number of transitions in the other system
since the environment cannot observe these steps. This is
reflected by the OUT rule, where the recipe of a system
output is removed, ensuring that the environment does not
know how the term was constructed. Note that this still
allows the environment to distinguish both systems if their
behavior on a given input differs, or if they output terms that
can be distinguished by the environment. An example of the
latter is when a transition in the environment requiring the
equality of two terms with the same recipes (i.e., deduced
using the same steps from the same outputs) is possible in
one system, but not in the other.

Definition 1 (Observational Equivalence ≈).
Two sets of multiset rewrite rules SA and SB are observa-
tional equivalent with respect to an environment given by
a set of multiset rewrite rules Env, written SA ≈Env SB,
if, given the LTS defined by the rules SA ∪ IF ∪ Env and
SB ∪ IF ∪ Env, there is a relation R containing the initial
states, such that for all states (SA,SB) ∈ R we have:

1. If SA
l−→
r
S ′A and r is the recipe of a rule in Env ∪ IF,

then there exists actions l′ ∈ F] and S ′B ∈ G] such that

SB
l′−→
r
S ′B, and (S ′A,S ′B) ∈ R.

2. If SA
l−→
r
S ′A and r is the recipe of a rule in SA, then

there exist recipes r1, . . . , rn ∈ ρ of rules in SB, actions

l1, . . . , ln ∈ F], n ≥ 0, and S ′B ∈ G] such that SB
l1−→
r1

. . .
ln−→
rn
S ′B, and (S ′A,S ′B) ∈ R.

Additionally, we have the same in the other direction:

3. If SB
l−→
r
S ′B and r is the recipe of a rule in Env ∪ IF,

then there exists actions l′ ∈ F] and S ′A ∈ G] such that

SA
l′−→
r
S ′A, and (S ′A,S ′B) ∈ R.

4. If SB
l−→
r
S ′B and r is the recipe of a rule in SB, then

there exist recipes r1, . . . , rn ∈ ρ of rules in SA, actions

l1, . . . , ln ∈ F], n ≥ 0, and S ′A ∈ G] such that SA
l1−→
r1

. . .
ln−→
rn
S ′A, and (S ′A,S ′B) ∈ R.

3.2 Examples
We now illustrate this definition on several examples.

Example 5 (Pairs). Consider the two systems and the
environment from Example 4. In SB ∪ IF ∪ Env we have

∅ −−−−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−−→

OUT([],z)
{InEnv((m,n))} .

The only way for SA ∪ IF ∪ Env to simulate this would be

∅ −−−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−−→

OUT([],z)
{InEnv((m,m))} .

and potentially further transitions using rule A, adding more
OutSys((m,m)) facts to the state. Note that there can only
be one InEnv((m,m))-fact in the resulting state as the out-
put transition can only be used once. This implies that for
the resulting state S we have ({S}, {InEnv((m,n))}) ∈ R.
However we have

S −−−−−−−−−−−→
C([],[OUT1([],z)])

{OutEnv(true)},

but in state {InEnv((m,n))} no transition with the same
recipe is possible, hence SA 6≈Env SB.

This simple example illustrates that if the environment can
do something on one side, but not on the other, then the two
sides are distinguishable and therefore not observationally
equivalent. The next example illustrates the importance of
recipes in our definition of observational equivalence.

Example 6. Consider the two systems from Example 4,
but a different environment Env′:

Env′ = { Efst : InEnv((x, y))−−[]→M(x),
Esnd : InEnv((x, y))−−[]→M(y),
Ecmp : M(x),M(x)−−[]→OutEnv(true) },

where M(·) is a persistent fact. Intuitively we would expect
that this environment can distinguish SA and SB, as it can
compare the first and second value of the tuple. We now try
to apply the same reasoning as in Example 5. Consider

∅ −−−−−−−−−−−→
B([{m/x,n/y}],[])

{OutSys((m,n))}
O−−−−−−→

OUT([],z)
{InEnv((m,n))}

−−−−−−−−−−−−−→
Efst([],[OUT1([],z)])

{M(m)}

−−−−−−−−−−−−−→
Esnd([],[OUT1([],z)])

{M(m),M(n)} .

In SA ∪ IF ∪ Env′ this can be simulated as follows:

∅ −−−−−−−−→
A([{m/x}],[])

{OutSys((m,m))}
O−−−−−−→

OUT([],z)
{InEnv((m,m))}

−−−−−−−−−−−−−→
Efst([],[OUT1([],z)])

{M(m)}

−−−−−−−−−−−−−→
Esnd([],[OUT1([],z)])

{M(m),M(m)} .

Moreover, we can compare the first and second value of the
tuple with

{M(m),M(m)} −→
r1
{M(m),M(m),OutEnv(true)} ,

where

r1 = Ecmp([], [Efst,1([], [OUT1([], z)]),

Esnd,1([], [OUT1([], z)])]) .

This transition cannot be matched by SB ∪ IF ∪Env′. Note
however that the following transition is possible for SB∪IF∪
Env′:

{M(m),M(n)} −→
r2
{M(m),M(n),OutEnv(true)} ,

where

r2 = Ecmp([], [Efst,1([], [OUT1([], z)]),

Efst,1([], [OUT1([], z)])]) .

The only difference between the two transition is the different
recipe: instead of comparing the first and the second value
of the tuple, we simply compared the first value to itself, and
therefore they are not observational equivalent. This exam-
ple shows that with a different environment the two systems
are still distinguishable.

The next example shows how two different systems can be-
have in an equivalent way, and how equations can be used
to model the equivalence of terms.

Example 7 (Coins). Consider a vending machine, in
particular the part that returns coins as change when the
money inserted was not fully spent. For simplicity we con-
sider only 1 e and 2 e coins, represented by the functions
one and two, and a constant null representing no coins.
Now suppose we want to return 3 e. The preferred solution
would be to return two coins: 1 e and 2 e. Yet returning
three 1 e coins is also possible and, moreover, the order of
the coins could be permuted.

Consider again two systems. The first system specifies the
optimal behavior of returning just two coins:

SA = { A : −−[]→OutSys(two(one(null))) }.

The second system, representing the actual implementation,
may also return other combinations of coins. It is given by

SB = { B1 : −−[]→OutSys(two(one(null))),
B2 : −−[]→OutSys(one(one(one(null)))),
B3 : −−[]→OutSys(one(two(null))) } .

We now define an environment that checks whether the im-
plementation is correct with respect to the specification.
Namely, the vending machine returns the same amount of
money using the same coins returned in the same order:

Env = { Enull : −−[]→M(null),
Eone : M(x)−−[]→M(one(x)),
Etwo : M(x)−−[]→M(two(x)),
Echeck : M(x), InEnv(x)−−[]→OutEnv(true) } .

The environment’s test works as follows. Using the first
three rules, the environment can build any amount of money
from the two kinds of coins. Then, using the Echeck rule,
this can be compared to the system’s output. Hence, for
SA ≈Env SB to hold, both systems must output the same
amount of money using the same coins in the same order,
otherwise Echeck is applicable only on one side. We have
SA 6≈Env SB as the amount of money returned is the same,
but the coins may differ: SA can only return two coins,
while SB could also return three. More precisely, the en-
vironment could build the fact M(two(one(null))), and try
to apply the rule Echeck. This would work for the system
SA provided an output was made, but not necessarily for
the system SB as the output could, for example, have been
one(one(one(null))).

Suppose that we add the equation two(x) = one(one(x)),
stating that a 2 e coin is equivalent to two 1 e coins. Then
SA ≈Env SB as the amount of money output by both ma-
chines is the same and two(one(null)) = one(two(null)) =
one(one(one(null))). Hence the environment successfully
checks whether both systems output the same amount of mo-
ney, independent of the coins used.

Naturally we can also have other environments. Assuming
no equations, consider the environment

Env′ = {Ecomp : InEnv(x), InEnv(x)−−[]→OutEnv(true)} .

This environment compares whether two system outputs are
equal, which is not necessarily the case for SB, but holds for
SA.

These examples illustrate the generality of our definition of
observational equivalence: as it is parametrized by the en-
vironment, it can be instantiated in different ways depend-
ing on the application context. In protocol verification, this
could for example be used to model different types of attack-
ers. Note also that in other process algebras used for proto-
col verification, such as the applied π-calculus, the environ-
ment is typically implicitly defined and cannot be changed.

4. PROVING OBSERVATIONAL
EQUIVALENCE

To automate proofs of observational equivalence we intro-
duce the notion of a bi-system.

4.1 Bi-Systems
A bi-system is a multiset rewrite system where terms may

be built using the special operator diff[·, ·], indicating two
possible instantiations corresponding to the left and right
subterm. This use of diff operators was first introduced in
ProVerif [7] where bi-processes are handled in a similar
fashion. Using diff-terms, one can specify two systems (left
and right) with almost identical rules by one multiset rewrit-
ing system, where the only difference is how the diff-terms
are instantiated. This simplifies the search for the simulation
relation, as we can simply assume that each rule simulates
itself, modulo the diff-terms. Nevertheless, this notion is
expressive enough to specify many relevant security proper-
ties. These include all the examples mentioned in the intro-
duction: our desired real–or–random test, privacy-related
properties of voting and auctions, indistinguishability prop-
erties such as ciphertext indistinguishability, and authenti-
cated key-exchange security. Moreover, as we show below,
all examples from Section 3 can also be expressed this way.

For S a bi-system, we can obtain its left instance L(S)
by replacing each term diff[M,N] in S with M . Similarly,
we can obtain S’s right instance R(S) by replacing each
term diff[M,N] with N . These are both standard multiset
rewrite systems. The goal of the algorithm we give is to
prove that given a bi-system S, L(S) and R(S) are observa-
tionally equivalent.

We now revisit the Examples 3 and 7, starting with the
tuple example.

Example 8 (Tuples with diff). Using diff-terms we
can define a single bi-system S that combines SA and SB as

S = { AB : −−[]→OutSys((x, diff[x, y])) },

where L(S) = SA and R(S) = SB, as in Example 3.

Example 9 (Coins with diff). We create a bi-system
S that merges SA and SB. The left-hand side of each diff-
term is the specification, while the right-hand side is the im-
plementation:

S = { AB1 : −−[]→OutSys(diff[two(one(null)),
two(one(null))]),

AB2 : −−[]→OutSys(diff[two(one(null)),
one(one(one(null)))]),

AB3 : −−[]→OutSys(diff[two(one(null)),
one(two(null))]) }.

Keeping the environment Env identical to Example 7 results
in the bi-system S not satisfying observational equivalence.
But, if we add the equation two(x) = one(one(x)), then S
satisfies observational equivalence.

4.2 Dependency Graph Equivalence
To simplify reasoning, our algorithm works with depen-

dency graphs rather than with the labeled transition sys-
tem. Dependency graphs are a data structure that formalize
the entire structure of a system execution, including which
facts originate from which rules, similar to recipes. We
have several reasons for using dependency graphs. First,
by capturing the entire system state, they are well-suited
for automated analysis using constraint solving. Second,
this representation is already implemented and supported
in the Tamarin prover [28, 26], which we extend. Finally,
dependency graphs naturally give rise to an equivalence re-
lation that implies observational equivalence; however, it is
substantially simpler to verify.

Definition 2 (Dependency Graph). Let E be an
equational theory, R be a set of labeled multiset rewriting
protocol rules, and Env an environment. We say that the
pair dg = (I,D) is a dependency graph modulo E for R if
I ∈E ginsts(R ∪ IF ∪ Env)∗, D ∈ P(N2 × N2), and dg sat-
isfy the three conditions below. To state these conditions, we
define the following notions. Let I be a sequence of rule in-
stances whose indices, idx(I), represent the nodes of dg. We
call D the edges of dg and write (i, u) � (j, v) for the edge
((i, u), (j, v)). A conclusion of dg is a pair (i, u) such that i
is a node of dg and u ∈ idx(concs(Ii)). The corresponding
conclusion fact is (concs(Ii))u. A premise of dg is a pair
(j, v) such that j is a node of dg and v ∈ idx(prems(Ij)).
The corresponding premise fact is (prems(Ij))v. A conclu-
sion or premise is linear if its fact is linear.

DG1 For every edge (i, u) � (j, v) ∈ D, it holds that i < j
and the conclusion fact of (i, u) is equal modulo E to
the premise fact of (j, v).

DG2 Every premise of dg has exactly one incoming edge.

DG3 Every linear conclusion of dg has at most one outgoing
edge.

We denote the set of all dependency graphs of R modulo E
by dgraphsE(R). Moreover, by state(dg) we denote the set of
all conclusion facts in dg that are either persistent or (if they
are linear) do not have an outgoing edge. This intuitively
corresponds to the state of the LTS after all transitions in
the dependency graph have been executed.

Figures 2 and 3 contain dependency graphs corresponding
to evaluations based on Examples 6 and 7, respectively.

Using dependency graphs, we can define a stronger version
of observational equivalence, which is used by our algorithm.
For this, we define the dependency graphs of a rule, which
intuitively corresponds to the set of all dependency graphs
having the rule as root. Given a rule r ∈ R ∪ IF ∪ Env,
its dependency graphs dgraphsE(r) contain all dependency
graphs where the last node, i.e., the node (i, u) with max-
imal i, is an instance of the rule r. Moreover, by new diff-
variables we mean the new variables of a rule that only ap-
pear in one of its two diff-variants, e.g., y in the case of a
rule Out((x, diff[x, y])), where x and y are new variables.

A:O
OutSys((m,m))

Out: O
OutSys((m,m))

InEnv((m,m))

Efst:
InEnv((m,m))

M(m)
Esnd:

InEnv((m,m))

M(m)

Ecmp:
M(m) M(m)

OutEnv(true)

Figure 2: Dependency graph for Example 6

Enull:
M(null)

Eone:
M(null)

M(one(null))

Etwo:
M(one(null))

M(two(one(null)))

A: O
OutSys(two(one(null)))

Out: O
OutSys(two(one(null)))

InEnv(two(one(null)))

Echeck:
M(two(one(null))) InEnv(two(one(null)))

OutEnv(true)

Figure 3: Dependency graph for Example 7

Finally, we define the mirrors of dependency graphs. In-
tuitively, given a dependency graph, its mirrors contain all
dependency graphs on the other side of the bi-system with
the same structure, notably the same edges and where the
nodes are instances (potentially different due to the diff-
terms) of the same rules.

Suppose that for all dependency graphs of all rules, the
set of its mirrors contains all “necessary” instances. We then
know that – independently of the current state of the system
– if a transition is enabled by a rule on one side, the same
rule also enables a transition on the other side, implying
observational equivalence. This is formalized in Definition 4
below as Dependency Graph Equivalence.

Definition 3 (Mirroring Dependency Graphs).
Let S be a protocol bi-system and Env be an environment.
Consider the multiset rewrite systems L = L(S) ∪ IF ∪Env
and R = R(S) ∪ IF ∪ Env.

Let dgL = (IL, DL) ∈ dgraphs(L) be a dependency graph.
We denote by mirrors(dgL) the set of all dependency graphs
dgR = (IR, DR) ∈ dgraphs(R), such that DR = DL, |IL| =
|IR|, idx(IL) = idx(IR) and for all i ∈ idx(IL) the ground
rule instances (IL)i and (IR)i are ground instances of the
same rules, i.e., rules with the same identifier, where new
variables of rules keep their instantiation.

The set of mirrors of a dependency graph dgR = (IR, DR) ∈
dgraphs(R), denoted by mirrors(dgR), is defined analogously,
replacing R by L uniformly in the above definition.

Using these notions, we now define dependency graph equiv-

alence. Intuitively, this definition captures that for all de-
pendency graphs on one side of the bi-system, there is a
mirroring dependency graph on the other side that respects
its instantiations of new diff-variables.

Definition 4 (Dependency Graph Equivalence).
Let S be a bi-system. Consider the multiset rewrite systems
L = L(S) ∪ IF ∪ Env and R = R(S) ∪ IF ∪ Env. We
say that L and R are dependency graph equivalent, written
L(S) ∼DG,Env R(S), if for all dependency graphs dg of rules
r ∈ L ∪ R, the set mirrors(dg) is non-empty and contains
dependency graphs for all possible instantiations of new diff-
variables.

Note that this definition requires that if, for example,
there are new variables in the rules R not appearing in
the rules from L used in dg, then mirrors(dg) must contain
instances for all possible instantiations of these variables.
For instance, in the case of a rule producing a conclusion
Out((x, diff[x, y])), then for all possible instantiations of y,
an instance must be in mirrors(dg).

It turns out that dependency graph equivalence is a suf-
ficient (but not necessary) criterion for observational equiv-
alence. Intuitively, dependency graph equivalence verifies
that the left-hand side instance of a rule can always be sim-
ulated by its right-hand side, and vice versa.

Theorem 1. Let S be a bi-system. If L(S) ∼DG,Env
R(S) then L(S) ≈Env R(S).

Proof. Consider the multiset rewrite systems L = L(S)∪
IF ∪ Env and R = R(S) ∪ IF ∪ Env, and the relation R:

R = {(SA,SB) | SA = state(dgL),SB = state(dgR),
dgR ∈ mirrors(dgL), dgL ∈ dgraphs(L)}

∪ {(SA,SB) | SA = state(dgL),SB = state(dgR),
dgL ∈ mirrors(dgR), dgR ∈ dgraphs(R)}.

First note that (∅, ∅) ∈ R. We now show that R is an
observational equivalence relation as defined in Definition 1.
For this, we must show that for all states (SA,SB) ∈ R we
have:

1. If SA
l−→
r
S ′A and r is the recipe of a rule in IF ∪ Env,

then there exists actions l′ ∈ F] and S ′B ∈ G] such

that SB
l′−→
r
S ′B , and (S ′A,S ′B) ∈ R.

2. If SA
l−→
r
S ′A and r is the recipe of a rule in SA, then

there exist recipes r1, . . . , rn ∈ ρ of rules in SB , actions

l1, . . . , ln ∈ F], n ≥ 0, and S ′B ∈ G] such that SB
l1−→
r1

. . .
ln−→
rn
S ′B , and (S ′A,S ′B) ∈ R.

We distinguish the following cases:

1. Assume (SA,SB) ∈ R, SA
l−→
r
S ′A for a rule instance

ri, and r is the recipe of a rule in IF ∪ Env. Then,
by the definition of R, there is a dependency graph
dgL ∈ dgraphs(L) with SA = state(dgL), and a depen-
dency graph dgR ∈ dgraphs(R) with SB = state(dgR).

Since the transition SA
l−→
r
S ′A is possible in SA, dgL

can be extended to dg′L with the rule instance ri cor-
responding to this transition, and state(dg′L) = S ′A.

Then dg′L ∈ dgraphs(L), and by L(S) ∼DG,Env R(S)
we have that for all possible instantiations of new diff
variables, the corresponding dependency graph dg′R ∈
dgraphs(R). By the definition of R, in dgR the in-
stantiations of the new variables (including the new
diff-variables) correspond to the instantiations of some
dg′R ∈ mirrors(dg′L). Then, by the construction of
mirrors(dg′L), dg′R is identical to dgR except for the
last rule instance ri′. Moreover, by the construction
of mirrors(dg′L), ri′ is an instance of the rule with the
same identifier. Since the dependency graph dg′R has
the same structure D as dg′L and all rules in IF∪Env
have no new diff-variables, there exists a transition

SB
l′−→
r
S ′B with the same recipe as ri. Moreover,

(S ′A,S ′B) ∈ R since there are mirroring dependency
graphs for S ′A and S ′B .

The symmetric case is analogous.

2. Alternatively, assume (SA,SB) ∈ R, SA
l−→
r
S ′A, and r

is the recipe of a rule in L(S). Then, by the definition
of R, there is a dependency graph dgL ∈ dgraphs(L)
with SA = state(dgL). Since in this state the transition

SA
l−→
r
S ′A is possible, dgL can be extended to dg′L with

the rule instance ri corresponding to this transition,
and state(dg′L) = S ′A. Then dg′L ∈ dgraphs(L), and by
L(S) ∼DG,Env R(S) we have that for all possible in-
stantiations of new diff variables, the corresponding de-
pendency graph dg′R ∈ dgraphs(R). By the definition
of R, there is a dependency graph dgR ∈ dgraphs(R)
with SB = state(dgR), where the instantiations of the
new variables (including the new diff-variables) corre-
spond to the instantiations of some dg′R ∈ mirrors(dg′L).
Then, by the construction of mirrors(dg′L), this graph
dg′R is identical to dgR except for the last rule instance.
By assumption, ri was an instance of a rule in L(S).
Therefore, by the construction of mirrors(dg′L), the
last rule instance ri′ in dg′R is an instance of the rule
with the same identifier. Hence there exists a transi-

tion SB
l′−→
r′
S ′B . Moreover, (S ′A,S ′B) ∈ R since there

are mirroring dependency graphs for S ′A and S ′B .

Again, the symmetric case is analogous.

As shown in [28], we can use constraint solving to find
(restricted) normal dependency graphs; for a detailed dis-
cussion about the constraint solving procedure used and the
link to restricted normal dependency graphs, see the ex-
tended version of this paper [1]. This provides the basis
for our algorithm, depicted in Figure 4, which determines
whether L(S) ∼DG R(S) holds. For each rule r in L(S),
R(S), and the environment, the algorithm finds all corre-
sponding normal dependency graphs with r as a root using
constraint solving. For each of these dependency graphs,
it then checks whether the set of mirrors contains all in-
stances required for normal dependency graph equivalence.
If this holds, it reports that verification is successful; other-
wise it returns the dependency graph that lacks a mirroring
instance as a counterexample. Note that these instances are
counterexamples to dependency graph equivalence, but not
necessarily to observational equivalence because of the ap-
proximation requiring that each rule is simulated by itself.

1: function Verify(S)
2: RU ← L(S) ∪R(S) ∪ IF ∪ Env
3: while RU 6= ∅ do
4: choose r ∈ RU , RU ← (RU \ {r})
5: compute DG←dgraphs(r) by constraint solving
6: if ∃dg∈DG s.t.mirrors(dg) lacks ground instances
7: then return “potential attack found: ”, dg

8: return “verification successful”

Figure 4: Pseudocode of our verification algorithm.

This is due to the undecidability of the initial problem, and
all related tools [9, 11, 8, 7, 29] also have this limitation.

We now explain how we adapt and use this algorithm in
Tamarin. We provide examples of its use in Section 5.

4.3 Tamarin
The Tamarin prover [28, 26] is a security protocol ver-

ification tool that supports both the falsification and un-
bounded verification of security protocols specified as multi-
set rewriting systems with respect to trace-based properties.

In Tamarin, a security protocol P ’s executions are mod-
eled by its set of traces, defined as the concatenation of the
sets of action labels at each step. A trace is a sequence of
facts denoting the sequence of actions taken during a proto-
col’s execution. The trace of an execution

S0, (l1
a1−−−→
rec1

r1), S1, . . . , Sk−1, (lk
ak−−−→
reck

rk), Sk

is the sequence of the multisets of its action labels [a1, . . . , ak] .
We now briefly recall the Tamarin prover’s adversary

message derivation rules MD. To define the protocol and
adversary rules, we assume that ΣFact includes the persistent
fact symbol K modeling messages known to the adversary,
the linear fact symbol Out modeling messages sent by the
protocol, and the linear fact symbol In modeling messages
sent by the adversary. The adversary’s message deduction
capabilities are captured by the following set of rules.

MD = { Out(t)−−[]→K(t), K(t)−−[K(t)]→In(t),

Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }
∪ { K(t1), . . . ,K(tn)−−[]→K(f(t1, . . . , tn)) | f ∈ ΣnFun }

The adversary learns all messages that are sent and it can
send any message it knows (i.e., it learns or can derive) to
the protocol. It can generate fresh values and it knows all
public values. Additionally, the adversary can apply all op-
erators to terms it knows. When using an equational the-
ory, each of the equations gives rise to a deconstruction
rule that lets the intruder derive the result. For example
for symmetric encryption and decryption, with the equation
sdec(senc(m, k), k) = m, Tamarin automatically generates
the rule K(senc(m, k)),K(k)−−[]→K(m), which the adversary
uses to decrypt messages.

We also add one new adversary deduction rule to MD,
which we call IEquality, which allows the adversary to com-
pare two values for equality:

IEquality : K↓(x),K↑(x)−−[]→ .

The use of K↓ and K↑ in this rule restricts how the adver-
sary can derive the terms.1 Here, this annotation is crucial

1In all other rules K is actually also either K↓ or K↑. How-
ever, this distinction is required only for automation (namely

as we want to compare two terms that are derived separately.
Moreover, it also prevents immediate non-termination: oth-
erwise, once two values are successfully compared, one could
compare their hashes, followed by their hashes, etc.

The IEquality rule is applicable whenever one side of a
bi-system can construct the same value twice (but in dif-
ferent ways), that is it has dependency graphs as premises
for both instances of x. Note that the other bi-system side
trivially has the mirroring dependency graph if an output
is compared with itself (same dependency graph twice), for
example. But, if on one side the adversary can decrypt
a message and compare it with the content, while on the
other side that is not possible, then the IEquality rule will
expose this. The analysis of the IEquality rule presented in
Examples 10 and 11 illustrates this point in more detail.

For the details of our modification to the Tamarin prover
we refer the reader to the extended version of this paper [1].
There we show how our model can be instantiated for
Tamarin, and present an implementation of the above algo-
rithm for verifying observational equivalence with Tamarin.
Note that just like the algorithm outlined in Figure 4 (line
4), Tamarin carries out a rule-by-rule analysis.

The main challenges in implementing our algorithm in the
Tamarin prover relate to limiting the size of the state-space,
which requires fine-tuning Tamarin’s internal heuristic. To
aid termination, we restrict traces to normal forms as much
as possible. Moreover, compared to the original Tamarin
prover, we needed to remove some of its normal form condi-
tions because they are sound for trace properties, but not for
observational equivalence. One such example is the normal
form condition prohibiting repeated adversarial derivation
of a term. However, equality comparison with previous val-
ues must be possible, e.g., to test whether the output equals
the input in the protocol In(x),Fr(y)−−[]→Out(diff(x, y)).

5. CASE STUDIES
We now present four case studies. We first apply Tamarin

to two standard examples that have been analyzed using
other tools. Afterwards we present two examples: one that
is outside the scope of previous work and one that veri-
fies a practical RFID protocol that had previously received
manual analysis only. Note that all proofs are constructed
in our tool completely automatically, with the exception of
the attack on TPM Envelope. For this protocol, interac-
tion was limited to human input at a few key choice points
and the remainder was automated. We provide a file con-
taining the steps necessary to derive the identified attack
for TPM Envelope. For the other protocols, we just give
their specification as Tamarin’s built-in strategy finds the
proofs. All example files can be loaded into our extension of
Tamarin and are available at [1], together with Tamarin.
From now on, we use Tamarin to refer to our extension,
instead of the original Tamarin.

5.1 Motivating examples
We start with two well-known examples from [7, 10]. For

each example, we explain how Tamarin determines obser-
vational equivalence using the algorithm Verify, presented
in Figure 4.

state-space reduction and improving termination) so we have
omitted it for ease of presentation. Full details can be found
in the extended version [1].

Example 10 (Probabilistic encryption). Consider
the equational theory:

pdec(penc(m, pk(k), r), k) ' m.

This equation gives rise to the following decryption rule for
probabilistic encryption for the adversary, which is automat-
ically generated by Tamarin:

Dpenc : K(penc(m, pk(k), r)),K(k)−−[]→K(m) .

We now express, as a bi-system, that a probabilistic en-
cryption cannot be distinguished from a random value:

S = { GEN : Fr(k)−−[]→Key(k),Out(pk(k))
ENC : Key(k),Fr(r1),Fr(r2), In(x)−−[]→

Out(diff[r1, penc(x, pk(k), r2)]) } .

We summarize below how Tamarin automatically proves
this property. The algorithm Verify (line 2) first constructs
the set RU of rules to be analyzed,

RU = { L(GEN), R(GEN), L(ENC), R(ENC),
FreshSys,FreshEnv, IEquality,Dpenc} ,

together with the remaining rules in IF and Env. Recall
that L(name) represents the rule name instantiated with
the left side of the diff-term, and likewise for R(name) with
the right side. Then Verify iterates over all rules (lines
3–4) until either an attack is found (line 7) or all rules have
been checked and the verification is complete (line 8), which
happens in this example.

We now describe, for each rule, how Verify processes
it. Verify first generates dependency graphs with the rule
as the root (line 5). Afterwards, for each resulting depen-
dency graph, it looks for a mirror (line 6) that contains all
instances required by the definition of normal dependency
graph equivalence. In this example, it always finds a mirror
and verification therefore succeeds. Due to space and read-
ability constraints, we present the left-diff instantiation and
right-diff instantiation of each rule together, even though
Tamarin analyzes them independently. Due to space con-
straints, we also do not explicitly present the dependency
graphs; however, we do explain how they are mirrored in
each case so that the verification succeeds.

• As rule GEN does not contain a diff-term, the left
diff-instantiation of this rule is identical to the right
diff-instantiation. The rule has only a single fresh fact
as its premise and thus any dependency graph with this
rule at its root contains only those two rule instances
and is trivially mirrored by itself.

• The rule ENC has the same premises in the left- and
right-hand side system and is therefore identical for
the purpose of dependency graph computation with
the ENC rule as root. (Note that outputs will be con-
sidered using the equality rule below.) The two fresh
premises will result in identical dependency graphs,
while the key and message reception input are inde-
pendent. Hence both of them will have identical de-
pendency graphs as premises, and the resulting de-
pendency graphs are identical (up to the outputs) and
therefore mirror each other.

• The fresh rules FreshSys and FreshEnv have no pre-
mises. Hence the dependency graphs with them as
root are just their instances, which mirror each other
in the left- and right-hand system.

• For an equality rule instance of IEquality as the root
of a dependency graph, the two premises are the same
instance of a variable x. If both of the premises are
adversary generated, then the resulting dependency
graphs are the same in the left- and right-hand sys-
tem, and thus will mirror themselves trivially. Alter-
natively, if one of the premises uses the output of an
instance of either the ENC rule or the GEN rule,
then there is no dependency graph with a matching
second premise. This is because all system outputs,
pk(k) for GEN and r1 or penc(x, pk(k), r2) for ENC,
contain a fresh value, k, r1, respectively r2, that is
never available to the intruder. As this will never al-
low a complete dependency graph to be derived, no
mirroring dependency graph is needed.

• For the decryption rule generated for the probabilis-
tic encryption, this rule is never applicable on either
side as the adversary never receives the keys needed
for decrypting system generated encryptions. As there
is no dependency graph, no mirroring one is needed.
(One might mistakenly think that this rule might apply
to intruder-generated terms. However, this is not the
case due to the restrictions on how the adversary may
combine its knowledge (K↓ vs K↑) and, in any case,
both sides would use the same dependency graphs as
premise, so the result would be the same.)

• For all other adversary rules, it is obvious that they
result in identical dependency graphs on both sides.
More precisely: construction rules have adversary
knowledge input and thus the same dependency graphs
as premises. For the deconstruction rules, the only rel-
evant one is the previous decryption rule, as that is the
only one that can use information coming out of the
system; all other rules can only be used on adversary-
generated terms and thus have the same dependency
graphs as premises.

This completes our summary of Tamarin’s verification of
observational equivalence for this example. Tamarin auto-
matically constructs the proof in under 0.2 seconds.

Our next example is Decisional Diffie-Hellman as discussed
in [7, Example 2]. Tamarin verifies the expected result that
the adversary cannot distinguish a Diffie-Hellman tuple from
a random tuple. Note that in contrast to [7], which uses
an equational theory restricted just to the commutativity
of two exponents, Tamarin supports a substantially more
comprehensive model of Diffie-Hellman exponentiation.

Example 11 (Decisional Diffie-Hellman). We use
the equational theory for Diffie-Hellman exponentiation with
an abelian group of exponents as provided by Tamarin.
Hence no additional adversary rules are needed.

We consider a single rule, which outputs the two half-keys
and challenges the adversary to distinguish the actual key
from an unrelated randomly generated key:

GEN : Fr(a1),Fr(a2),Fr(a3)−−[]→
Out(ba1 , ba2 , diff[ba3 , (ba1)a2]) .

Using the Verify algorithm, Tamarin collects the rules

RU = { L(GEN), R(GEN),
FreshSys,FreshEnv, IEquality} ,

together with the remaining rules in IF and Env. We con-
sider the processing of these rules below, where we again
combine the treatment of left-diff instantiations and right-
diff instantiations of system rules to improve readability.

• The rule GEN has only fresh facts as premise and
thus any dependency graph with this rule at its root
contains at most four rule instances, three of fresh rules
and one of GEN itself. Thus, it is mirrored trivially
by itself. The mirror is actually identical (up to the
output).

• The fresh rules FreshSys and FreshEnv do not have
premises. Hence the dependency graphs with them as
roots are just their instances, which mirror each other
on the left- and right-hand side.

• For an equality rule instance of IEquality as the root
of a dependency graph, the two premises are the same
instance of a variable x. If both of the premises are
adversary generated, then the resulting dependency
graphs are the same in the left- and right-hand sys-
tem, and thus will mirror themselves trivially. Alter-
natively, if one of the premises uses the output of an
instance of the GEN rule, then there is no dependency
graph with a matching second premise, except the one
using the same source twice. This is because all of
the system outputs cannot be related in meaningful
fashion within the Diffie-Hellman exponentiation the-
ory as it does not allow the extraction of exponents,
which corresponds to computing discrete logs. As this
will never allow a complete dependency graph to be
derived, no mirroring dependency graph is needed. In
the case of the same source being used twice, i.e., a
value being compared with itself, the same premise
dependency graphs work for both systems.

Additionally, note that multiple instances of the GEN
rule are entirely unrelated and do not provide any ad-
vantage for the adversary. Tamarin analyzes this and
computes all possible variants, determining that no
combination is useful.

• For all other adversary rules, it is obvious that they
result in identical dependency graphs on both sides.
Namely, the construction rules have adversary knowl-
edge input and thus the same dependency graphs as
premises.

The Verify algorithm therefore returns that verification is
successful. Tamarin verifies this, completely automatically,
in 15.2 seconds.

This concludes our two motivating examples. They were
small enough that we could give relatively detailed descrip-
tions of Verify’s workings. For subsequent examples, we
will be more concise. Readers interested in the full gory de-
tails may generate them themselves by using Tamarin and
running the files for each case study.

5.2 Feldhofer’s RFID protocol
The RFID protocol due to Feldhofer et al. [20] is of prac-

tical interest as it can be implemented with relatively few
logic gates using AES encryption and hence it fits well with
the requirements of current RFID chips. We use the descrip-
tion from [30] as the basis of our model, which we present in

R→ T : nr
T → R : {|nr, nt|}k(R,T)

R→ T : {|nt, nr|}k(R,T)

Figure 5: RFID protocol

Figure 5 using Alice&Bob notation. The protocol is between
a reader R and a tag T that share a key k(R, T). Note that
{| . . . |}k denotes symmetric encryption in this example.

In the first message, the reader sends a random nonce
to the tag. In the second message, the tag sends back that
nonce and one of its own choosing, encrypted with the shared
key. In the third message, the reader responds with the same
nonces in reverse order, also encrypted.

The desired security property for this protocol is privacy
for the tags. Namely, if at least two tags share a key with
a reader (and in practice, there will be many such tags),
then the adversary cannot determine which tag is actually
communicating with the reader. Tamarin verifies this in
under 1.6 seconds.

5.3 TPM_Envelope protocol
We first briefly explain the key part of this protocol [15]

and afterwards present the Tamarin rules along with fur-
ther details. A stateful Trusted Platform Module (TPM)
creates a one-use public/private key pair, and publishes the
public key. A participant Alice then encrypts a nonce (the
secret) with the public key (creating an envelope), which she
sends to a participant Bob. Bob then either requests from
the TPM the envelope’s content, learning the secret, or re-
quests a TPM-signed certificate stating that he did not ask
for the content. In both cases, the TPM complies with the
request and changes its state in such a way that it can after-
wards only comply with repetitions of the first request, but
never with the other request. This is where mutable state
is crucial, i.e., the original capability of issuing either the
certificate or the secret is revoked once the choice is made.
The trace-based secrecy property verified in [15] states that
the adversary may learn either the certificate or the secret,
but not both.

We investigated whether this protocol additionally satis-
fies the real–or–random property for the secret. We therefore
added a real–or–random challenge to the end of Alice’s pro-
tocol execution, which sends out either the real secret or a
random value. Tamarin fails to prove this property and in-
stead returns a simple attack, provided the encryption used
is deterministic. The attack is as follows: the adversary (im-
personating Bob) asks for the proof of never having received
the secret from the TPM, and thus he must be unable to
learn the secret. But, he can still distinguish whether the
real–or–random challenge emits the real secret or a random
value. He does this using the previously published public
key, and encrypting the emitted value with it. Afterwards,
he compares the resulting encryption to the envelope, and
he learns that it is the real secret if it matches the envelope
and a random value otherwise.

Inspecting this attack it is easy to see that it fails when
probabilistic encryption is used instead. The adversary can
still encrypt the emitted value with the public key, but the
equality check against the envelope will always fail because
the added randomness is different in the envelope and the
adversary-generated comparison encryption.

In Figure 6 we present the rules used to model the pro-

tocol TPM Envelope in Tamarin. Note that we omit here
some details, which can be found in the model file included
at [1]. First we explain the rules concerning the TPM’s plat-
form configuration registers (PCR). The Init rule initializes
the PCR to the initial string ′pcr0′, and generates the fresh
authentication identification key aik stored in the persistent
AIK fact and sends out the public key pk(aik). This models
a long-term key for the TPM. The extension rule Extend
allows any PCR to be extended to the hash of the concate-
nation of its previous value and an input. This is used when
a client later either extends the PCR with ′deny′ or ′obtain′.
This changes the TPM’s state to allow creation of a certifi-
cate that the envelope was not opened (′deny′), or respec-
tively opens the envelope (′obtain′). Rule CertK certifies
a public key for which the TPM has stored the associated
private key in the persistent key table fact KT with a par-
ticular lock. Locks are PCR values and the TPM will only
extract the private key when the PCR value matches this
lock. In the rule Quote, the current PCR value is sent out
authentically, signed with the TPM’s long-term key. The
TPM’s last rule is Unbind. It takes an envelope as input,
and if the public key used to encrypt the envelope matches
the private key in the key table, where additionally the lock
in the key table matches the current PCR value, then the
message in the envelope is decrypted and sent out.

The participant Alice requests an envelope key in her first
rule A1 by extending the PCR with a nonce n of her choice.
In rule A2, she creates the secret to be put in the enve-
lope encryption and checks that the TPM certifies that the
key can only be obtained if the PCR state is extended with
′obtain′ and then she uses the certified public key to encrypt
her secret. Alice then publishes the envelope while keeping
state in A2 for her next rule and in A2ror for the real–or–
random challenge. Rule A3 uses the state in A2 to check that
the TPM’s PCR was extended with ′deny′ (which means it
has not yet, and can now no longer, decrypt the envelope)
and then notes the action Denied. We are only interested
in traces where the adversary can show this certificate. The
rule CLKey is used with ′obtain′ as the lock input to add
a new private key to the TPM’s key table that is used in
rule A2. It can of course be used with other inputs, but
the resulting keys are not interesting to us. Now the key
can only be extracted with a PCR extended with ′obtain′,
and thus the certificate with ′deny′ is unavailable. The last
rule is the ROR rule; this either outputs the real secret or
a random value.

The Tamarin prover finds the attack described above for
the observational equivalence of the TPM Envelope proto-
col. Note that this is a stronger property than trace-based
secrecy, which had been verified by [15], so the two results
are compatible. We therefore conclude that this protocol
should only be used with probabilistic encryption, and not
with deterministic encryption.

This example illustrates Tamarin’s handling of mutable
state, which other tools cannot handle. It also illustrates the
difference between trace-based properties and observational
equivalence-based properties.

6. RELATED WORK AND CONCLUSION
We have shown how to take the well-established model-

ing formalism of multiset rewriting and extend it with a
novel definition of observational equivalence. The result is
well-suited for the verification of cryptographic protocols,

Init : Fr(aik)−−[]→PCR(′pcr0′),AIK(aik),Out(pk(aik))
Ext : PCR(x), In(y)−−[]→PCR(h(x, y))

CertK : AIK(aik),KT(lock, sk)−−[]→
Out(sign(〈′certk′, lock, pk(sk)〉, aik))

Quote : PCR(x),AIK(aik)−−[]→
PCR(x),Out(sign(〈′certcpr′, x〉, aik))

Unbind : PCR(x),KT(x, sk), In(aenc(m, pk(sk)))−−[]→
PCR(x),Out(m)

A1 : Fr(n),PCR(x)−−[]→PCR(h(x, n)),A1(n)
A2 : Fr(s),A1(n),AIK(aik),

In(sign(〈′certk′, h(h(′pcr0′, n),′ obtain′), pk〉, aik))
−−[]→Out(aenc(s, pk)),A2(n, s),A2ror(s)

A3 : In(sign(〈′certpcr′, h(h(′pcr0′, n),′ deny′)〉, aik)),
A2(n, s),AIK(aik)−−[Denied(s)]→

CLKey : Fr(sk),PCR(x), In(lock)−−[]→
PCR(x),KT(h(x, lock), sk),Out(pk(sk))

ROR : A2ror(s),Fr(f)−−[]→Out(diff[s, f])

Figure 6: Rule set modeling the TPM envelope

as well as other applications. Based on this, we have imple-
mented an algorithm to prove observational equivalence for
protocols specified in multiset rewriting and demonstrated
its effectiveness on a number of case studies. Combining
Tamarin’s constraint solving with the bi-system notion re-
sults in our approach’s high degree of automation.

Our equivalence notion has similarities with other notions
of observational equivalence considered in the literature, in-
cluding trace equivalence [11], bisimulation [2], and notions
based on contexts [2, 11, 7]. However, multiset rewriting
and our observational equivalence definition are more flexi-
ble than the previous approaches as we can choose the en-
vironment as well as the underlying equational theory. As
illustrated in Example 5 in Section 3, this can, for exam-
ple, be used to model different types of attackers. In pro-
cess algebras used for protocol verification, like the applied
π-calculus, the environment is implicitly defined and can-
not be changed. Moreover, we support mutable state and
a larger set of equational theories than other approaches as
detailed below.

Various other tools exist for verifying notions of obser-
vational equivalence. APTE [9, 11] and AKISS [8] both
verify trace equivalence, but are limited to a bounded num-
ber of sessions. Moreover, AKISS does not support non-
trivial else branches or private channels. ProVerif [7] ver-
ifies observational equivalence in the applied π-calculus for
an unbounded number of sessions, but it cannot handle mu-
table state [3], for example, a protocol that switches be-
tween the states a and b. Extensions for ProVerif that
can deal with Diffie-Hellman equational theories [23] do not
support observational equivalence. Note that our approach’s
restriction to bi-systems is similar to ProVerif’s restric-
tion to bi-processes. SPEC [29] verifies open bisimulation
in the spi-calculus, but unlike our approach it only supports
a fixed number of cryptographic primitives and is limited to
a bounded number of sessions.

In contrast to the above, there are tools like StatVerif [3]
and SAPIC [22] that support mutable state. However, they
cannot verify observational equivalence. Similarly, Tamarin,
which is used as SAPIC’s back-end, supports mutable state,
an unbounded number of sessions, and also Diffie-Hellmann
equational theories. However, prior to our extension, it

could not prove any notion of observational equivalence.
Another multiset rewriting-based approach that supports

observational equivalence is Maude-NPA [27]. It creates the
synchronous product of two very similar protocols, similar
to our use of bi-systems. Their approach suffers from termi-
nation problems [27] and thus presents only attacks.

As future work, we plan to extend our approach so that
the verification of observational equivalence is also possi-
ble when one rule must be matched by a different rule, or
even by multiple rules. We will also tackle protocols with
loops, where proofs will likely require induction. Moreover,
we intend to look at larger protocols, such as authenticated
key exchange protocols with perfect forward secrecy, such as
NAXOS and its variants.

7. REFERENCES
[1] Tamarin – tool and extended papers. http://www.

infsec.ethz.ch/research/software/tamarin.html.

[2] Mart́ın Abadi and Cédric Fournet. Mobile values, new
names, and secure communication. In Proceedings of
the 28th Symposium on Principles of Programming
Languages (POPL’01), pages 104–115, New York,
2001. ACM.

[3] Myrto Arapinis, Joshua Phillips, Eike Ritter, and
Mark Dermot Ryan. Statverif: Verification of stateful
processes. Journal of Computer Security,
22(5):743–821, 2014.

[4] David Basin, Cas Cremers, and Catherine Meadows.
Model checking security protocols. In Handbook of
Model Checking, chapter 24. Springer, 2015. To
appear.

[5] Mihir Bellare, Anand Desai, David Pointcheval, and
Phillip Rogaway. Relations among notions of security
for public-key encryption schemes. In CRYPTO,
volume 1462 of LNCS, pages 26–45. Springer, 1998.

[6] Mihir Bellare and Phillip Rogaway. Entity
authentication and key distribution. In CRYPTO,
volume 773 of LNCS, pages 232–249. Springer, 1993.

[7] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet.
Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, February–March 2008.

[8] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer.
Automated verification of equivalence properties of
cryptographic protocols. In Helmut Seidl, editor,
ESOP, volume 7211 of LNCS, pages 108–127.
Springer, 2012.

[9] Vincent Cheval. APTE: An algorithm for proving
trace equivalence. In TACAS, volume 8413 of LNCS,
pages 587–592. Springer, 2014.

[10] Vincent Cheval and Bruno Blanchet. Proving more
observational equivalences with ProVerif. In Principles
of Security and Trust (POST), volume 7796 of LNCS,
pages 226–246. Springer, 2013.

[11] Vincent Cheval, Véronique Cortier, and Stéphanie
Delaune. Deciding equivalence-based properties using
constraint solving. Theor. Comput. Sci., 492:1–39,
2013.

[12] Y. Chevalier, R. Küsters, M. Rusinowitch, and
M. Turuani. Deciding the security of protocols with
Diffie-Hellman exponentiation and products in
exponents. In FSTTCS 2003, volume 2914 of LNCS,

pages 124–135. Springer, 2003.

[13] Hubert Comon-Lundh and Stéphanie Delaune. The
finite variant property: How to get rid of some
algebraic properties. In Jürgen Giesl, editor, RTA,
volume 3467 of LNCS, pages 294–307. Springer, 2005.

[14] Stéphanie Delaune, Steve Kremer, and Mark Ryan.
Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security, 17:435–487,
December 2009.

[15] Stéphanie Delaune, Steve Kremer, Mark Dermot
Ryan, and Graham Steel. Formal analysis of protocols
based on TPM state registers. In CSF, pages 66–80.
IEEE, 2011.

[16] Jannik Dreier, Pascal Lafourcade, and Yassine
Lakhnech. Defining privacy for weighted votes, single
and multi-voter coercion. In ESORICS, volume 7459
of LNCS, pages 451–468. Springer, 2012.

[17] Jannik Dreier, Pascal Lafourcade, and Yassine
Lakhnech. A formal taxonomy of privacy in voting
protocols. In Proceedings of IEEE International
Conference on Communications (ICC’12), pages
6710–6715, Ottawa, ON, Canada, 2012. IEEE.

[18] Jannik Dreier, Pascal Lafourcade, and Yassine
Lakhnech. Formal verification of e-auction protocols.
In Proceedings of the 2nd Conference on Principles of
Security and Trust (POST’13), volume 7796 of LNCS,
pages 247–266, Rome, Italy, 2013. Springer Verlag.

[19] Santiago Escobar, Ralf Sasse, and José Meseguer.
Folding variant narrowing and optimal variant
termination. Journal of Logic and Algebraic
Programming, 81(7-8):898–928, 2012.

[20] Martin Feldhofer, Sandra Dominikus, and Johannes
Wolkerstorfer. Strong authentication for RFID
systems using the aes algorithm. In Cryptographic
Hardware and Embedded Systems-CHES 2004, pages
357–370. Springer, 2004.

[21] Michèle Feltz and Cas Cremers. On the limits of
authenticated key exchange security with an
application to bad randomness. Cryptology ePrint
Archive, Report 2014/369, 2014.

[22] Steve Kremer and Robert Künnemann. Automated
analysis of security protocols with global state. In
2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, May 18-21, 2014, pages
163–178. IEEE Computer Society, 2014.

[23] Ralf Küsters and Tomasz Truderung. Using ProVerif
to analyze protocols with Diffie-Hellman
exponentiation. In Computer Security Foundations
Symposium (CSF), pages 157–171. IEEE, 2009.

[24] Brian LaMacchia, Kristin Lauter, and Anton
Mityagin. Stronger security of authenticated key
exchange. In Provable Security, pages 1–16. Springer,
2007.

[25] Laurie Law, Alfred Menezes, Minghua Qu, Jerry
Solinas, and Scott Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and
Cryptography, 28:119–134, 2003.

[26] Simon Meier, Benedikt Schmidt, Cas Cremers, and
David Basin. The TAMARIN Prover for the Symbolic
Analysis of Security Protocols. In CAV, volume 8044
of LNCS, pages 696–701. Springer, 2013.

[27] Sonia Santiago, Santiago Escobar, Catherine

Meadows, and José Meseguer. A formal definition of
protocol indistinguishability and its verification using
Maude-NPA. In Security and Trust Management
(STM) 2014, pages 162–177. Springer, 2014.

[28] Benedikt Schmidt, Simon Meier, Cas Cremers, and
David Basin. Automated analysis of Diffie-Hellman
protocols and advanced security properties. In
Computer Security Foundations Symposium (CSF),
pages 78–94. IEEE, 2012.

[29] Alwen Tiu and Jeremy E. Dawson. Automating open
bisimulation checking for the spi calculus. In CSF,
pages 307–321. IEEE Computer Society, 2010.

[30] Ton Van Deursen, Sjouke Mauw, and Saša
Radomirović. Untraceability of RFID protocols. In
Information Security Theory and Practices. Smart
Devices, Convergence and Next Generation Networks,
pages 1–15. Springer, 2008.

APPENDIX
A. TAMARIN

Tamarin is based on a type system where all messages
are of the (top) sort msg, which includes as subsorts public
values of type pub and fresh values of type fr. Cryptographic
primitives and algebraic properties of terms are modeled by
equations, for example dec(enc(m, k), k) = m models that
given a symmetric encryption of a message m, its decryption
using the correct key k gives m.

In Tamarin, a protocol is modeled using multiset rewrite
rules, and a set of facts that captures the state of the proto-
col, the adversarial knowledge, and the state of the network.
In particular, the set of facts includes the special facts K(t),
Fr(t), FrI(t), Out(t), and In(t). The persistent fact K(t) rep-
resents the intruder’s knowledge, i.e., the intruder knows the
term t. Note that, in the implementation, K(t) is split into
different facts to facilitate automated reasoning, e.g., K↑e(t)
and K↓e(t), which we describe in more detail later. The lin-
ear facts Fr(x) (and FrI(x)) express that x is a freshly gen-
erated term, usually called a fresh variable, by the protocol
(respectively the intruder), and the linear facts Out(t) and
In(t) model the output or input of a term t by the protocol,
corresponding to OutSys(t) and InSys(t) in the initial model.

In Tamarin we consider three types of rules: fresh rules
used to generate fresh values, message deduction rules, and
the protocol and intruder rules. The fresh rules FreshSys =
{[]−−[]→Fr(x : fr)} and FreshEnv = {([]−−[]→FrI(x : fr)} are
the only rules that can be used to generate fresh values. The
first rule is used by the protocol and the second one by the
intruder. To ensure that the generated values are fresh, we
require that each instance is unique, i.e., each fresh value x
can be generated only once during the execution of the pro-
tocol, either by the protocol or by the intruder. We combine
both fresh rules into Fresh = FreshSys∪FreshEnv. There
are also a number of distinguished facts that are used only
in actions to label transitions.

The message deduction rules characterizing the intruder
are given in Figure 7. The two communication rules repre-
sent the interface rules IF as defined in Section 3; we simply
renamed the facts: Out instead of OutSys, In instead of InSys,
K↑ instead of OutEnv, and K↓ instead of InEnv. We do this
renaming because the K↑ and K↓ notation is needed to re-
strict the applicable rules, as seen in the rest of the figure.
The coerce rule allows the intruder to convert a K↓-fact into
a K↑-fact, but not vice versa. The idea is that the intruder
will first decompose a message he receives (as a K↓-fact) us-
ing the deconstruction rules, apply the coerce-rule, and then
construct new messages using the construction rules working
on K↑-facts. However, once he has applied the coerce-rule,
he can no longer apply deconstruction rules. This prevents
loops where the intruder constructs messages that he later
deconstructs, only to construct the same message again, and
so on.

The construction rules enable the intruder to apply func-
tions to terms he knows, in particular exponentiation, en-
cryption, decryption, hashing, tuple construction, multipli-
cation, and potentially other user-defined functions (not shown
in the figure, but supported in Tamarin). Moreover, these
rules allow the intruder to use public values, constants, and
fresh values. The deconstruction rules allow the intruder
to decompose terms he receives, for example tuples, ap-
ply the multiplicative inverse, decrypt ciphertexts for which

(1) dec(enc(m, k), k) ' m (6) x ∗ 1 ' x
(2) fst(〈x, y〉) ' x (7) x ∗ x−1 ' 1

(3) snd(〈x, y〉) ' y (8) (x−1)−1 ' x
(4) x ∗ (y ∗ z) ' (x ∗ y) ∗ z (9) (x ˆ y) ˆ z ' x ˆ (y ∗ z)
(5) x ∗ y ' y ∗ x (10) x ˆ 1 ' x

Figure 8: Equations that constitute EDH .

(1) (x−1∗y)−1 ' x∗y−1 (6) 1−1 ' 1

(2) x−1∗y−1 ' (x∗y)−1 (7) x∗1 ' x
(3) x∗(x∗y)−1 ' y−1 (8) (x−1)−1 ' x
(4) x−1∗(y−1∗z) ' (x∗y)−1∗z (9) x∗(x−1∗y) ' y
(5) (x∗y)−1∗(y∗z) ' x−1∗z (10) x∗x−1 ' 1

Figure 9: Lankford’s presentation of the abelian
group axioms

he possesses the key, or apply other user-defined subterm-
convergent theories (again not shown in the figure). Finally
the exponentiation rules formalize Diffie-Hellman exponenti-
ation modulo AC. This particular representation, although
verbose, allows for automatic reasoning (for more details
see [28]).

The variants of a term t provide a concise representation of
all possible instantiations of t. The use of DH,AC -variants of
the exponentiation rule thus allows us to restrict exponenti-
ation to the 42 variants, giving rise to 42 rules as mentioned.
More detail on variants are provided below.

The equality rule is added to ensure that the intruder
cannot distinguish terms output by the protocol, similar to
e.g., static equivalence in the applied π-calculus [7]. The rule
has no conclusion facts since we are only concerned about
its applicability, corresponding to an equality that holds.
By the definition of observational equivalence, each intruder
rule must be matched by itself. This ensures that if an
equality holds on one side (i.e., the rule is applicable), it also
holds on the other side. Note that we match a K↓-fact with
a K↑-fact. The K↑-fact allows the intruder to construct more
complex terms by, e.g., applying functions, while the K↓-fact
limits the search space to prevent the intruder from building
unnecessarily complex terms. For example, if two terms are
equal, their hash values are equal, but additionally testing
the hashes does not give the intruder additional decision
power.

A protocol rule is a multiset rewriting rule id : l−−[a]→r
such that (P1) it contains no fresh names, (P2) K, Out,
and FrI facts do not occur in l, (P3) K, In, Fr and FrI facts
do not occur in r, and (P4) vars(r) ⊆ vars(l) ∪ Vpub. A
protocol is specified by a finite set of protocol rules. Note
that these rules encompass both the rules executed by the
honest participants and adversary capabilities, like revealing
long-term keys. Condition (P1) and the restriction on the
usage of Fr and FrI facts from (P3), which also hold for
the message deduction rules, ensure that all fresh names
originate from instances of the Fresh rules.

A.1 Observational Equivalence
To prove observational equivalence in Tamarin, we use

Coerce rule:

Coerce
K↓e(x)

K↑e(x)

Communication rules:

Irecv
Out(x)

K↓exp(x)
Isend

K↑e(x)

In(x)
[K(x)]

Equality rule:

Iequality
K↓e(x) K↑e(x)

Construction rules:

exp↑
K↑exp(x) K↑e(y)

K↑noexp(x ˆ y)
Pub

K↑exp(x : pub)
Cfresh

FrI(x : fr)

K↑exp(x : fr)
inv↑

K↑e(x)

K↑exp(x
−1)

One
K↑exp(1)

K↑e1(x) K↑e2(y)

K↑exp(enc(x, y))

K↑e1(x) K↑e2(y)

K↑exp(dec(x, y))

K↑e(x)

K↑exp(h(x))

K↑e(x)

K↑exp(fst(x))

K↑e(x)

K↑exp(snd(x))
pair↑

K↑e1(x) K↑e2(y)

K↑exp(〈x, y〉)
mult↑

K↑e1(x1) . . . K↑en(xn) K↑en+1
(xn+1) . . . K↑el(xl)

K↑exp((x1 ∗ . . . ∗ xn) ∗ (xn+1 ∗ . . . ∗ xl)−1)

Deconstruction rules:

exp↓
K↓exp(x ˆ y) K↑e(y

−1)

K↓noexp(x)
exp↓

K↓exp(x ˆ y−1) K↑e(y)

K↓noexp(x)
exp↓

K↓exp(x ˆ (y ∗ z−1)) K↑e(y
−1 ∗ z)

K↓noexp(x)

fst↓
K↓e(〈x, y〉)
K↓exp(x)

snd↓
K↓e(〈x, y〉)
K↓exp(y)

inv↓
K↓e(x

−1)

K↓exp(x)

K↓e1(enc(x, y)) K↑e2(y)

K↓exp(x)

Exponentiation rules: exp↓
K↓exp(x ˆ y) K↑e(z)

K↓noexp(x ˆ (y ∗ z))
exp↓

K↓exp(x ˆ y) K↑e(y
−1 ∗ z)

K↓noexp(x ˆ z) · · · exp↓
K↓exp(x ˆ (y ∗ z−1)) K↑e(a ∗ b−1)

K↓noexp(x ˆ (y ∗ a ∗ (z ∗ b)−1))

Figure 7: Normal message deduction rules ND. Rules containing variables e or ei denote all variants where
these are replaced by noexp or exp. Rules containing n and l denote all variants for n ≥ 1 and l ≥ 2. There are
42 exponentiation rules computed from the DH,AC -variants of the exponentiation rule.

the algorithm provided in Figure 4 in Section 4, which we
now further explain. For efficiency reasons, Tamarin merges
both fresh rules and facts, but includes a further restriction
on dependency graphs:

DG4: The Fresh instances are unique.
As the following theorem shows, merging the different

fresh facts is sound. The proof is similar to the proof of
Theorem 1.

Theorem 2. Let S be a protocol bi-system. Then

L(S) ∼DG,IF∪Fresh∪ND R(S)
⇓

(L(S) ∪ FreshSys) ∼FreshEnv∪ND (R(S) ∪ FreshSys).

Proof. Consider the multiset rewrite systems L = L(S)∪
IF∪Fresh∪ND and R = R(S)∪ IF∪Fresh∪ND, and the
following relation R:

R = {(SA,SB)|SA = state(dgL),SB = state(dgR),
dgR ∈ mirrors(dgL), dgL ∈ dgraphs(L)}

∪ {(SA,SB)|SA = state(dgL),SB = state(dgR),
dgL ∈ mirrors(dgR), dgR ∈ dgraphs(R)}.

First note that (∅, ∅) ∈ R. Now we show that R is an
observational equivalence relation as defined in Def. 1. For
this, we must show the following for all states (SA,SB) ∈ R:

1. If SA
l−→
r
S ′A and r is the recipe of a rule in IF∪Fresh∪

ND, then there exists l′ and S ′B such that SB
l′−→
r
S ′B ,

and (S ′A,S ′B) ∈ R.

2. If SA
l−→
r
S ′A and r is the recipe of a rule in L(S), then

there exist a recipe r′ of a rule in R(S), l′, and S ′B such

that SB
l′−→
r′
S ′B , and (S ′A,S ′B) ∈ R.

and the analogous statements for the symmetric cases.
Let L′ = L(S) ∪ IF ∪ FreshSys ∪ ND′ and R′ = R(S) ∪

IF ∪ FreshSys ∪ ND′. Given a dependency graph dg, let
mergeFresh(dg) denote the dependency graph obtained by
replacing all FrI facts with Fr facts and all instances of the
FreshEnv-rule with the same instance (i.e., creating the
same fresh name) of the FreshEnv-rule.

1. Assume (SA,SB) ∈ R, SA
l−→
r
S ′A for a rule instance ri,

and r is the recipe of a rule in IF∪Fresh∪ND. Then, by
the definition of R, there is a dependency graph dgL ∈
dgraphs(L) with SA = state(dgL), and a dependency
graph dgR ∈ dgraphs(R) with SB = state(dgR).

• Suppose that ri is an instance of the FreshEnv

rule. Then SB
l′−→
r
S ′B for the same instance ri of

the FreshEnv rule, as the rule has no premises.
In particular, the variable is instantiated with the
same fresh name as in ri, hence we have the same
recipe. Moreover, (S ′A,S ′B) ∈ R since there are
mirroring dependency graphs for S ′A and S ′B ; we
can simply extend dgL and dgR with ri.

• Suppose that ri was an instance of the construction
rule Cfresh in ND. This means that SA contains
a FrI fact, which can only have been created using
the FreshEnv rule. As SA and SB have mirroring
dependency graphs, SB contains the same FrI fact,
since it must contain the same FreshEnv rule in-

stance. Hence SB
l−→
r
S ′B for the same instance ri

of the Fresh rule. Moreover, (S ′A,S ′B) ∈ R since
there are mirroring dependency graphs for S ′A and
S ′B : we can extend dgL with ri and the correct
edge, and use the same extension (including the
edge) to extend dgR to have two mirroring depen-

dency graphs with the right states.

• Suppose that ri is an instance of another rule in

IF∪Fresh∪ND. Since in SA the transition SA
l−→
r

S ′A is possible, dgL can be extended to dg′L with the
rule instance ri corresponding to this transition,
and state(dg′L) = S ′A. Then mergeFresh(dg′L) ∈
dgraphs(L′), and by L(S) ∼DG R(S) for all pos-
sible instantiations of new diff variables, the cor-
responding dependency graph dg′R ∈ dgraphs(R′).
By the definition of R, the instantiations of the
new variables (including the new diff-variables) in
dgR correspond to the instantiations of one dg′R ∈
mirrors(dg′L). Then, by construction of mirrors(dg′L),
dg′R is identical to mergeFresh(dgR) except for the
last rule instance ri′. Moreover, by construction
of mirrors(dg′L), ri′ is an instance of the rule with
the same identifier. Since the dependency graph
dg′R has the same structure D as dg′L and all rules
in IF ∪FreshSys ∪ND have no new diff-variables,

there exists a transition SB
l′−→
r
S ′B with the same

recipe as ri. Moreover, (S ′A,S ′B) ∈ R since there
are mirroring dependency graphs for S ′A and S ′B .

The symmetric case is analogous.

2. Now assume (SA,SB) ∈ R, SA
l−→
r
S ′A and r is the

recipe of a rule in L(S). Then, by definition of R,
there is a dependency graph dgL ∈ dgraphs(L) with
SA = state(dgL). Since in this state the transition

SA
l−→
r
S ′A is possible, dgL can be extended to dg′L

with the rule instance ri corresponding to this tran-
sition, and state(dg′L) = S ′A. Then mergeFresh(dg′L) ∈
dgraphs(L′), and by L(S) ∼DG R(S) we have that for
all possible instantiations of new diff variables, the cor-
responding dependency graph dg′R ∈ dgraphs(R′). By
definition of R, there is a dependency graph dgR ∈
dgraphs(R) with SB = state(dgR), where the instan-
tiations of the new variables (including the new diff-
variables) correspond to the instantiations of one dg′R ∈
mirrors(dg′L). Then, by construction of mirrors(dg′L),
this graph dg′R is identical to mergeFresh(dgR) except
for the last rule instance. By assumption, ri was an
instance of a rule in L(S). Then, by construction of
mirrors(dg′L), the last rule instance ri′ in dg′R is an in-
stance of the rule with the same identifier. Hence there

exists a transition SB
l′−→
r′
S ′B . Moreover, (S ′A,S ′B) ∈ R

since there are mirroring dependency graphs for S ′A and
S ′B .

Again, the symmetric case is analogous.

A.2 Restricted Normal Dependency Graphs
To facilitate automated reasoning, our algorithm only con-

siders restricted normal dependency graphs, a normalized
variant of dependency graphs, where terms are in normal
form and certain redundant intruder steps are eliminated.

We call the equational theory generated by Equations (4–
5) from Figure 8 AC and the rewriting system obtained by
orienting Equations (1–3,9–10) from Figure 8 and all equa-
tions from Figure 9 from left to right DH . DH] AC is an

equational presentation of EDH and DH is AC -convergent
and AC -coherent. We can therefore define t↓DH as the nor-
mal form of t with respect to DH,AC -rewriting and have
t =EDH s iff t↓DH =AC s↓DH . We say that t is ↓DH -normal
if t =AC t↓DH . Moreover we call a set of facts F ↓DH -normal
if all terms inside the facts are ↓DH -normal, and F ↓DH de-
notes F with all terms normalized.

Note that EDH has the finite variant property [13] for this
presentation, which allows us to perform symbolic reasoning
about normalization. More precisely, for all terms t, there
is a finite set of substitutions {τ1, . . . , τk} such that for all
substitutions σ, there is an i ∈ {1, . . . , k} and a substitution
σ′ with (tσ)↓DH =AC ((tτi)↓DH)σ′ and (xσ)↓DH =AC xτiσ

′

for all x ∈ vars(t). We call {(tτi↓DH , τi) | 1 ≤ i ≤ k} a
complete set of DH,AC -variants of t. For a given term t,
we use folding variant narrowing [19] to compute such a set,
which we denote by dteDH . Overloading notation, we also
denote {s | (s, τ) ∈ dteDH} by dteDH . It is straightforward
to extend these notions to multiset rewriting rules by consid-
ering rules as terms and the required new function symbols
as free.

We define the input components of a term t as inp(t),
such that inp(t−1) = inp(t), inp(〈t1, t2〉) = inp(t1)∪ inp(t2),
inp(t1 ∗ t2) = inp(t1) ∪ inp(t2), and inp(t) = {t} otherwise.
Intuitively, inp(t) consists of the maximal subterms of t that
are not products, pairs, or inverses.

Definition 5 (Restricted Normal DG). A restricted
normal dependency graph for a protocol R is a dependency
graph dg such that

dg ∈ dgraphsAC (dReDH ∪ IF ∪ FreshSys ∪ND′)

and the following conditions are satisfied (in addition to
DG1-DG4):

N1 All rule instances in I are ↓DH -normal.

N2 No instance of Coerce deduces a pair or an inverse.

N3 There is no multiplication rule that has a premise fact
of the form K↑e(t ∗ s).

N5’ If there are two conclusions c and c′ with conclusion
facts K↑e(m) and K↑e′(m

′) such that m =AC m′, then
c = c′.

N5” If there is a conclusion (i, 1) with fact K↑e(m), a conclu-

sion (j, 1) with fact K↓e′(m
′) such that m =AC m′ and

i < j, then for all k such that (j, 1)� (k, 1) ∈ D, k is
an instance of the IEquality rule.

N7 For all nodes K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2) such
that s2 is of sort pub, inp(t2) 6⊆ inp(t1).

We denote the set of all normal dependency graphs of P by
ndgraphs(P).

Note that, in contrast to normal dependency graphs in
previous versions of Tamarin [28], our restricted normal
dependency graphs have fewer and also different restrictions
to ensure soundness. Notably we have to remove restrictions
N4 and N6, and weakened N5. Intuitively, N4, N5, and N6

ensured that the intruder could not deduce the same term
(modulo the equational theory) multiple times. However,
in the context of observational equivalence, and notably the
equality rule, it is crucial that the adversary is able to deduce
a (potentially) identical term twice (maybe from different
sources), for example to test whether the protocol outputs

the same value twice. Thus we had to remove or weaken
these restrictions. In particular we weakened N5 to N5’

and N5” to allow the adversary to deduce the same term
m in a K↓e(m) fact multiple times. However, N5” ensures
that these deductions are only used for the equality rule, as
coercing the same term to obtain K↑e(m) multiple times is
unnecessary.

Analogous to dependency graph equivalence, we can now
define Restricted Dependency Graph Equivalence which con-
siders additional constraints.

Definition 6 (Restricted DG Equivalence). Let S
be a protocol bi-system. Consider the multiset rewrite sys-
tems

L = dL(S)eDH ∪ IF ∪ FreshSys ∪ND′

and

R = dR(S)eDH ∪ IF ∪ FreshSys ∪ND′.

We say that L and R are restrictively dependency graph
equivalent, written L(S) ∼RDG;NX R(S), if

• for all dependency graphs dg ensuring restrictions NX

of rules r ∈ L ∪ R, the set mirrors(dg) is non-empty
and contains dependency graphs for all possible instan-
tiations of new diff-variables.

We call∼RDG;N1,N2,N3,N5′,N5′′,N7 normal dependency graph
equivalence.

As we show below, for protocols that do not multiply ex-
ponents and do not introduce products by other means, it is
sufficient to check normal dependency graph equivalence. A
protocol P is ∗-restricted if, for each of its rules l−−[a]→r,
(a) l does not contain the function symbols ∗, ˆ, −1, fst, snd,
and dec, and (b) r does not contain the function symbol ∗.

In general, condition (a) prevents protocol rules from pat-
tern matching on reducible function symbols. Condition (b)
prevents protocols from directly using multiplication, al-
though repeated exponentiation is still allowed. Note that
these restrictions are similar to those of previous work such
as [28, 23, 12] and are not a restriction in practice. Protocols
that use multiplication in the group of exponents can usually
be specified by using repeated exponentiation. Moreover,
protocols that use multiplication in the DH group, such as
MQV [25], cannot be specified anyway, since ∗ denotes mul-
tiplication in the group of exponents.

For ∗-restricted protocols, products that occur in posi-
tions that can be extracted by the adversary can always
be constructed by the adversary himself from their compo-
nents. The following lemma shows a generalization of this,
namely that the adversary always must construct all input
components of a term.

Lemma 1. Let S be a ∗-restricted protocol, and let dg ∈
ndgraphsE(S) be a normal dependency graph. If there exists
a node with the conclusion c = K↑e(t), then for all t′ ∈ inp(t)
there are nodes with conclusion c′ = K↑e(t

′) in dg.

Proof. By definition, we have that inp(t−1) = inp(t),
inp(〈t1, t2〉) = inp(t1)∪inp(t2), inp(t1∗t2) = inp(t1)∪inp(t2),
and inp(t) = {t} otherwise.

• if t = t′−1, then c is the conclusion of an inverse rule (it
cannot be the conclusion of a Coerce rule because of
N2), hence there is a premise K↑e(t

′) and by the proper-
ties of the dependency graph there must be a matching
conclusion c′.

• if t = 〈t1, t2〉, then c is the conclusion of a pairing rule
(it cannot be the conclusion of a Coerce rule because
of N2), hence there are premises K↑e(t1) and K↑e(t2),
and by the properties of the dependency graph there
must be matching conclusions.

• if t = t1 ∗ t2, then c is the conclusion of a multiplication
rule or a Coerce rule. In case of the multiplication rule
there are premises K↑e(t1) and K↑e(t2), and by the prop-
erties of the dependency graph there must be matching
conclusions. As the protocol is ∗-restricted, in the case
of the Coerce rule, t must be a subterm of a term
input to the protocol. By the Isend rule, there must
be a corresponding K↑e(t

′′) premise such that t is a sub-
term of t′′. Hence there must be a conclusion K↑e(t)
before. This again could either result from a multipli-
cation rule or a Coerce rule. However, as the protocol
is ∗-restricted, this chain needs to eventually end with
a multiplication rule, where we can argue as above.

The following lemma shows that mirrors of dependency graphs
are actually unique up to equations and instantiations of new
diff-variables. Note that in particular there cannot be any
differences stemming from diff-terms as in all mirrors they
are instantiated in the same way.

Lemma 2. Given a convergent equational theory E and a
dependency graph dg ∈ dgraphsE(S), its mirrors mirrors(dg)
are unique up to the equational theory and the instantiation
of new diff-variables.

Proof. We show this by induction on the depth of the
mirrors.

• In the base case, the dependency graph only consists of
a single rule instance without premises. Then, all terms
in the conclusion facts can only include functions, con-
stants and new public variables. By the definition of
mirrors, all new (non-diff) variables must be instanti-
ated identically, hence the graphs are unique up to the
instantiations of new diff-variables.

• Induction step: The root node consists of a rule in-
stance with premises. As we have a correct dependency
graph, the premises and conclusions match up to the
equational theory (which is convergent, and thus con-
fluent and terminating), and by the induction hypothe-
sis the conclusions are unique up to the equational the-
ory and the instantiations of new diff-variables. Then
the terms inside conclusions (if they exist) must be
unique up to the equational theory and possible new
diff-variables: new (non-diff) variables must be iden-
tically instantiated, and (sub)terms from the premises
are unique up to the equational theory and the instan-
tiations of new diff-variables.

Now, we show that restricted dependency graph equivalence
entails dependency graph equivalence. This is done in two
steps: we begin by showing that ignoring dependency graphs
violating conditions N1, N2, N3 and N5’ is sound. In a
second step we show that N5” is sound, followed by a proof
that the same holds for N7.

Coerce:
K↓e(〈x, y〉)
K↑e(〈x, y〉)

. . .

K↓e(〈x, y〉)

fst↓:
K↓e(〈x, y〉)
K↓exp(x)

snd↓:
K↓e(〈x, y〉)
K↓exp(y)

Coerce:
K↓exp(x)

K↑exp(x)
Coerce:

K↓exp(y)

K↑exp(y)

pair↑:
K↑exp(x) K↑exp(y)

K↑exp(〈x, y〉)

⇓

Figure 10: Replacing coerced pairs

Coerce:
K↓e(x

−1)

K↑e(x
−1)

inv↓:
K↓e(x

−1)

K↓exp(x)

Coerce:
K↓exp(x)

K↑exp(x)

inv↑:
K↑exp(x)

K↑exp(x
−1)

⇒

Figure 11: Replacing coerced inverses

Lemma 3. Let S be a ∗-restricted protocol bi-system. Then

L(S) ∼DG,IF∪Fresh∪ND R(S)

if and only if

L(S) ∼RDG;N1,N2,N3,N5′ R(S).

Proof. It is easy to see that L(S) ∼DG,IF∪Fresh∪ND R(S)
implies L(S) ∼RDG;N1,N2,N3,N5′ R(S) as all restricted nor-
mal dependency graphs are dependency graphs.

Assume that L(S) ∼RDG;N1,N2,N3,N5′ R(S). Then

• for all dependency graphs dg ensuring restrictions N1,
N2, N3, N5’ of rules r ∈ L ∪ R the set of mirrors
mirrors(dg) is non-empty and contains dependency graphs
for all possible instantiations of new diff-variables.

We must show that the above conditions also hold for non-
normal dependency graphs.

Assume without loss of generality that dg is a non-normal
dependency graph of a rule r ∈ L (the symmetric case is
analogous). Then we can transform dg into a normal depen-
dency graph dg′ by executing the following transformations.

mult↑:
K↑et(t) K↑es(s)

K↑exp(t ∗ s)

mult↑:

K↑e1(x1) . . . K↑en(xn) K↑exp(t ∗ s)
K↑en+1

(xn+1) . . . K↑el(xl)

K↑exp((x1 ∗ . . . ∗ xn ∗ t ∗ s) ∗ (xn+1 ∗ . . . ∗ xl)−1)

mult↑:

K↑e1(x1) . . . K↑en(xn) K↑et(t) K↑es(s)

K↑en+1
(xn+1) . . . K↑el(xl)

K↑exp((x1 ∗ . . . ∗ xn ∗ t ∗ s) ∗ (xn+1 ∗ . . . ∗ xl)−1)

⇓

Figure 12: Replacing multiplication instances vio-
lating N3

. . .

K↑em(m)

. . .

K↑em′ (m
′)

K↑em(m)

. . .

K↑em′ (m
′)

. . .

⇓
. . .

K↑em(m)

K↑em(m)

. . .

K↑em′ (m
′)

. . .

Figure 13: Removing double K↑e() conclusions

Since dg is non-normal, it must violate (at least) one of the
conditions N1-N3 or N5’.

1. If it violates N1, we replace the rule instances with
normalized ones.

2. If there is an instance of Coerce deducing a pair, re-
spectively an inverse (violating N2), we replace this by

(a) instances of the pair deconstruction rules, followed
by Coerce instances on the parts, and a pair con-
struction rule (cf. Figure 10), respectively

(b) an instance of the inverse deconstruction rule, fol-
lowed by a Coerce instance (cf. Figure 11)

If necessary, this must be applied multiple times.

3. If there is an instance of the multiplication rule with a
premise fact of the form K↑e(t ∗ s) (violating N3), this
can be replaced by an instance of the multiplication rule
where t and s are two distinct premises (cf. Figure 12).
By Lemma 1, the necessary premises must exist within
dg. Again, if necessary, this is applied multiple times.

4. If there are two distinct conclusions c and c′ with con-
clusion facts K↑e(m) and K↑e′(m

′) such that m =AC m′

(violating N5’), one of them can be removed, and all
edges originating from the removed conclusion can be
moved to the remaining conclusion (cf. Figure 13). If
necessary, this is applied multiple times.

This gives us a normalized graph dg′ and, by assumption, we
then have that the set of mirrors mirrors(dg′) is non-empty
and contains dependency graphs for all possible instantia-
tions of new diff-variables.

Now we need to show that this implies the existence of
mirrors for the original graph dg. To do this, we will undo
the transformations in reverse order and argue why this gives
us a correct set of mirrors.

4. We can undo the removal of the second conclusion fact,
and also move the edges back. To ensure that the re-
sulting graph is still correct, we however need to check
that even in the mirrored graph both conclusion facts
still contain the same term (modulo AC).

For both K↑e(·)-facts, consider now their K↑e(·) deduc-
tion subgraph, i.e., the graph originating at their rule
instance, and where all branches that are not linked to
this via edges that link K↑e(·)-facts, are cut off. Let d
denote the depth of the subgraph of K↑e(m), and d′ de-
note the depth of the subgraph of K↑e(m

′). We proceed
by induction on n = min(d, d′).

If n = 0, then at least one of K↑e(m) and K↑e(m
′) is

a conclusion of the Coerce, Pub, or One construc-
tor rules. Note that they cannot be conclusions of the
Cfresh rule, as this would imply a non-unique fresh
value. Therefore we have three cases:

• At least one of them, without loss of generality
K↑e(m), is the conclusion of a Coerce rule: Hence
its premise is K↓e(m), and thus on the original side
there is a restricted normal dependency graph with
an instance of the equality rule with the premises
K↓e(m) and K↑e(m

′) corresponding to the current
dependency graph dg. Since we have dependency
graph equivalence, this graph also has mirrors on
the other side, and this gives us that the instances
of K↓e(m) and K↑e(m

′) contain the same term (mod-
ulo AC).

• One of them is a Pub rule: By the previous case,
the other one cannot be a conclusion of a Coerce
rule. Hence, as all other construction rules cannot
result in an equal term, the second fact must also
be the conclusion of a Pub rule. Then, by the
definition of mirrors, both contain the same new
term, and are hence equal.

• One of them is a One rule: By the first case, the
other one cannot be a conclusion of a Coerce rule.
Hence, as all other construction rules cannot result
in an equal term, the second fact must also be the
conclusion of a One rule. Then, by the definition
of mirrors, both contain the same term 1, and are
hence equal. Note that there cannot be an instance
where one is a Pub rule and one is a One rule, as
they cannot be equal in dg.

If n > 0: In this case both facts are conclusions of
construction rules with a K↑e(·) premise. By analyz-
ing all potential rules, we can see that in the original

graph dg both facts must be the conclusion of the same
rule (otherwise they cannot be equal modulo AC), and
hence their premises must be equal. Using the induc-
tion hypothesis all K↑e(·) premises are thus equal (mod-
ulo AC) in the mirrored graph, and hence (by definition
of mirrors we have the same rules, and by the previous
transformations we have instances of the multiplication
rule with the same number of parameters) also the con-
clusions.

3. If we had to replace instances of the multiplication rule,
we can undo the transformation. This gives a correct
dependency graph, and it must be in the set of mirrors
mirrors(dg) as it has the right structure, rule instances,
and variable instantiations.

2. The same argument holds for graphs where we had
modify instances of Coerce.

1. We do not need to undo the normalization of terms
since we do not care about the instantiations of the
rules, as long as they exist.

In a separate lemma, we now prove the second step, the
soundness of N5”.

Lemma 4. Let S be a ∗-restricted protocol bi-system. Then
we have L(S) ∼RDG;N1,N2,N3,N5′,N5′′ R(S) if and only if we
have L(S) ∼RDG;N1,N2,N3,N5′ R(S).

Proof. It is easy to see that L(S) ∼RDG;N1,N2,N3,N5′

R(S) implies L(S) ∼RDG;N1,N2,N3,N5′,N5′′ R(S) as the sec-
ond considers fewer graphs due to the additional restriction
N5”.

Assume that we have L(S) ∼RDG;N1,N2,N3,N5′,N5′′ R(S).
Then

• for all dependency graphs dg ensuring restrictions N1,
N2, N3, N5’, N5” of rules r ∈ L ∪ R the set of mir-
rors mirrors(dg) is non-empty and contains dependency
graphs for all possible instantiations of new diff-variables.

We need to show that the above conditions also hold for
dependency graphs violating N5”.

All graphs violating N5” contain a conclusion (i, 1) with

fact K↑e(m), a conclusion (j, 1) with fact K↓e′(m
′) such that

m =AC m′ and i < j, and an instance k with (j, 1) �
(k, 1) ∈ D, where k is not an instance of the IEquality
rule. Note that i must be either an instance of the Coerce
rule, or an instance of a constructor. This is easy to see by
analyzing the message deduction rules.

Assume without loss of generality that dg is a dependency
graph of a rule r ∈ L (the symmetric case is analogous)
violating N5”. We proceed by induction on the number
of rule instances inside dg violating N5” (we call the rule

instance j with conclusion K↓e′(m
′) the instance “violating”

N5”).
In the base case, we have no rule instance j violating N5”,

and we are trivially done.
In the induction step, we choose the rule instance j violat-

ing N5” such that j is maximal among all rule instances vi-
olating N5”. By assumption, there is a k such that (j, 1)�
(k, 1) ∈ D and k is not an instance of the IEquality. More-
over, by N5’, k cannot be an instance of the Coerce rule.
Thus it must be an instance of a deconstruction or exponen-
tiation rule.

As explained above, the corresponding rule instance imust
either be an instance of the Coerce rule, or an instance of
a constructor.

1. If i is an instance of the Coerce rule, then there must
be a conclusion (h, 1) with fact K↓e′′(m

′′) and m′ =AC

m′′. Hence we can replace the edge (j, 1) � (k, 1)
by an edge (h, 1) � (k, 1). The resulting dependency
graph dg′ is still correct and ensures N5”. Thus, by
L(S) ∼RDG;N1,N2,N3,N5′,N5′′ R(S) we have all neces-
sary mirrors. On these mirrors we can undo the trans-
formation by resetting the edge to its original origin.
This yields a correct dependency graph, as a graph
where we replace j with an instance of the IEquality
rule comparing K↓e′(m

′) (conclusion (i, 1)) and K↑e(m)
(conclusion (j, 1)) also has its mirrors and Lemma 2
holds. Note that this argument is correct even if k is
the root of dg.

2. If i is an instance of a constructor rule, we distinguish
two cases:

(a) In the first case, k is the instance of a destructor
rule. Then k’s conclusion is identical to one of i’s
premises. This means that there must be an i′ with
a K↑e() conclusion for each premise, and notably for
the one that contains the same term as k’s conclu-
sion.
As we chose j maximal, all rule instances l depend-
ing on k’s conclusion (if they exist) must be in-
stances of the IEquality rule, otherwise they would
also contradict N5” and l > k. By N5’ K↑e() con-
clusions are unique, hence all instances l must com-
pare k’s conclusion to i′’s conclusion.
Now consider the dependency graph dg′ obtained
by removing k and the instances l (if they exist),
and adding an instance of the IEquality rule com-
paring conclusion (j, 1) to (i, 1). Then j no longer
contradicts N5”, and by the induction hypothesis
we have all necessary mirrors.
In all of these mirrors we can undo the transforma-
tion by adding a suitable instance of the destructor
also used in k, and, if necessary, IEquality rule in-
stances to mirror l. The destructor k can be applied
as its premise is equal to the result of the matching
constructor i′. Moreover, since K↑e() conclusions
are unique, other K↑e() premises of the destructor
(e.g., the key in case of a decryption) can only orig-
inate in the premises of rule i, and thus must also
match in the mirrors. Finally, the equalities also
hold because they compare the conclusion of the
destructor to the premise of the constructor. Hence
the resulting dependency graphs are correct.

(b) In the second case, k is the instance of an ex-
ponentiation rule. Then all rule instances l with
(k, 1) � (l, 1) must be instances of the IEquality
or Coerce rule, as we cannot have a second expo-
nentiation rule and no other destructors match.
If there are instances of the IEquality rule, we can
argue as in the first case.
If there is an instance of the Coerce rule, its con-
clusion can also be directly derived from the pre-
ceding K↑e() conclusions. Firstly, for any instance
of the exponentiation rule, the terms in the ex-
ponent are a subset of the input components of

a

K↓exp(s1)

b

K↑e(t1)

exp↓:
K↓exp(s1) K↑e(t1)

K↓noexp(s2 ˆ t2)

⇓

a

K↓exp(s1)

Pub:
K↑exp(s1)

By Lemma 1

K↑e(s
′
1)

exp↑:
K↑exp(s1) K↑e(s

′
1)

K↑noexp(s2 ˆ s′1)

Iequality:
K↓exp(s2 ˆ s′1) K↑noexp(s2 ˆ s′1)

Figure 14: Proof of Lemma 5, case (a)

the exponent of the first K↓e()-premise and the in-
put components of the second K↑e()-premise. Sec-
ondly, the K↓e() premise results from a constructor,
thus there are K↑e()-conclusions for the base and by
Lemma 1 for all input components of the exponent.
Also, by Lemma 1 there are K↑e()-conclusions for
all input components of the exponentiation rule’s
K↑e() premise. Thus, the result of the Coerce rule
instance can also be deducted from previous K↑e()
facts using an instance of a multiplication rule and
an instance of the exponentiation constructor.
The accordingly modified graph now has one in-
stance less violating N5”, and by the induction hy-
pothesis we have the necessary mirrors. In all mir-
rors we can undo the transformation using Lemma 2
and the same arguments as above.

Now we prove the soundness of N7.

Lemma 5. Let S be a ∗-restricted protocol bi-system. Then
we have L(S) ∼RDG;N1,N2,N3,N5′,N5′′,N7 R(S) if and only
if we have L(S) ∼RDG;N1,N2,N3,N5′,N5′′ R(S).

Proof. It is easy to see that L(S) ∼RDG;N1,N2,N3,N5′,N5′′

R(S) implies L(S) ∼RDG;N1,N2,N3,N5′,N5′′,N7 R(S) as the
second considers fewer graphs due to the additional restric-
tion N7.

Assume that we have L(S) ∼RDG;N1,N2,N3,N5′,N5′′,N7 R(S).
Then

• for all dependency graphs dg ensuring restrictions N1,
N2, N3, N5’, N7 of rules r ∈ L ∪ R the set of mir-
rors mirrors(dg) is non-empty and contains dependency
graphs for all possible instantiations of new diff-variables.

a

K↓exp(s1)

b

K↑e(t1)

exp↓:
K↓exp(s1) K↑e(t1)

K↓noexp(s2 ˆ t2)

c

K↑e(s2 ˆ t2)

Iequality:
K↓noexp(s2 ˆ t2) K↑e(s2 ˆ t2)

⇓

a

K↓exp(s2)

Pub:
K↑exp(s1)

By Lemma 1

K↑e(s
′
1)

exp↑:
K↑exp(s2) K↑e(s

′
1)

K↑noexp(s2 ˆ s′1)

Iequality:
K↓exp(s2 ˆ s′1) K↑noexp(s2 ˆ s′1)

Figure 15: Proof of Lemma 5, case (b)

We need to show that the above conditions also hold for
dependency graphs violating N7.

First note that for all nodes violating N7, i.e.,

K↓exp(s1),K↑e(t1)−−[]→K↓noexp(s2 ˆ t2)

such that s2 is of sort pub, inp(t2) ⊆ inp(t1) we have the
following properties:

• they are instances of the exponentiation deconstruction
rule,

• s1 = s
s′1
2 , and

• inp(s′1) ⊆ inp(t1).

This is easy to see by analyzing all message deduction rules.
It means, in particular, that the intruder can deduce the fact
K↑exp(s1) as s2 is of sort pub, and that the intruder knows all
input components of t1 by Lemma 1.

Assume without loss of generality that dg is a dependency
graph of a rule r ∈ L (the symmetric case is analogous)
violating N7. We proceed by induction on the number of
rule instances inside dg violating N7. In the base case, we
distinguish three sub-cases.

1. There is only one rule instance violating N7, namely in
the root of dg:

Consider now a graph where we replace the root node
with an instance of the equality rule. To obtain a cor-
rect dependency graph, the graph a above K↓exp(s1) re-
mains unchanged, the rest of the graph needs to be ex-
tended with an instance of the exponentiation rule with

exp↓:
K↓exp(s1) K↑e(t1)

K↓noexp(s2 ˆ t2)

Coerce:
K↓noexp(s2 ˆ t2)

K↑noexp(s2 ˆ t2)

⇓
Pub:

K↑exp(s2)

By Lemma 1

K↑e(t2)

exp↑:
K↑exp(s2) K↑e(t2)

K↑noexp(s2 ˆ t2)

Figure 16: Proof of Lemma 5, case (c)

the premises K↑exp(s2) and K↓e(s
′
1) to match the equality,

as illustrated by Figure 14. As K↑exp(s2) can be deduced
from the public constructor rule and by Lemma 1, such
a graph exists. Moreover, it is restrictively normal, and
thus by L(S) ∼RDG;N1,N2,N3,N5′,N7 R(S) we have all
necessary mirrors. Finally, on all graphs in the set of
mirrors we can undo the transformation. Note that
the input components of t1 might not all exist in the

new graph. However, we can take the subgraph b
that was used to deduce them in dg and take its mir-
ror for the same instantiation of new diff-variables. By
Lemma 2 this graph must be identical (up to the equa-
tional theory) to the previous graph on the common
subparts, hence we can combine both. This must yield
a correct dependency graph, and thus we obtain the set
of mirrors mirrors(dg).

2. There is only one rule instance violating N7, namely
just above the root of dg, which is an instance of the
equality rule:

Consider now a graph where we essentially do the same
transformation as above: we remove the exponentia-
tion deconstruction rule and add an equality rule com-
paring the K↓exp(s1) to its deduction from the input
terms of t1, as shown in Figure 15. The resulting de-
pendency graph is restrictively normal, and thus by
L(S) ∼RDG;N1,N2,N3,N5′,N7 R(S) we have all neces-
sary mirrors. Finally, on all graphs in the set of mir-
rors we can undo the transformation. Again, the input
components of t1 might not all exist in the new graph.
However, we can take the subgraph that was used to
deduce them in dg and take its mirror for the same
instantiation of new diff-variables. By Lemma 2, this
graph must be identical (up to the equational theory)
to the previous graph on the common subparts, hence
we can combine both. Similarly, for the second premise
K↑noexp(s2 ˆ t2) of the original equality rule instance, we

can use the same argument to show that the graph c
deducing it has the necessary mirrors, which are com-
patible with the other graphs. To see that the resulting

fact ensures the required equality, we consider the two
cases: either K↑noexp(s2 ˆ t2) is the conclusion of an ex-
ponentiation construction rule, or it is the conclusion
of a Coerce rule.

(a) In the first case, its premises are (1) the public
value s2, which must be identically instantiated by
the construction of the mirrors, and (2) t2, i.e., a
subset of the input components of t1. By N5’ and
Lemma 1, this fact must be derived from the same
fact as the K↑e(t1) premise fact of the exponentia-
tion rule.

(b) In the second case, it is the conclusion of a Coerce
rule. In this case we can construct another de-
pendency graph from the graph for K↑noexp(s2 ˆ t2),

namely a graph where we compare K↓noexp(s2 ˆ t2) to
its deduction from the public value s2 and the input
components t2 of t1. By L(S) ∼RDG;N1,N2,N3,N5′,N7

R(S) we have all necessary mirrors, which again
gives us the equality for all required graphs.

Thus, we are sure in both cases that the equality holds,
hence combining all graphs yields a correct dependency
graph, and we obtain the set of mirrors mirrors(dg).

3. In all other cases we have one instance of the exponen-
tiation deconstruction rules violating N7, where the re-
sulting K↓noexp(s2 ˆ t2) fact is immediately transformed

into a K↑noexp(s2ˆt2) fact using an instance of the Coerce
rule (see Figure 16). Then we can replace both rule in-
stances (exponentiation and Coerce) by an instance
of the exponentiation construction rule, where s2 and
t2 are derived from the intruder’s knowledge facts (pos-
sible by Lemma 1).

The resulting graph ensures N7, and hence we have
the necessary mirrors. We can undo the transforma-
tion and obtain mirrors for the original graph dg. To
see that we still have a correct dependency graph, we
can use the same argument as above: we build a depen-
dency graph with an Iequality rule as the root and the
K↓noexp(s2 ˆ t2) from the exponentiation deconstruction

rule and the K↑noexp(s2 ˆ t2) fact from the exponentia-
tion construction rule. By the previous case, we have
the necessary mirrors for this case, which gives us the
equality of the terms by Lemma 2.

The induction step is analogous to the last case of the base
case: we replace one instance where the result of the expo-
nentiation deconstruction rule is immediately coerced with
an instance of the exponentiation construction rule. Then
we can apply the induction hypothesis, and conclude as
above.

Taking both lemmas together, we obtain the desired result.

Theorem 3. Let S be a ∗-restricted protocol bi-system.
Then we have L(S) ∼DG,IF∪Fresh∪ND R(S) if and only if we
have L(S) ∼RDG;N1,N2,N3,N5′,N5′′,N7 R(S).

Proof. By Lemmas 3, 4 and 5.

A.3 Constraint Solving
Building on Theorem 3, we can implement the algorithm

in Figure 4 in Tamarin by using the existing constraint solv-
ing (see the extended version of [28] for details) to compute
all (restricted) normal dependency graphs of a rule. For this,

we add a unique action to each rule, and search for all cases
where this action occurs.

Note that we had to modify the constraint solving to re-
flect the new restricted normal form conditions (cf. Fig-
ure 17). We removed the rule enforcing condition N6, and
weakened the rule enforcing N5 to only ensure N5’ and N5”.
Moreover we modified rules DG22,↑e and DG22,↑i to also solve
trivial K↑e(m) premises. For us, it is important whether even
trivial premises were deduced from a protocol output or not.
Moreover, solving all premises allows us to directly extract
dependency graphs from the solved constraints without hav-
ing to instantiate the open ones.

Similarly to [28], we say that (dg, θ) is a P -model of Γ, if dg
is a restricted normal dependency graph for P and (dg, θ) �
Γ. A P -solution of Γ is a restricted normal dependency
graph dg for P such that there is a valuation θ with (dg, θ) �
Γ.

Lemma 6. The modified constraint solving is sound and
complete, i.e., for each constraint reduction step the set of
P -solutions is unchanged.

Proof. The proof is essentially the same as the proof in
the extended version of [28], except we do not have the case
for N6 any more and need adapt the cases N5’, N5’’, DG22,↑e
and DG22,↑i. Considering completeness, we have the following
new or different cases (all other cases are as in [28]):

N5’ From the rule’s side-condition, we have i : ri ∈ Γ,
and i′ : ri ′ ∈ Γ such that K↑e(t) =AC concs(ri)1, and

K↑e′(t) =AC concs(ri ′)1. Hence, θ(i), θ(i′) ∈ {1, . . . , |I|},
ri θ =AC Iθ(i), ri ′θ =AC Iθ(i′), concs(Iθ(i))1 =AC K↑e(tθ),

and concs(Iθ(i′))1 =AC K↑e′(tθ). Moreover, we have
(θ(i), 1) = (θ(i′), 1) from N5’, which concludes this
case.

N5’’ From the rule’s side-condition, we have i : (l−−[]→K↑e(t)),
j : (l′−−[]→K↓e(t

′)), k : ri, (j, 1) 99K(k, 1), i l j ∈ Γ such
that ri ∈ ginsts(Coerce) and t =AC t′. Hence, θ(i),
θ(j), θ(k) ∈ {1, . . . , |I|}, moreover θ(i) < θ(j), riθ ∈
ginsts(Coerce) and tθ =AC t′, so by the definition of
99K in any solution there exists a rule instance with
index k′ and (θ(j), 1) � (k′, 1) such that k′ is either
an instance of a destructor rule or an instance of the
Coerce rule, which contradicts property N5” and thus
concludes this case.

DG22,↑e From the rule’s side-condition, we have j : ri ′ ∈ Γ, v ∈
{1, . . . , |prems(ri ′)|} such that p = (j, v), prems(ri ′)v =
K↑e(m), and {m} = inp(m). Hence, θ(j) ∈ {1, . . . , |I|},
ri ′θ =AC Iθ(j), and prems(Iθ(j))v =AC K↑e(m)θ. From
DG1-2, we obtain k ∈ {1, . . . , |I|} and u ∈ {1, . . . , |concs(Ik)|}
such that (k, u) � (θ(j), v) ∈ D and concs(Ik)u =AC

K↑e(m)θ. As {m} = inp(m), m is provided by a con-
struction rule in NDc-expl, thus there is ru ∈ NDc-expl

and a grounding substitution σ such that Ik = ru σ.

We construct a model of the constraint system

Γ′ = {i : ru ρ, (i, u)� p} ∪ Γ

where ρ is a fresh renaming of ru with respect to Γ.
The constraint system Γ′ occurs in the right-hand-side
of the constraint reduction rule. The structure

(dg, θ[i 7→ k][ρ(x) 7→ σ(x)]x∈dom(σ))

N5’ : Γ P Γ{i/j}
if {((i, 1),K↑e(t)), ((j, 1),K↑e′(t))} ⊆AC cs(Γ), i 6= j

N5’’ : Γ P ⊥
if i : (l−−[]→K↑e(t)), j : (l−−[]→K↓e(t

′)), k : ri, (j, 1) 99K(k, 1), il j ∈ Γ, ri ∈ ginsts(Coerce) and t =AC t′

DG22,↑i : Γ P ‖(l−[]→K
↑
e(t))∈NDc-expl (i : (l−−[]→K↑e(t)), t ≈ m, (i, 1)� p, Γ)

if p is an open implicit m-construction in Γ, and i fresh

DG22,↑e : Γ P ‖ri ∈NDc-expl (i : ri , (i, 1)� p, Γ)

if p is an open K↑e(m)-premise in Γ, {m} = inp(m), and i fresh

Figure 17: Modified constraint-reduction rules.

is a P -model of Γ as only the valuation of fresh variables
is changed. It is also a model of i : ru ρ and (i, u)� p.
Thus, it is a model of Γ′.

DG22,↑i From the rule’s side-condition, we have j : ri ∈ Γ,
v ∈ {1, . . . , |prems(ri)|}, s ∈ T , and m ∈ inp(s) \
({s}) such that p = (j, v) and prems(ri)v = K↑e(s).
Hence, θ(j) ∈ {1, . . . , |I|} and ri θ =AC Iθ(j). More-

over, prems(Iθ(j))v =AC K↑e(sθ) and mθ ∈AC inp(sθ) \
{sθ}. From [28, Extended version, Lemma 3], we ob-
tain k ∈ {1, . . . , |I|}, ru ∈ NDc-expl, a substitution σ
grounding for ru , e′, and m ∈ M such that Ik = ru σ,
concs(ru σ)1 = K↑e′(m

′), mθ =AC m′, and (k, 1) �dg

(θ(j), v). We construct a P -model for the constraint
system

Γ′ = {i : lρ−−[]→K↑e′(tρ), tρ ≈ m, (i, 1)� p} ∪ Γ

where ru = l−−[]→K↑e′(t) and ρ is a fresh renaming for
ru with respect to Γ. The constraint system Γ′ occurs
in the right-hand-side of the constraint reduction rule.
The structure

(dg, θ[i 7→ k][ρ(x) 7→ σ(x)]x∈dom(σ))

is a model of i : lρ−−[]→K↑e′(tρ), tρ ≈ m, (i, 1) �dg

p, and Γ, as only fresh variables are renamed. This
concludes this case.

Considering soundness, no changes to the proof are neces-
sary.

Using Lemma 6, we can now show that the implemented
algorithm is sound.

Theorem 4. The algorithm in Figure 4 is sound, i.e.,
when it returns “verification successful”, we have (L(S) ∪
FreshSys) ≈FreshEnv∪ND (R(S) ∪ FreshSys).

Proof. We have L(S) ∼RDG;N1,N2,N3,N5′,N7 R(S) if the
algorithm returns “verification successful” by the soundness
and completeness of the constraint solving (Lemma 6). By
Theorem 3 this implies L(S) ∼DG,IF∪Fresh∪ND R(S), and
therefore by Theorem 2 (L(S) ∪ FreshSys) ≈FreshEnv∪ND

(R(S) ∪ FreshSys).

A.4 Optimizations
We call a dependency graph unfinished when it contains

premises that do not have incoming edges (called open premises,
violating DG2), but ensures DG1, DG3, and DG4.

To improve the performance of our algorithm, we imple-
mented the following optimization allowing us to ignore in-
dependent open premises during the constraint solving. We

say that an open premise fact of an unfinished dependency
graph is independent if both

• all its terms are different variables and

• all these variables neither occur in other branches of
the graph nor in other facts of the same rule.

Intuitively, if a premise is independent, it can be generated
on the left-hand side system (LHS) if and only if it can
be generated on the right-hand side system (RHS), as all
terms are arbitrary and dependency graph equivalence en-
sures that we can derive an instance of a rule (an thus its
conclusion facts) on the LHS if and only if it can be derived
on the RHS. This allows us to abort constraint solving if all
open premises are independent and the current (unfinished)
dependency graph has the required mirrors.

We call an unfinished dependency graph trivial if all its
open premises are trivial. Note that the definition of mir-
rors can be directly applied to unfinished trivial dependency
graphs. A completion dg′ of an unfinished dependency graph
dg is a complete dependency graph dg′ that contains dg.

The following lemma shows the soundness of our optimiza-
tion.

Lemma 7. Let S be a protocol bi-system. Consider the
multiset rewrite systems L = dL(S)eDH∪IF∪FreshSys∪ND′

and R = dR(S)eDH ∪ IF ∪ FreshSys ∪ ND′. For each rule
r ∈ L ∪R, let DGr be a set of (unfinished trivial) restricted
normal dependency graphs such that their completions cover
all dependency graphs of the rules r. If for all r and all dg ∈
DGr the set mirrors(dg) is non-empty and contains depen-
dency graphs for all possible instantiations of the trivial open
premises and for all possible instantiations of the new diff-
variables, then we have L(S) ∼RDG;N1,N2,N3,N5′,N7 R(S).

Proof. We need to show that for all completions of all
unfinished trivial dependency graphs dg ∈ DGr the set
mirrors(dg) is non-empty and contains dependency graphs
for all possible instantiations of new diff-variables. Let dg be
such an unfinished trivial dependency graph and dg′r be one
of its completions. We must show that mirrors(dg′) contains
instances for possible instantiations of new diff-variables.
Let P denote all open premises in dg. For all p ∈ P let
dg′p denote the sub-dependency graph of dg′ that roots at p.
For all dg′p the set of mirrors(dg′p) is non-empty and contains
dependency graphs for all possible instantiations of the new
diff-variables. For each possible instantiations of the new
diff-variables, the union of all these dependency graphs to-
gether with a dependency graph mdg ∈ mirrors(dg) whose
instantiations of the trivial open premises matches the in-
stances of the graphs dg′P gives a correct dependency graph
by Lemma 2, which concludes the proof.

Finally the optimization enables us to ignore certain rules
when checking dependency graph equivalence. The con-
struction, Coerce, communication and exponentiation rules
in ND, the FRESH rules, and all constructors generated
from the equational theory only contain independent facts
as premises, hence we need not check them. We only need
to check the protocol rules, and the destructors from ND
and from the equational theory. In practice, a protocol’s
initialization rules also often only have trivial premises, but
this must be checked for each protocol. Our implementation
automatically recognizes the situation where it can abort for
protocol rules, whereas the construction, Coerce, commu-
nication and exponentiation rules inND, the FRESH rules,
and all constructors generated from the equational theory
are not even analyzed as they always fall in this category.

