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Abstract. An equational theory decomposed into a set B of equational
axioms and a set Δ of rewrite rules has the finite variant (FV) property
in the sense of Comon-Lundh and Delaune iff for each term t there is
a finite set {t1, . . . , tn} of →Δ,B-normalized instances of t so that any
instance of t normalizes to an instance of some ti modulo B. This is a very
useful property for cryptographic protocol analysis, and for solving both
unification and disunification problems. Yet, at present the property has
to be established by hand, giving a separate mathematical proof for each
given theory: no checking algorithms seem to be known. In this paper we
give both a necessary and a sufficient condition for FV from which we
derive an algorithm ensuring the sufficient condition, and thus FV. This
algorithm can check automatically a number of examples of FV known
in the literature.

1 Introduction

The finite variant (FV) property is a useful property of a rewrite theory R =
(Σ, B, Δ) with signature Σ, rewrite rules Δ, and equational axioms B introduced
by Comon-Lundh and Delaune in [2]. Very simply, it states the existence of a
finite set of pairs (ti, θi) for a given term t such that: (i) ti is the →Δ,B-normal
form of tθi, and (ii) for any normalized substitution ρ, the →Δ,B-normal form
of tρ is, up to B-equivalence, a substitution instance of some ti. Comon-Lundh
and Delaune list several important applications in [2], including formal reasoning
about cryptographic protocol security using constraints [3], and reducing disuni-
fication problems modulo Δ � B (when rules in Δ are viewed as equations) to
disunification problems modulo B.

We have studied in detail how, if a rewrite theory R = (Σ, B, Δ) is confluent,
terminating, and coherent modulo the axioms B, and has the FV property, one
can define an efficient narrowing strategy, which we call variant narrowing, to
obtain a finitary unification algorithm modulo Δ � B if a finitary B-unification
� S. Escobar has been partially supported by the EU (FEDER) and the Spanish

MEC under grant TIN2007-68093-C02-02, and Integrated Action HA 2006-0007.
J. Meseguer and R. Sasse have been partially supported by the ONR Grant N00014-
02-1-0715, and by the NSF Grants IIS 07-20482 and CNS 07-16638.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 79–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



80 S. Escobar, J. Meseguer, and R. Sasse

algorithm exists [6]. We agree with Comon-Lundh and Delaune [2] that if an
efficient, dedicated Δ�B-unification algorithm is known, using the FV property
to generate unifiers is usually much less efficient. But such an efficient, dedi-
cated algorithm may not be known at all. Furthermore, for common equational
axioms such as AC, it is well-known that narrowing modulo AC almost never
terminates [2]. Typically it does not terminate even when R = (Σ, B, Δ) has
the FV property; yet, existence of a finite, complete set of narrowing-generated
unifiers is guaranteed by a bound on the depth of the narrowing tree that has to
be explored [6]. Therefore, we view the FV property as the basis of an attrac-
tive method for obtaining finitary unification algorithms in many cases where
no dedicated algorithm is known, and narrowing itself would almost certainly be
nonterminating and therefore would yield an infinitary algorithm.

For all the above reasons: for reasoning about cryptographic protocols, to solve
disunification problems, and, in our view, to solve also unification problems, it
would be very useful to be able to check in an effective way whether a given
rewrite theory R = (Σ, B, Δ) has the FV property. This is the main question
that we ask and we provide an answer for in this paper: is there an effective
algorithm that can ensure that R = (Σ, B, Δ) has the FV property?

We approach this main goal by stages. In Section 4, we give a necessary and
a sufficient condition for FV. The necessary condition, which we abbreviate to
FVNS is the absence of infinite variant-preserving narrowing sequences. The
sufficient condition is the conjunction of FVNS with a second condition which
we call variant-preservingness (VP). So we have a chain of implications

(FVNS ∧ VP) ⇒ FV ⇒ FVNS

This chain of implications then provides a useful division of labor for arriving
in Section 5 at the desired checking algorithms. Since checking FVNS and VP
ensures FV, we need algorithms checking both of these properties. It turns out
that, under mild conditions on B, VP is a decidable property, so we have an al-
gorithm for it. Instead, for FVNS we have a situation strongly analogous to what
happens with the use of the dependency pairs (DP) method [1] for termination
proofs: the DP method is sound and complete for termination, yet termination
is undecidable. The point, of course, is that one usually cannot compute the ex-
act dependency graph, but can nevertheless compute an estimated dependency
graph and use it in termination proofs. This analogy is not far-fetched at all,
since in fact we were inspired by the DP-method (in its “modulo” version as
developed by Giesl and Kapur in [7]) to develop a DP-like analysis of the theory
R = (Σ, B, Δ) from which we derive our desired algorithm for checking FVNS.

We discuss several examples of theories that have the FV property. In partic-
ular, we show that for all the examples presented in [2] that were there proved to
have the FV property by mathematical arguments given for each specific theory,
our checking method can automatically prove the FV property. In [5], we also
provide a method for disproving the FV property and show that all the examples
presented in [2] that were there disproved to have the FV property are automat-
ically disproved by our method. At the end of the paper we summarize our
contributions, and discuss future work and applications, including applications
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to the formal analysis of cryptographic protocols modulo equational properties.
All proofs can be found in [5].

2 Preliminaries

We follow the classical notation and terminology from [13] for term rewriting
and from [10,11] for rewriting logic and order-sorted notions. We assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably
infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground terms
of sort s. We write TΣ(X ) and TΣ for the corresponding term algebras. For a
term t we write Var(t) for the set of all variables in t. The set of positions of a
term t is written Pos(t), and the set of non-variable positions PosΣ(t). The root
position of a term is Λ. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u. A substitution σ is a sorted mapping from a finite
subset of X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ
is Ran(σ). The identity substitution is id. Substitutions are homomorphically
extended to TΣ(X ). The application of a substitution σ to a term t is denoted
by tσ. The restriction of σ to a set of variables V is σ|V . Composition of two
substitutions is denoted by σσ′. We call a substitution σ a renaming if there is
another substitution σ−1 such that σσ−1|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) (see [11]). Throughout this paper we assume that TΣ,s �= ∅ for
every sort s. An equational theory (Σ, E) is a set of Σ-equations.

The E-subsumption preorder ≤E (or ≤ if E is understood) holds between
t, t′ ∈ TΣ(X ), denoted t ≤E t′ (meaning that t is more general than t′ modulo
E), if there is a substitution σ such that tσ =E t′; such a substitution σ is said
to be an E-match from t to t′. For substitutions σ, ρ and a set of variables V
we define σ|V =E ρ|V if xσ =E xρ for all x ∈ V ; σ|V ≤E ρ|V if there is a
substitution η such that (ση)|V =E ρ|V .

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUE(t = t′) is said to be
a complete set of unifiers of the equation t =E t′ away from W if: (i) each
σ ∈ CSUE(t = t′) is an E-unifier of t =E t′; (ii) for any E-unifier ρ of t =E t′

there is a σ ∈ CSUE(t = t′) such that σ|W ≤E ρ|W ; (iii) for all σ ∈ CSUE(t = t′),
Dom(σ) ⊆ (Var(t)∪Var (t′)) and Ran(σ)∩W = ∅. An E-unification algorithm is
complete if for any equation t = t′ it generates a complete set of E-unifiers. Note
that this set needs not be finite. A unification algorithm is said to be finitary
and complete if it always terminates after generating a finite and complete set
of solutions.

A rewrite rule is an oriented pair l → r, where l �∈ X , and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ, E, R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or
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t
p→R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a

substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X )
is =E; →R; =E. Note that →R/E on TΣ(X ) induces a relation →R/E on TΣ/E(X )
by [t]E →R/E [t′]E iff t →R/E t′. The transitive closure of →R/E is denoted by
→+

R/E and the transitive and reflexive closure of →R/E is denoted by →∗
R/E .

We say that a term t is →R/E-irreducible (or just R/E-irreducible) if there is
no term t′ such that t →R/E t′.

For substitutions σ, ρ and a set of variables V we define σ|V →R/E ρ|V if there
is x ∈ V such that xσ →R/E xρ and for all other y ∈ V we have yσ =E yρ. A
substitution σ is called R/E-normalized (or normalized) if xσ is R/E-irreducible
for all x ∈ V . We say a rewrite step t

p→R/E s is normalized if the substitution
σ, s.t. t =E t′ and t′|p = lσ, is R/E-normalized.

We say that the relation →R/E is terminating if there is no infinite sequence
t1 →R/E t2 →R/E · · · →R/E · · · . We say that the relation →R/E is confluent if
whenever t →∗

R/E t′ and t →∗
R/E t′′, there exists a term t′′′ such that t′ →∗

R/E t′′′

and t′′ →∗
R/E t′′′. An order-sorted rewrite theory R = (Σ, E, R) is confluent

(resp. terminating) if the relation →R/E is confluent (resp. terminating). In a
confluent, terminating, order-sorted rewrite theory, for each term t ∈ TΣ(X ),
there is a unique (up to E-equivalence) R/E-irreducible term t′ obtained from
t by rewriting to canonical form, which is denoted by t →!

R/E t′ or t↓R/E (when
t′ is not relevant).

3 Narrowing and Variants

Since E-congruence classes can be infinite, →R/E-reducibility is undecidable in
general. Therefore, R/E-rewriting is usually implemented [9] by R, E-rewriting.
We assume the following properties on R and E:

1. E is regular, i.e., for each t = t′ in E, we have Var(t) = Var(t′), and sort-
preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s if and only if
t′σ ∈ TΣ(X )s, and all variables in Var(t) have a top sort.

2. E has a finitary and complete unification algorithm.
3. For each t → t′ in R we have Var(t′) ⊆ Var(t).
4. R is sort-decreasing, i.e., for each t → t′ in R, each s ∈ S, and each substitu-

tion σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The rewrite rules R are confluent and terminating modulo E, i.e., the relation

→R/E is confluent and terminating.

Definition 1 (Rewriting modulo). [14] Let R = (Σ, E, R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We define the relation →R,E on
TΣ(X ) by t →R,E t′ iff there is a p ∈ PosΣ(t), l → r in R and substitution σ
such that t|p =E lσ and t′ = t[rσ]p.

Note that, since E-matching is decidable, →R,E is decidable. Notions such as
confluence, termination, irreducible terms, normalized substitution, and normal-
ized rewrite steps are defined in a straightforward manner for →R,E . Note that
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since R is confluent and terminating (modulo E), the relation →!
R,E is decid-

able, i.e., it terminates and produces a unique term (up to E-equivalence) for
each initial term t, denoted by t↓R,E. Of course t →R,E t′ implies t →R/E t′,
but the converse need not hold. To prove completeness of →R,E w.r.t. →R/E we
need the following additional coherence assumption; we refer the reader to [7]
for coherence completion algorithms.

6. →R,E is E-coherent [9], i.e., ∀t1, t2, t3 we have t1 →R,E t2 and t1 =E t3
implies ∃t4, t5 such that t2 →∗

R,E t4, t3 →+
R,E t5, and t4 =E t5.

Narrowing generalizes rewriting by performing unification at non-variable po-
sitions instead of the usual matching. The essential idea behind narrowing is
to symbolically represent the rewriting relation between terms as a narrowing
relation between more general terms.

Definition 2 (Narrowing modulo). (see, e.g., [9,12]) Let R = (Σ, E, R) be
an order-sorted rewrite theory satisfying properties (1)–(6). Let CSUE(u = u′)
provide a finitary, and complete set of unifiers for any pair of terms u, u′. The
R, E-narrowing relation on TΣ(X ) is defined as t

p,σ�R,E t′ (or σ� or �σ if p, R, E
are understood) if there is p ∈ PosΣ(t), a (possibly renamed) rule l → r in R
s.t. Var(l) ∩ Var(t) = ∅, and σ ∈ CSUE(t|p = l) such that t′ = (t[r]p)σ.

In the following, we introduce the notion of variant and finite variant property.

Definition 3 (Decomposition). [6] Let (Σ, E) be an order-sorted equational
theory. We call (Δ, B) a decomposition of E if E = B � Δ and (Σ, B,

−→
Δ) is an

order-sorted rewrite theory satisfying properties (1)–(6), where rules
−→
Δ are an

oriented version of Δ.

Example 1 (Exclusive Or). The following equational theory, denoted R⊕, is a
presentation of the exclusive or operator together with the cancellation equations
for public key encryption/decryption.

X⊕ 0 = X (1)
X⊕X = 0 (2)

X⊕X⊕Y = Y (3)

pk(K, sk(K, M)) = M (4)
sk(K, pk(K, M)) = M (5)

X⊕(Y ⊕Z) = (X⊕Y )⊕Z (6)
X⊕Y = Y ⊕X (7)

This equational theory (Σ, E) has a decomposition into Δ containing the ori-
ented version of equations (1)–(5) and B containing the last two associativity
and commutativity equations (6)–(7) for ⊕. Note that equations (1)–(2) are not
AC-coherent, but adding equation (3) is sufficient to recover that property.

We recall the notions of variant, finite variants, and the finite variant property
proposed by Comon and Delaune in [2].

Definition 4 (Variants). [2] Given a term t and an order-sorted equational
theory E, we say that (t′, θ) is an E-variant of t if tθ =E t′, where Dom(θ) ⊆
Var(t) and Ran(θ) ∩ Var(t) = ∅.
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Definition 5 (Complete set of variants). [2] Let (Δ, B) be a decomposition
of an order-sorted equational theory (Σ, E). A complete set of E-variants (up to
renaming) of a term t, denoted VΔ,B(t), is a set S of E-variants of t such that, for
each substitutionσ, there is a variant (t′, ρ) ∈ S and a substitution θ such that: (i) t′

is Δ, B-irreducible, (ii) (tσ)↓Δ,B =B t′θ, and (iii) (σ↓Δ,B)|Var(t) =B (ρθ)|Var (t).

Definition 6 (Finite variant property). [2] Let (Δ, B) be a decomposition of
an order-sorted equational theory (Σ, E). Then E, and thus (Δ, B), has the finite
variant (FV) property if for each term t, there exists a finite and complete set of
E-variants, denoted FVΔ,B(t). We will call (Δ, B) a finite variant decomposition
if (Δ, B) has the finite variant property.

Comon and Delaune characterize the finite variant property in terms of the
following boundedness property, which is equivalent to FV.

Definition 7 (Boundedness property). [2] Let (Δ, B) be a decomposition
of an order-sorted equational theory (Σ, E). (Δ, B) satisfies the boundedness
property (BP) if for every term t there exists an integer n, denoted by #Δ,B(t),
such that for every Δ, B-normalized substitution σ the normal form of tσ is
reachable by a Δ, B-rewriting derivation whose length can be bounded by n (thus

independently of σ), i.e., ∀t, ∃n, ∀σ s.t. t(σ↓Δ,B) ≤n−→Δ,B (tσ)↓Δ,B .

Theorem 1. [2] Let (Δ, B) be a decomposition of an order-sorted equational
theory (Σ, E). Then, (Δ, B) satisfies the boundedness property if and only if
(Δ, B) is a finite variant decomposition of (Σ, E).

Obviously, if for a term t, the minimal length of a rewrite sequence to the canon-
ical form of an instance tσ, with σ normalized, cannot be bounded, the theory
does not have the finite variant property. It is easy to see that for the addition
equations 0 + Y = Y , and s(X) + Y = s(X + Y ), the term t = X + Y , and the
substitution σn = {X �→ sn(0), Y �→ Y }, n ∈ N, this is the case, and therefore,
since FV ⇔ BP , the addition theory lacks the finite variant property.

We can effectively compute a complete set of variants in the following form.

Proposition 1 (Computing the Finite Variants). [6] Let (Δ, B) be a finite
variant decomposition of an order-sorted equational theory (Σ, E). Let t ∈ TΣ(X )
and #Δ,B(t) = n. Then, (s, σ) ∈ FVΔ,B(t) if and only if there is a narrowing
derivation t

σ�≤n
Δ,B s such that s is →Δ,B-irreducible and σ is →Δ,B-normalized.

Example 2. The equational theory from Example 1 has the boundedness prop-
erty. Thus, we use Proposition 1 to get the E-variants of t=M⊕sk(K, pk(K, M)).
As t →!

Δ,B 0 we have t
id�!

Δ,B 0. Therefore, (0, id) ∈ FVΔ,B(t) and it
is the only element of the complete set of E-variants as no more general
narrowing sequences are possible. For s = X ⊕ sk(K, pk(K, Y )) we get
(i) s

id�∗
Δ,B X ⊕ Y , (ii) s �∗

{X �→Z⊕U,Y �→U},Δ,B Z, (iii) s �∗
{X �→U,Y �→Z⊕U},Δ,B Z,
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(iv) s �∗
{X �→U⊕Z1,Y �→U⊕Z2},Δ,B Z1 ⊕ Z2, and (v) s �∗

{X �→U,Y �→U},Δ,B 0, so (X ⊕
Y, id), (Z, {X �→ Z ⊕ U, Y �→ U}), (Z, {X �→ U, Y �→ Z ⊕ U}), (Z1 ⊕ Z2, {X �→
U ⊕ Z1, Y �→ U ⊕ Z2}), and (0, {X �→ U, Y �→ U}), are the E-variants. As no
more general narrowing sequences are possible, these make up a complete set
of E-variants. Note that (iv) is an instance of (i) and it is not necessary for a
minimal and complete set of variants.

Example 3. Consider again Example 1. For this theory, narrowing clearly does
not terminate because Z1 ⊕ Z2 �{Z1 �→X1⊕Z′

1, Z2 �→X1⊕Z′
2},Δ,B Z ′

1 ⊕ Z ′
2 and this

can be repeated infinitely often. However, if we always assume that we are in-
terested only in a normalized substitution, which is the case, for any narrowing
sequence obtained in the previous form, there is a one-step rewriting sequence
that provides the same result. That is, given the narrowing sequence

Z1⊕Z2�{Z1�→X1⊕Z′
1,Z2�→X1⊕Z′

2},Δ,B Z ′
1⊕Z ′

2 �{Z′
1�→X′

1⊕Z′′
1 ,Z′

2�→X′
1⊕Z′′

2 },Δ,B Z ′′
1 ⊕Z ′′

2

and its corresponding rewrite sequence

X1 ⊕ X ′
1 ⊕ Z ′′

1 ⊕ X1 ⊕ X ′
1 ⊕ Z ′′

2 →Δ,B X ′
1 ⊕ Z ′′

1 ⊕ X ′
1 ⊕ Z ′′

2 →Δ,B Z ′′
1 ⊕ Z ′′

2

we can also reduce it to the same normal form using only one application of (3)
and the following normalized substitution ρ = {X �→ X1 ⊕ X ′

1, Y �→ Z ′′
1 ⊕ Z ′′

2 }.
The trick is that rule (3) allows combining all pairs of canceling terms and thus
gets rid of all of them at once.

4 Sufficient and Necessary Conditions for FV

Deciding whether an equational theory has the finite variant property is a non-
trivial task, since we have to decide whether we can stop generating normalized
substitution instances by narrowing for each term. Intuitively, since the theory is
convergent, we only have to focus on normalized substitutions and, since it has
the boundedness property, we can compute the variants in a bottom-up manner.
Moreover, any rewrite sequence with a normalized substitution will be captured
by a narrowing sequence leading to the same variant (i.e., irreducible term). Our
algorithm for checking that an equational theory has the finite variant property
is based on two notions: (i) a new notion called variant–preservingness (VP)
that ensures that an intuitive bottom-up generation of variants is complete; and
(ii) that there are no infinite sequences when we restrict ourselves to such intu-
itive bottom-up generation of variants (FVNS). In what follows, we show that
(V P ∧ FV NS) ⇒ FV ⇒ FV NS.

Variant–preservingness (VP) ensures that we can perform an intuitive
bottom-up1 generation of variants. The following notion is useful.
1 Note that this is not the same as innermost narrowing nor innermost narrowing up

to some bound. Consider Example 5 where innermost narrowing does not terminate
for term c(f(X), X), since it looks for an innermost narrowing redex each time.
A bottom-up generation of invariants does terminate (see Proposition 1) providing
terms c(f(X), X) and c(X ′, f(X ′)). Even in the case of innermost narrowing with a
bound, it will miss the term c(f(X), X).
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Definition 8 (Variant–pattern). Let R = (Σ, E, R) be an order-sorted
rewrite theory satisfying properties (1)–(6). We call a term f(t1, . . . , tn) a
variant–pattern if all subterms t1, . . . , tn are →R,E-irreducible. We will say a
term t has a variant–pattern if there is a variant–pattern t′ s.t. t′ =E t.

It is worth pointing out that whether a term has a variant–pattern is decid-
able, assuming a finitary and complete E-unification procedure: given a term
t, t has a variant–pattern t′ iff there is a symbol f ∈ Σ with arity k and vari-
ables X1, . . . , Xk of the appropriate top sorts and there is a substitution θ ∈
CSUE(t = f(X1, . . . , Xk)) such that θ is normalized, where t′ = f(X1, . . . , Xk)θ.
In the case of a term t rooted by a free symbol, t has a variant–pattern if it is
already a variant–pattern, i.e., every argument of the root symbol must be irre-
ducible. And, in the case of a term t rooted by an AC symbol, we only have to
consider in the previous algorithm the same AC symbol at the root of t, instead
of every symbol.

Definition 9 (Variant–preserving). Let R = (Σ, E, R) be an order-sorted
rewrite theory satisfying properties (1)–(6). We say that the theory R is variant–
preserving (VP) if for any variant–pattern t, either t is →R,E-irreducible or there
is a normalized →R,E step at the top position.

Note that a theory can have the finite variant property even if it is not variant-
preserving.

Example 4. Consider the following equational theory f(a, b, X) = c, where sym-
bol f is AC and X is a variable. The narrowing relation �R,E terminates for any
term but the theory does not have the variant-preserving property, e.g., given
the term t = f(X, Y ) and any normalized substitution θ ∈ {X �→ f(an), Y �→
f(bn, Z)} for n ≥ 2, there is no normalized reduction for tθ. However, the theory
does have the boundedness property, and therefore FV, since for any term rooted
by f (which is the only non-constant symbol), its normal form can be obtained
in at most one step.

We characterize variant–preservingness in Section 5.1. A theory that already
has the variant–preserving property, if there is no infinite E-narrowing sequence,
clearly has the finite variant property. However, if infinite E-narrowing sequences
exist, a theory may still have the finite variant property.

Example 5. Consider the equational theory f(f(X)) = X , which is well-known
to be non-terminating for narrowing, i.e.,

c(f(X), X)�{X �→f(X′)},R,E c(X ′, f(X ′))�{X′ �→f(X′′)},R,E c(f(X ′′), X ′′) · · ·

When we consider all possible instances of term c(f(X), X) for normalized
substitutions, we obtain term c(f(X), X) itself and the sequence c(f(X), X)
�{X �→f(X′)},R,E c(X ′, f(X ′)). The theory does have the boundedness property,
and therefore FV, since for any term and a normalized substitution, a bound is
the number of f symbols in the term.
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Not all the narrowing sequences are relevant for the finite variant property, as
shown in the previous example, and thus we must identify the relevant ones.

Definition 10 (Variant–preserving sequences). Let R = (Σ, E, R) be an
order-sorted rewrite theory satisfying properties (1)–(6). A rewrite sequence
t0

p1→R,E t1 · · · pn→R,E tn is called variant–preserving if ti−1|pi has a variant–
pattern for i ∈ {1, . . . , n} and there is no sequence t0 →m

R,E t′m such that m < n

and tn =E t′m. A narrowing sequence t0
p1,σ1� R,E t1 · · · pn,σn� R,E tn, σ = σ1 · · · σn,

is called variant–preserving if σ is →R,E-normalized and t0σ
p1→R,E t1σ · · · pn→R,E

tn is variant–preserving.

The set of variant–preserving sequences is not computable in general. However,
we provide sufficient conditions in Section 5.

Example 6. The infinite narrowing sequence of Example 5 is not variant–
preserving, since for any finite prefix of length greater than 1 the computed
substitution is non-normalized. The only variant-preserving sequences for term
c(f(X), X) are the term itself and the one-step sequence with substitution
{X �→ f(X ′)}.

Example 7. For Example 3, the narrowing sequence

Z1⊕Z2�{Z1�→X1⊕Z′
1,Z2 �→X1⊕Z′

2},R,E Z ′
1⊕Z ′

2 �{Z′
1�→X′

1⊕Z′′
1 ,Z′

2 �→X′
1⊕Z′′

2 },R,E Z ′′
1 ⊕Z ′′

2

is not a variant-preserving sequence, since the alternative rewrite sequence
X1 ⊕ X ′

1 ⊕ Z ′′
1 ⊕ X1 ⊕ X ′

1 ⊕ Z ′′
2 →R,E Z ′′

1 ⊕ Z ′′
2 is shorter.

We prove that using variant–preserving sequences is sound and complete.

Theorem 2 (Computing with variant–preserving sequences). Let R =
(Σ, E, R) be an order-sorted rewrite theory satisfying properties (1)–(6) that
also has the finite variant property. Let t ∈ TΣ(X ) and #R,E(t) = n. Then,
(s, σ) ∈ FVR,E(t) if and only if there is a variant–preserving narrowing deriva-
tion t

σ�≤n
R,E s such that s is →R,E-irreducible.

The following result provides sufficient conditions for the finite variant property.

Theorem 3 (Sufficient conditions for FV). Let R = (Σ, E, R) be an
order-sorted rewrite theory satisfying properties (1)–(6). If (i) R is variant–
preserving (VP), and (ii) there is no infinite variant–preserving narrowing se-
quence (FVNS), then R satisfies the finite variant property.

Note that variant-preservingness is not a necessary condition for FV, as shown
in Example 4. However, the absence of infinite variant–preserving narrowing
sequences is a necessary condition for FV.

Theorem 4 (Necessary condition for FV). Let R = (Σ, E, R) be an order-
sorted rewrite theory satisfying properties (1)–(6). If there is an infinite variant–
preserving narrowing sequence, then R does not satisfy the finite variant property.
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5 Checking the Finite Variant Property

In the following, we show that the variant-preserving property is clearly check-
able, in Section 5.1, but the absence of infinite variant-preserving narrowing
sequences is not computable in general, and we approximate such property, in
Section 5.2, by a checkable one using the dependency pairs technique of [7] for
the modulo case.

5.1 Checking Variant–Preservingness

The following class of equational theories is relevant. The notion of E-descendants
(given in [5]) is a straightforward extension of the standard notion of descendant
for rules. Given t =E s and p ∈ Pos(t), we write p\\s for the E-descendants of p
in s.

Definition 11 (Upper-E-coherence). Let R = (Σ, E, R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We say R is upper-E-coherent if
for all t1, t2, t3 we have t1

p→R,E t2, t1 =E t3, p > Λ, and p\\t3 = ∅ implies that

for all p′ ≤ p such that p′\\t3 = ∅, there exist t′3, t4, t5 such that t1
p′

→R,E t′3,
t2 →∗

R,E t4, t′3 →∗
R,E t5, and t4 =E t5.

Assuming E-coherence, checking upper-E-coherence consists of taking term t for
each equation t = t′ ∈ E (or reverse), finding a position p ∈ Pos(t) s.t. p > Λ

and a substitution σ s.t. tσ|p is →R,E-reducible and then, let p = p1. · · · .pk, for
i ∈ {1, . . . , k − 1}, tσ|pi must be →R,E-reducible. In general, upper-E-coherence
implies E-coherence but not vice versa, as shown below.

Example 8. Let us consider the rewrite theory R = {g(f(X)) → d, a → c} and
E = {g(f(f(a))) = g(b)}. For the term t = g(f(f(a))), subterm a is reducible,
t =E g(b), but subterms f(f(a)) and f(a) are not reducible and thus the theory
is not upper-E-coherent. However, the theory is trivially E-coherent because of
the use of symbol g at the top of both sides of the equation.

Now, we can provide an algorithm for checking variant–preservingness.

Theorem 5 (Checking Variant–preservingness). Let R = (Σ, E, R) be an
order-sorted rewrite theory satisfying properties (1)–(6) that is upper-E-coherent.
R has the variant–preserving property iff for all l → r, l′ → r′ ∈ R (possibly
renamed s.t. Var(l)∩Var(l′) = ∅) and for all X ∈ Var(l), the term t = lθ, where
θ = {X �→ l′} such that θ is an order-sorted substitution, satisfies that either
(i) t does not have a variant–pattern, or (ii) otherwise there is a normalized
reduction on t.

In [5], the variant-preservingness property for the exclusive or theory is proved.
The upper-E-coherence condition is necessary, as shown below.

Example 9. The theory of Example 8 satisfies the conditions of Theorem 5 but
it is not variant–preserving. That is, g(f(a)) does not have a variant–pattern.
However, g(b) is a variant–pattern, it is reducible, but it is not →R,E-reducible
with a normalized substitution.
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5.2 Checking Finiteness of Variant–Preserving Narrowing
Sequences

First, we need to extend the notion of defined symbol. An equation u = v is
called collapsing if v ∈ X or u ∈ X . We say a theory is collapse-free2 if all its
equations are non-collapsing.

Definition 12 (Defined Symbols for Rewriting Modulo Equations). [7]
Let R = (Σ, E, R) be an order-sorted rewrite theory with E collapse-free. Then
the set of defined symbols D is the smallest set such that D = {root(l) | l → r ∈
R} � {root(v) | u = v ∈ E or v = u ∈ E, root(u) ∈ D}.

In order to correctly approximate the dependency relation between defined sym-
bols in the theory, we need to extend the equational theory in the following
way.

Definition 13 (Adding Instantiations). [7] Given an order-sorted rewrite
theory R = (Σ, E, R), let InsE(R) be a set containing only rules of the form
lσ → rσ (where σ is a substitution and l → r ∈ R). InsE(R) is called an
instantiation of R for the equations E iff InsE(R) is the smallest set such that:
(a) R ⊆ InsE(R), (b) for all l → r ∈ R, all v such that u = v ∈ E or v = u ∈ E,
and all σ ∈ CSUE(v = l), there exists a rule l′ → r′ ∈ InsE(R) and a variable
renaming ν such that lσ =E l′ν and rσ =E r′ν.

Note that when E = ∅ or E contains only AC or C axioms, InsE(R) = R.
Dependency pairs are obtained as follows. Since we are dealing with the modulo
case, it will be notationally more convenient to use terms directly in dependency
pairs, without the usual capital letters for the top symbols.

Definition 14 (Dependency Pair). [1] Let R = (Σ, E, R) be an order-sorted
rewrite theory. If l → C[g(t1, . . . , tm)] is a rule of InsE(R) with C a context and
g a defined symbol in InsE(R), then 〈l, g(t1, . . . , tm)〉 is called a dependency
pair of R.

Example 10 (Abelian Group). This presentation of Abelian group theory, called
R∗ = (Σ, E, R), has been shown to satisfy the finite variant property in [2]. The
operators Σ are ∗ , ( )−1, and 1. The set of equations E consists of associativity
and commutativity for ∗. The rules R are:

x ∗ 1 → x (8)
1−1 → 1 (9)

x ∗ x−1 → 1 (10)
x−1 ∗ y−1 → (x ∗ y)−1 (11)

(x ∗ y)−1 ∗ y → x−1 (12)

x−1−1 → x (13)
(x−1 ∗ y)−1 → x ∗ y−1 (14)

x ∗ (x−1 ∗ y) → y (15)
x−1 ∗ (y−1 ∗ z) → (x ∗ y)−1 ∗ z (16)

(x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z (17)

2 Note that regularity does not imply collapse-free, e.g. equation 1 of Example 1 is
regular but also collapsing.
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The AC-dependency pairs for this rewrite theory are as follows. The other rules
not mentioned here do not give rise to an AC-dependency pair3.

(11)a: 〈x−1 ∗ y−1 , (x ∗ y)−1〉 (11)b: 〈x−1 ∗ y−1 , x ∗ y〉
(14)a: 〈(x−1 ∗ y)−1 , x ∗ y−1〉 (14)b: 〈(x−1 ∗ y)−1 , y−1〉
(16)a: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1 ∗ z〉 (16)b: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1〉
(16)c: 〈x−1 ∗ y−1 ∗ z , x ∗ y〉 (12)a: 〈(x ∗ y)−1 ∗ y , x−1〉
(17)a: 〈(x ∗ y)−1 ∗ y ∗ z , x−1 ∗ z〉 (17)b: 〈(x ∗ y)−1 ∗ y ∗ z , x−1〉

The relevant notions are chains of dependency pairs and the dependency graph.

Definition 15 (Chain). [1] Let R = (Σ, E, R) be an order-sorted rewrite the-
ory. A sequence of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of R is an R-chain
if there is a substitution σ such that tjσ →∗

R,E sj+1σ holds for every two con-
secutive pairs 〈sj , tj〉 and 〈sj+1, tj+1〉 in the sequence.

Definition 16 (Dependency Graph). [1] Let R = (Σ, E, R) be an order-
sorted rewrite theory. The dependency graph of R is the directed graph whose
nodes (vertices) are the dependency pairs of R and there is an arc (directed
edge) from 〈s, t〉 to 〈u, v〉 if 〈s, t〉〈u, v〉 is a chain.

As in the dependency pair technique [1], the variant–preserving chains are not
computable in general and an approximation must be performed. The notion
of connectable terms as defined in [1] can be easily extended to the variant–
preserving case, and the estimated dependency graph [1] can be computed using
the CAP and REN procedures [1]. We omit this in the paper for lack of space
but such an estimated dependency graph has been used in all examples.

Example 11. In [5], the dependency graph for Example 10 is shown. It was cre-
ated with AProVE. We see that there are self-loops on (11)b, (14)b, (16)a, (16)c
and (17)a. (11)a has a loop with (14)a, (14)a has a loop with (16)b, and so on.
It is a very highly connected graph.

In order to correctly approximate the bound for the finite variant property, we
include rules without defined symbols in their right-hand sides as extra depen-
dency pairs, that we call dummy.

Definition 17 (Dummy dependency pairs). Let R = (Σ, E, R) be an order-
sorted rewrite theory. If for a rule l → r ∈ R the right-hand side r does not
contain a defined symbol then 〈l, r〉 is a dummy dependency pair of R.

Example 12 (Abelian group variant–preserving dependency pairs). Building
upon the AC-dependency pairs computed in Example 10 we need to add these
dummy dependency pairs, to the set of dependency pairs from the prior example:

(8)a : 〈x ∗ 1 , x〉 (9)a : 〈1−1 , 1〉 (10)a : 〈x ∗ x−1 , 1〉
(13)a : 〈x−1−1

, x〉 (15)a : 〈x ∗ x−1 ∗ y , y〉
3 We have used the AProVE tool [8] to generate the dependency pairs. AProVE first

applies the coherence algorithm of [7] to this example which is unnecessary here and
thus we drop the dependency pairs created that way.
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Fig. 1. Variant–preserving dependency graph

Definition 18 (Cycle). [1] A nonempty set P of dependency pairs is called
a cycle if, for any two dependency pairs 〈s, t〉, 〈u, v〉 ∈ P, there is a nonempty
path from 〈s, t〉 to 〈u, v〉 and from 〈u, v〉 to 〈s, t〉 in the dependency graph that
traverses dependency pairs from P only.

As already demonstrated in the previous section, not all the rewriting (narrow-
ing) sequences are relevant for the finite variant property.

Definition 19 (Variant–preserving chain). Let R = (Σ, E, R) be an order-
sorted rewrite theory. A chain of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of
R is a variant–preserving chain if there is a substitution σ such that σ is
→R,E-normalized and the following rewrite sequence obtainable from the chain
s1σ →R,E C1[t1]σ →∗

R,E C1[s2]σ →R,E C1[C2[t2]]σ →∗
R,E · · · →∗

R,E

C1[C2[· · · Cn−1[sn]]]σ →R,E C1[C2[· · ·Cn−1[Cn[tn]]]]σ is variant–preserving.

The notions of a cycle, the dependency graph and the estimated dependency
graph are easily extended to the variant–preserving case. The following straight-
forward result approximates the absence of infinite narrowing sequences.

Proposition 2 (Checking Finiteness of the VP Narrowing sequences).
Let R = (Σ, E, R) be a variant–preserving, order-sorted rewrite theory. Let E
contain only linear, non-collapsing equations. If the estimated dependency graph
does not contain any variant–preserving cycle, then there are no infinite variant–
preserving narrowing sequences.

Note that the conditions that the axioms are non-collapsing and linear are nec-
essary for completeness of the dependency graph, we refer the reader to [7] for
explanations.

Example 13 (Abelian group variant–preserving dependency pair graph). We can
show the variant–preserving dependency graph of Example 12 in Figure 1. As
you can see in the picture, all the cycles have disappeared, because they involved
non-normalized substitutions, or terms without a variant–pattern, or could be
shortened.

Finally, we are able to provide an approximation result for the absence of infinite
variant–preserving narrowing sequences. Also, we are able to compute a bound
for each defined symbol thanks to a notion of rank.
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Definition 20 (Rank). The rank of a dependency pair p, denoted rankR,E(p),
is the length of the longest variant–preserving chain starting from p. For a
rule l → r ∈ R giving rise to dependency pairs dp1, dp2, . . . , dpn, its rank is
rankR,E(l → r) = (rankR,E(dp1)−1)+(rankR,E(dp2)−1)+. . .+(rankR,E(dpn)−
1) + 1. For a defined symbol f , its rank is rankR,E(f) = max{rankR,E(l → r) |
l → r ∈ R, root(l)=f}. For a term t, its rank is rankR,E(t)=Σf∈D(rankR,E(f)∗
#f (t)) where D is the set of defined symbols in R and #f (t) is the number of
appearances of f in t.

Any cycle in the variant–preserving dependency graph of course gives the rank
∞ to all dependency pairs involved in the cycle. For any symbol f it is obvious
that rankR,E(f) ≥ 1 iff f is a defined symbol.

Note that the dependency graph is not necessarily transitive for purposes of
rank calculation.

Example 14 (Abelian group variant–preserving dependency pair graph rank).
Consider again Example 13. The rank for the dependency pairs (17)a and (16)a
is 2, the rank of all other dependency pairs is 1. Note that (17)a has rank 2 as
according to Example 13 there is no variant–preserving chain of length 3 as in
this case the graph is not transitive. Thus the rank of rule (17) is 2, which means
that the rank of ∗ is 2 and the rank of −1 is 1. Thus the rank for any term t is
(#∗(t) × 2) + #−1(t).

In [5], we show VP for Abelian group and Diffie-Hellman, and the finite variant
property for Diffie-Hellman. The proof of our final result for this section is trivial
by Theorem 4, since if the rank of all symbols in the signature is finite, there are
no cycles in the estimated dependency graph and we know for sure that there is
no infinite variant-preserving rewrite sequence.

Theorem 6 (Approximation for the finite variant property). Let R =
(Σ, E, R) be a variant–preserving, order-sorted rewrite theory. Let E contain
only linear, non-collapsing equations. If for all defined symbols f we have that
rankR,E(f) is finite, then R has the finite variant property.

6 Conclusions

We have recalled Comon-Lundh and Delaune’s finite variant property (FV) and
summarized some of its applications. Our main two contributions have been: (i)
giving new necessary conditions and new sufficient conditions for FV; and (ii)
deriving from these conditions an algorithm for checking FV. To the best of our
knowledge, no such algorithms were known before. The algorithms can certainly
be improved. For example, more accurate ways of computing the effective de-
pendency graph will help the checking of FV. Regarding implementations, we
plan to implement these algorithms for frequently used equational axioms B
such as ∅, C, AC, and their combinations, so that they can be used in conjunc-
tion with the already-implemented variant narrowing algorithm described in [6]
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to derive finitary unification algorithms. This will provide a key component of
the Maude-NPA [4], a tool for the analysis of cryptographic protocols modulo
algebraic properties.
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