
Folding Variant Narrowing and
Optimal Variant Termination

Santiago Escobara, Ralf Sasseb, José Meseguerb

aDSIC-ELP, Universitat Politècnica de València, Spain
bDepartment of Computer Science, University of Illinois at Urbana-Champaign

Abstract

Automated reasoning modulo an equational theory E is a fundamental technique in many appli-
cations. If E can be split as a disjoint union E∪Ax in such a way that E is confluent, terminating,
sort-decreasing, and coherent modulo a set of equational axioms Ax, narrowing with E modulo
Ax provides a complete E-unification algorithm. However, except for the hopelessly inefficient
case of full narrowing, little seems to be known about effective narrowing strategies in the general
modulo case beyond the quite depressing observation that basic narrowing is incomplete modulo
AC. Narrowing with equations E modulo axioms Ax can be turned into a practical automated
reasoning technique by systematically exploiting the notion of E, Ax-variants of a term. After
reviewing such a notion, originally proposed by Comon-Lundh and Delaune, and giving various
necessary and/or sufficient conditions for it, we explain how narrowing strategies can be used to
obtain narrowing algorithms modulo axioms that are: (i) variant-complete (generate a complete
set of variants for any input term), (ii) minimal (such a set does not have redundant variants), and
(iii) optimally variant-terminating (the strategy will terminate for an input term t iff t has a finite
complete set of variants). We define a strategy called folding variant narrowing that satisfies
above properties (i)–(iii); in particular, when E ∪ Ax has the finite variant property, that is, when
any term t has a finite complete set of variants, this strategy terminates on any input term and
provides a finitary E ∪ Ax-unification algorithm. We also explain how folding variant narrowing
has a number of interesting applications in areas such as unification theory, cryptographic proto-
col verification, and proofs of termination, confluence and coherence of a set of rewrite rules R
modulo an equational theory E.

Keywords: Narrowing modulo, Terminating Narrowing Strategy, Variants, Equational
Unification

1. Introduction

Narrowing is a fundamental rewriting technique useful for many purposes, including equa-
tional unification and equational theorem proving [32], combinations of functional and logic
programming [27, 28, 39], partial evaluation [4], symbolic reachability analysis of rewrite theo-
ries understood as transition systems [37], and symbolic model checking [18].

Email addresses: sescobar@dsic.upv.es (Santiago Escobar), rsasse@illinois.edu (Ralf Sasse),
meseguer@illinois.edu (José Meseguer)
Preprint submitted to Journal of Logic and Algebraic Programming June 12, 2012

Narrowing with confluent and terminating equations E enjoys key completeness results, in-
cluding the generation of a complete set of E-unifiers and the covering of all rewrite sequences
starting at an instance of term t by a normalized substitution (see [32]). However, full narrowing
(i.e., narrowing at all non-variable term positions) can be quite inefficient both in space and time.
Therefore, much work has been devoted to narrowing strategies that, while remaining complete,
can have a much smaller search space. For instance, the basic narrowing strategy [32] was shown
to be complete w.r.t. a complete set of E-unifiers for confluent and terminating equations E.

Termination aspects are another important potential benefit of narrowing strategies, since
they can sometimes terminate, generating a finite search tree when narrowing an input term t,
while full narrowing may generate an infinite search tree on the same input term. For exam-
ple, works such as [32, 3] investigate conditions under which basic narrowing, one of the most
fully studied strategies for termination purposes, terminates. Similarly, so-called lazy narrowing
strategies also seek to both reduce the search space and to increase the chances of termination.
However, the extensive literature on lazy narrowing strategies [43, 7, 21] is mainly focused on
efficient evaluation strategies (efficient in the number of narrowing steps or the generality of com-
puted substitutions to reach a term that cannot be narrowed any more) whereas we are interested
in narrowing strategies that are terminating and complete for variant generation. The topic of
efficient evaluation strategies is outside the scope of the paper and can be complementary to the
narrowing strategies for variant generation developed here. See [6, 30] for references on lazy
narrowing strategies. On the other hand, lazy narrowing strategies are demand-driven and we
are not aware of demand-driven strategies for the modulo case, or even of a notion of needed (or
demanded) evaluation for the modulo case.

By decomposing an equational theory E into a set of rules E and a set of equational axioms
Ax for which a finite and complete Ax-unification algorithm exists, and imposing natural require-
ments such as confluence, termination and coherence of the rules E modulo Ax, narrowing can be
generalized to narrowing modulo axioms Ax. As known since the original study [33], the good
completeness properties of standard narrowing extend naturally to similar completeness proper-
ties for narrowing modulo Ax. This generalization of narrowing to the modulo case has many
applications. It is, to begin with, a key component of theorem proving systems that often rea-
son modulo axioms such as associativity-commutativity, and greatly improves the efficiency of
general paramodulation. It is, furthermore, very important for adding functional-logical features
to algebraic functional languages supporting rewriting modulo combinations of equational ax-
ioms. Yet another recent area with many applications is cryptographic protocol analysis, where
there is strong interest in analyzing protocol security modulo the algebraic theory E of a proto-
col’s cryptographic functions. That is because protocols deemed to be secure under the standard
Dolev-Yao model, which treats the underlying cryptography as a black box, can sometimes be
broken by clever use of algebraic properties, e.g., [44].

However, very little is known at present about effective narrowing strategies in the mod-
ulo case, and some of the known anomalies ring a cautionary note, to the effect that the naive
extensions of standard narrowing strategies can fail rather badly in the modulo case. Indeed,
except for [33, 48], we are not aware of any studies about narrowing strategies in the modulo
case. Furthermore, as work in [11, 48] shows, narrowing modulo axioms such as associativity-
commutativity (AC) can very easily lead to non-terminating behavior and, what is worse, as
shown in the Example 1 below, due to Comon-Lundh and Delaune, basic narrowing modulo AC
is not complete.

Example 1. [11] Consider the equational theory (Σ, E ∪ Ax) where E contains the following
2

equations and Ax contains associativity1 and commutativity (AC) for +:

a + a = 0 (1)
b + b = 0 (2)

a + a + X = X (3)
b + b + X = X (4)

0 + X = X (5)

The set E is terminating, AC-confluent, and AC-coherent. Consider now the unification problem
X1+X2

?
= 0 and one of the possible solutionsσ = {X1 7→ a+b; X2 7→ a+b}, which is a normalized

solution. It is well-known that in the free case (when Ax = ∅) basic narrowing is complete
for unification in the sense of lifting all innermost rewriting sequences into basic narrowing
sequences (see [38]). That is, given a term t and a (normalized) substitution σ, every innermost
rewriting sequence starting from tσ can be lifted to a basic narrowing sequence from t computing
a substitution more general than σ. This completeness property fails for basic narrowing modulo
AC as shown by the above example when we consider the term t = X1 + X2 instantiated with σ
and the following innermost rewriting sequence modulo AC from tσ: (a + b) + (a + b) →E,AC

b + b →E,AC 0. As further explained in Example 6 below, basic narrowing modulo AC, i.e., the
extension of basic narrowing to AC where we just replace syntactic unification by AC-unification,
cannot lift the above innermost sequence for tσ into a more general basic narrowing sequence,
because it is necessary to narrow inside the term generated by instantiation. Therefore, basic
narrowing modulo AC is incomplete in the sense of not providing a complete E∪AC-unification
algorithm, even though E may be confluent, terminating, and coherent modulo AC.

It seems clear that full narrowing, although complete, is hopelessly inefficient in the free
case, and even more so modulo a set Ax of axioms. The above example shows that known effi-
cient strategies like basic narrowing can totally fail to enjoy the desired completeness properties
modulo axioms. What can be done? For equational theories of the form E∪Ax, where E is con-
fluent, terminating, and coherent modulo Ax, and such that E∪Ax has the finite variant property
(FV) in the sense of [11], we proposed in [20] a narrowing strategy that is complete in the sense
of generating a complete set of most general E∪Ax-unifiers, and terminates for any input term
computing its complete set of variants. And in [19] we gave a method that can be used to check
if E∪Ax is FV. However, FV is a quite strong restriction. What can be done for any confluent,
terminating and coherent theory modulo axioms Ax?

To the best of our knowledge, except for the hopelessly inefficient case of full narrowing,
nothing is known at present about a general narrowing strategy that is effective and complete in
an adequate sense, including being complete for computing E∪Ax-unifiers, for any theory E∪Ax
under the minimum requirements that E is confluent, terminating, sort-decreasing and coherent
modulo Ax, and under minimal requirements on Ax, such as having a finitary Ax-unification al-
gorithm. It turns out that the general notion of variant, which makes sense for any such theory
E∪Ax and does not depend on FV, provides the key to obtaining a strategy meeting these re-
quirements, and sheds considerable light on the very process of computing E∪Ax-unifiers by
narrowing. In [22] we proposed such a general and effective strategy, called folding variant nar-
rowing, which can be applied to any theory E∪Ax, with E confluent, terminating, sort-decreasing,
and coherent modulo Ax, and showed that it is both complete – both in the sense of computing
a complete set of E∪Ax-unifiers, and of computing a minimal and complete set of variants for
any input term t – and optimally variant-terminating – in the sense that it will terminate for an

1We use AC operators many times in the paper and we often write terms using AC symbols in its varyadic form, e.g.,
given an AC symbol +, we write a + a + X or +(a, a, X) instead of a + (a + X), +(a,+(a, X)), (a + X) + a, or +(+(a, X), a).

3

input term t if and only if t has a finite, complete set of variants. To the best of our knowledge,
folding variant narrowing is the only practical, yet complete, general narrowing strategy modulo
a set of axioms Ax; in particular the only such one for the AC case. Furthermore, we showed
in [22] that there is no other such complete strategy that can terminate on an input term when
folding variant narrowing does not. It transforms the, up to now theoretically possible but practi-
cally hopeless, mechanism of narrowing modulo axioms Ax into a practically usable automated
deduction method, which has already been exploited in a wide range of applications as explained
in Section 9.

This paper extends and unifies within a common theoretical framework our earlier contribu-
tions in [20, 19, 22]. Our goal is to provide the most complete and accessible reference to this
general body of ideas by developing in detail its mathematical foundations and its fundamental
algorithms. The plan of the paper, and its main contributions, can be summarized as follows:

1. Comon-Lundh and Delaune’s notion of variant [11] is the fundamental notion underlying
the entire approach. After some preliminaries in Section 2, in Section 3 we further refine
this notion by formalizing the E, Ax-variants of a term t as pairs (t′, θ), with θ a substi-
tution and t′ an E, Ax-canonical form for tθ, and making explicit the preorder relation of
generalization that holds between such pairs and the corresponding notion of most general
variants in such a preorder.

2. We then give, in Section 4, general notions of narrowing strategy and precise definitions of
what it means for a strategy to be: (i) variant complete, i.e., it computes a complete set of
variants (and possibly also minimal, in the sense of the preorder relation of generalization
explained above), and (ii) optimally variant-terminating, i.e., it will terminate iff there is
a finite complete set of variants. Note that we are not interested in efficient narrowing
evaluation strategies (as widely studied in the literature of narrowing) and not even on the
standard completeness results for narrowing strategies, so we define variant completeness
and variant termination notions. These are the essential requirements that will guide us in
the search for the desired strategy. To illustrate how tight these essential requirements are,
so that none of the known strategies satisfy them, we show that basic narrowing, both in
the free case (Ax = ∅) and in the AC case, fails to satisfy properties (i) and/or (ii).

3. A key contribution is the parametric notion of folding narrowing of Section 5. The es-
sential idea is to associate to any narrowing strategy S a corresponding “folding” version
of it. That is, S is a local strategy, i.e., in the sense of which narrowing steps are allowed
from a term, whereas S	 is a global strategy, i.e., in the sense of tracking variants and
avoiding repeated generation of variants. We prove that for any complete strategy S, its
folding version S	 is always variant complete, which is property (i) in (2) above. The
presentation of folding narrowing in [22] has been improved in this paper.

4. What about minimality, and about the termination property (ii) in (2)? Another key con-
tribution is the variant narrowing strategy (VN), which takes into account properties of
confluence, termination and coherence of the rules E modulo the axioms Ax to restrict
the narrowing steps from each term. We prove that VN is variant complete. However,
although VN is not variant-terminating, we show that its folding version VN	 is variant
complete and optimally variant-terminating, thus variant minimal. The variant narrowing
of [20] has been completely redesigned in this paper.

5. Although all the above results hold for any theory E ∪ Ax with E confluent, terminating,
sort-decreasing, and coherent modulo Ax, the case when E ∪ Ax has the finite variant
property (FV) in the sense of [11], that is, when any term t has a finite, complete set

4

of variants, is of particular interest, since then the folding variant narrowing strategy is
guaranteed to terminate and to compute a complete and minimal set of variants for any
input term t. This case is studied in detail in Section 6. In particular, we study a number of
sufficient and/or necessary conditions for E ∪ Ax to enjoy FV.

6. A related practical question is: given E ∪ Ax, how can we check whether it has the finite
variant property? Under appropriate assumptions on E ∪ Ax, we give an algorithm in Sec-
tion 7 that can be used to check FV. The key idea is to view FV as a generalized termination
property. Our algorithm extends and adapts to the variant generation case ideas from the
dependency pairs method, which is a well-known technique for proving termination of
rewriting (modulo axioms). Note that we do not really extend the dependency pairs tech-
nique to narrowing and we simply reuse the dependency pairs technique to approximate
that there are no infinite variant-preserving narrowing sequences. The same methods can
also be used for disproving FV for a given theory E ∪ Ax. The algorithm of [19] has been
improved in this paper, since we were computing bounds for the depth of the narrowing
tree in [19] that are not necessary in this paper.

7. Section 8 studies in detail one key application of folding variant narrowing, namely, to
provide a finitary unification algorithm when E∪Ax enjoys FV. This is very useful for many
applications, for example in the analysis of cryptographic protocols. Also, in practice, if
E∪Ax and E′∪Ax′ both enjoy FV, their union E∪E′∪Ax∪Ax′ is often FV, either because
of disjointness, or because it is quite easy to show it by checking the required conditions.
That is, variant-based unification is a quite modular approach, although we do not discuss
modularity issues in this paper.

8. Section 9 discusses a number of applications of folding variant narrowing and of variant-
based unification, including: (i) cryptographic protocol verification modulo equational
properties; (ii) proof techniques for termination of rewriting modulo axioms; and (iii)
proof techniques for proving confluence and coherence of rewrite rules modulo axioms.
Finally, Section 10 presents some concluding remarks.

2. Preliminaries

We follow the classical notation and terminology from [46] for term rewriting, and from [35]
for rewriting logic and order-sorted notions. We assume an order-sorted signature Σ = (S,≤,Σ)
with poset of sorts (S,≤) and such that for each sort s ∈ S the connected component of s in
(S,≤) has a top sort, denoted [s], and all f : s1 · · · sn → s with n ≥ 1 have a top sort overloading
f : [s1] · · · [sn] → [s]. We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets
with each Xs countably infinite. T

Σ
(X)s is the set of terms of sort s, and T

Σ,s is the set of ground
terms of sort s. We write T

Σ
(X) and T

Σ
for the corresponding order-sorted term algebras. For a

term t, Var(t) denotes the set of all variables in t.
Positions are represented by sequences of natural numbers denoting an access path in the

term when viewed as a tree. The top or root position is denoted by the empty sequence Λ. We
define the relation p ≤ q between positions as p ≤ p for any p; and p ≤ p.q for any p and q.
Given U ⊆ Σ ∪ X, PosU(t) denotes the set of positions of a term t that are rooted by symbols
or variables in U. The set of positions of a term t is written Pos(t), and the set of non-variable
positions PosΣ(t). The subterm of t at position p is t|p and t[u]p is the term t where t|p is replaced
by u.

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X to T
Σ
(X).

Substitutions are written as σ = {X1 7→ t1, . . . , Xn 7→ tn} where the domain of σ is Dom(σ) =

5

{X1, . . . , Xn} and the set of variables introduced by terms t1, . . . , tn is written Ran(σ). The identity
substitution is id. Substitutions are homomorphically extended to T

Σ
(X). The application of a

substitution σ to a term t is denoted by tσ. For simplicity, we assume that every substitution is
idempotent, i.e., σ satisfies Dom(σ)∩Ran(σ) = ∅. Substitution idempotency ensures tσ = (tσ)σ.
The restriction of σ to a set of variables V is σ|V ; sometimes we write σ|t1,...,tn to denote σ|V where
V = Var(t1)∪ · · · ∪Var(tn). Composition of two substitutions is denoted by σσ′. Combination of
two substitutions is denoted by σ∪σ′. We call an idempotent substitution σ a variable renaming
if there is another idempotent substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ T
Σ
(X)s for some sort s ∈ S. Given

Σ and a set E of Σ-equations, order-sorted equational logic induces a congruence relation =E on
terms t, t′ ∈ T

Σ
(X) (see [36]). Throughout this paper we assume that T

Σ,s , ∅ for every sort s,
because this affords a simpler deduction system. An equational theory (Σ,E) is a pair with Σ an
order-sorted signature and E a set of Σ-equations.

The E-subsumption preorder vE (or just v if E is understood) holds between t, t′ ∈ T
Σ
(X),

denoted t vE t′ (meaning that t′ is more general than t modulo E), if there is a substitution σ
such that t =E t′σ; such a substitution σ is said to be an E-match from t to t′. The E-renaming
equivalence t ≈E t′, holds if there is a variable renaming θ such that tθ =E t′. We write t <E t′

if t vE t′ and t 0E t′. Relations ≈E and <E are extended to substitutions in a similar way. For
substitutions σ, ρ and a set of variables V we define σ|V =E ρ|V if xσ =E xρ for all x ∈ V;
σ|V vE ρ|V if there is a substitution η such that σ|V =E (ρη)|V ; and σ|V ≈E ρ|V if there is a
renaming η such that (ση)|V =E ρ|V . We write σ <E σ

′ if σ vE σ′ and σ 0E σ′.
An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ. For Var(t) ∪

Var(t′) ⊆ W, a set of substitutions CSUW
E

(t = t′) is said to be a complete set of unifiers for the
equation t = t′ modulo E away from W iff: (i) each σ ∈ CSUW

E
(t = t′) is an E-unifier of t = t′;

(ii) for any E-unifier ρ of t = t′ there is a σ ∈ CSUW
E

(t = t′) such that ρ|W vE σ|W ; (iii) for all
σ ∈ CSUW

E
(t = t′), Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅. If the set of variables W

is irrelevant or is understood from the context, we write CSUE(t = t′) instead of CSUW
E

(t = t′).
An E-unification algorithm is complete if for any equation t = t′ it generates a complete set of
E-unifiers. Note that this set needs not be finite. A unification algorithm is said to be finitary
and complete if it always terminates after generating a finite and complete set of solutions. A
unification algorithm is said to be minimal if it always provides a maximal (w.r.t. vE) set of
unifiers, i.e., for any two unifiers ρ1, ρ2 ∈ CSUW

E
(t = t′) such that ρ1|W ,E ρ2|W , we have that

ρ1|W @E ρ2|W and ρ2|W @E ρ1|W .
A rewrite rule is an oriented pair l → r, where Var(r) ⊆ Var(l) and l, r ∈ T

Σ
(X)s for some

sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple (Σ, Ax,R) with Σ an order-
sorted signature, Ax a set of Σ-equations, and R a set of rewrite rules. The rewriting relation on
T

Σ
(X), written t →R t′ or t →p,R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R

and a substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The subterm t|p is called a redex. The
relation →R/Ax on T

Σ
(X) is =Ax;→R; =Ax. Note that →R/Ax on T

Σ
(X) induces a relation →R/Ax

on the free (Σ, Ax)-algebra T
Σ/Ax(X) by [t]Ax →R/Ax [t′]Ax iff t →R/Ax t′. The transitive (resp.

transitive and reflexive) closure of→R/Ax is denoted→+
R/Ax (resp. →∗R/Ax). We say that a term t is

→R/Ax-irreducible (or just R/Ax-irreducible) if there is no term t′ such that t →R/Ax t′.
For a rewrite rule l → r, we say that it is sort-decreasing if for each substitution σ, we have

rσ ∈ T
Σ
(X)s implies lσ ∈ T

Σ
(X)s. We say a rewrite theory (Σ, Ax,R) is sort-decreasing if all

rules in R are. For a Σ-equation t = t′, we say that it is regular if Var(t) = Var(t′), and it is
sort-preserving if for each substitution σ, we have tσ ∈ T

Σ
(X)s implies t′σ ∈ T

Σ
(X)s and vice

6

versa. We say an equational theory (Σ,E) is regular or sort-preserving if all equations in E are.
For substitutions σ, ρ and a set of variables V we define σ|V →R/Ax ρ|V if there is x ∈ V

such that xσ →R/Ax xρ and for all other y ∈ V we have yσ =Ax yρ. A substitution σ is called
R/Ax-normalized (or normalized) if xσ is R/Ax-irreducible for all x ∈ V .

We say that the relation→R/Ax is terminating if there is no infinite sequence t1 →R/Ax t2 →R/Ax

· · · tn →R/Ax tn+1 · · · . We say that the relation →R/Ax is confluent if whenever t →∗R/Ax t′ and
t →∗R/Ax t′′, there exists a term t′′′ such that t′ →∗R/Ax t′′′ and t′′ →∗R/Ax t′′′. An order-sorted
rewrite theory (Σ, Ax,R) is confluent (resp. terminating) if the relation→R/Ax is confluent (resp.
terminating). In a confluent, terminating, sort-decreasing, order-sorted rewrite theory, for each
term t ∈ T

Σ
(X), there is a unique (up to Ax-equivalence) R/Ax-irreducible term t′ obtained from

t by rewriting to canonical form, which is denoted by t →!
R/Ax t′, or t↓R/Ax when t′ is not relevant.

2.1. R, Ax-rewriting

Since Ax-congruence classes can be infinite, →R/Ax-reducibility is undecidable in general.
Therefore, R/Ax-rewriting is usually implemented [33] by R, Ax-rewriting. We assume the fol-
lowing properties on R and Ax:

1. Ax is regular and sort-preserving; furthermore, for each equation t = t′ in Ax, all variables
in Var(t) have a top sort.

2. Ax has a finitary and complete unification algorithm.
3. The rewrite rules R are sort-decreasing, confluent, and terminating.

Definition 1 (Rewriting modulo). [49] Let (Σ, Ax,R) be an order-sorted rewrite theory satisfy-
ing properties (1)–(3). We define the relation→R,Ax on T

Σ
(X) by t →p,R,Ax t′ (or just t →R,Ax t′)

iff there is a non-variable position p ∈ PosΣ(t), a rule l → r in R, and a substitution σ such that
t|p =Ax lσ and t′ = t[rσ]p.

Note that, since Ax-matching is decidable,→R,Ax is decidable. Notions such as confluence, ter-
mination, irreducible terms, and normalized substitution, are defined in a straightforward manner
for→R,Ax. Note that since R is sort-decreasing, confluent, and terminating, i.e., the relation→R/Ax

is confluent and terminating, and→R,Ax⊆→R/Ax, the relation→!
R,Ax is decidable, i.e., it terminates

and produces a unique term (up to Ax-equivalence) for each initial term t, denoted by t↓R,Ax. Of
course t →R,Ax t′ implies t →R/Ax t′, but the converse does not need to hold in general. To prove
completeness of→R,Ax w.r.t. →R/Ax we need the following additional coherence assumption; we
refer the reader to [24, 49, 34] for coherence completion algorithms.

4. →R,Ax is Ax-coherent [33], i.e., ∀t1, t2, t3 we have t1 →R,Ax t2 and t1 =Ax t3 implies ∃t4, t5
such that t2 →∗R,Ax t4, t3 →+

R,Ax t5, and t4 =Ax t5. See Figure 1 for a graphical illustration.

Let us explain in detail the practical meaning of Ax-coherence, at least for the common
associative-commutative (AC) case. The best way to illustrate it is by its absence. Consider
Example 1 where symbol + is declared AC. Now consider the equation b+b = 0. This equation,
if not completed by another equation, is not coherent modulo AC. What this means is that there
will be term contexts in which the equation should be applied, but it cannot be applied. Consider,
for example, the term b + (a + b). Intuitively, we should be able to apply to it the above equation
to simplify it to the term a + 0 in one step. However, since we are using the weaker rewrite
relation→E,Ax instead of the stronger but much harder to implement relation→E/Ax, we cannot!
The problem is that the equation cannot be applied (even if we match modulo AC) to either the

7

t1 R,Ax
//

KS

Ax
��

t2

∗
R,Ax��

t3

+
R,Ax��

t5 t4+3Ax
ks

Figure 1: Ax-coherence

top term b + (a + b) or the subterm a + b. We can however make our equation coherent modulo
AC by adding the extra equation b + b + Y = 0 + Y , which, using also the equation X + 0 = X, we
can slightly simplify to the equation b + b + Y = Y . This extended version of our equation will
now apply to the term b + (a + b), giving the simplification b + (a + b) −→E,Ax a. Technically,
what coherence means is that the weaker relation→E,Ax becomes semantically equivalent to the
stronger relation→E/Ax.

Coherence can be handled implicitly or explicitly, i.e., either the matching mechanism is
modified to take care of this issue or the rules are explicitly extended, which is the option shown
above; see [47] for a comparison between implicit and explicit extensions. For rewriting, implicit
extensions are sufficient in many cases, as the implicit Ax-coherence completion provided by the
Maude tool [10] for any combination of associativity (A), commutativity (C), and identity (U)
axioms. For narrowing, implicit extension is more complicated and it is sufficient in common
cases such as combinations of C, AC, and ACU axioms to consider explicit single-variable ex-
tensions, i.e., given an equation s = t one considers s + x = t + x where x is a new variable. The
method is as follows for AC. For any symbol f which is AC, and for any equation of the form
f (u, v) = w in E, we add also the equation f (f (u, v), X) = f (w, X), where X is a new variable not
appearing in u, v,w. In an order-sorted setting, we should give to X the biggest sort possible, so
that it will apply in all generality. As an additional optimization, note that some equations may
already be coherent modulo AC, so that we need not add the extra equation. For example, if the
variable X has the biggest possible sort it could have, then the equation X + 0 = X of Example 1
is already coherent, since X will match “the rest of the +-expression,” regardless of how big or
complex that expression might be, and of where in the expression a constant 0 occurs.

The following theorem in [33, Proposition 1] that generalizes ideas in [42] and has an easy
extension to order-sorted theories, links→R/Ax with→R,Ax.

Theorem 1 (Correspondence). [42, 33] Let (Σ, Ax,R) be an order-sorted rewrite theory satis-
fying properties (1)–(4). Then t1 →!

R/Ax t2 iff t1 →!
R,Ax t3, where t2 =Ax t3.

Finally, we provide the notion of decomposition of an equational theory into rules and axioms.

Definition 2 (Decomposition). [20] Let (Σ,E) be an order-sorted equational theory. We call
(Σ, Ax, E) a decomposition of (Σ,E) if E = E ∪ Ax and (Σ, Ax, E) is an order-sorted rewrite
theory satisfying properties (1)–(4) above.

Note that we abuse notation and call (Σ, Ax, E) a decomposition of an order-sorted equational
theory (Σ,E) even if E , E ∪ Ax but E is the explicitly extended Ax-coherent version of a set E′

such that E = E′ ∪ Ax.
8

3. Variants

Given an equational theory E, the E-variants of a term t are pairs (t′, θ) such that tθ =E t′.
This notion can be very useful for reasoning about t modulo E, e.g., unification modulo E of two
terms t and t′ can be understood as an appropriate intersection of sets of E-variants for t and t′

(as shown in Section 8).

Definition 3 (Variants). [11] Given a term t and an order-sorted equational theory (Σ,E), we
say that (t′, θ) is an E-variant of t if tθ =E t′, where Dom(θ) ⊆ Var(t) and Ran(θ) ∩ Var(t) = ∅.

Example 2. Let us consider the following equational theory for both the exclusive-or operator
and the cancellation equations for public encryption and decryption. The exclusive-or symbol is
⊕ and the symbols pk and sk are used for public and private key encryption, respectively. This
equational theory is useful for protocol verification (see [37]) and it is relevant here because
there are no unification procedures available in the literature which are directly applicable to
it, e.g., unification algorithms for exclusive-or such as [5] do not directly apply when extra
equations are added.

X ⊕ Y = Y ⊕ X

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

X ⊕ 0 = X

X ⊕ X = 0
pk(K, sk(K,M)) = M

sk(K, pk(K,M)) = M

Given the term M ⊕ M, we have that: (i) (0, id), (ii) (0, {M 7→ pk(K, sk(K,M′))}), and
(iii) (0, {M 7→ M′ ⊕ M′ ⊕ M′′}) are some of its variants. Given the term X ⊕ Y, we have that:
(i) (X ⊕ Y, id), (ii) (0, {X 7→ U,Y 7→ U}), (iii) (Z, {X 7→ 0,Y 7→ Z}), and (iv) (Z, {X 7→ Z,Y 7→ 0})
are some of its variants.

Suppose that a rewrite theory (Σ, Ax, E) is a decomposition of (Σ,E). Given a term t, we can
obtain a tighter notion of variant of t (also called an E,Ax-variant of t) as a pair (t′, θ) with t′ an
E,Ax-canonical form of the term tθ. That is, the variants of a term now give us all the irreducible
patterns that instances of t can reduce to.

Definition 4 (Complete set of variants). [11] Let (Σ, Ax, E) be a decomposition of an order-
sorted equational theory (Σ,E). A complete set of E, Ax-variants (up to renaming) of a term t
is a subset V of E-variants of t such that, for each substitution σ, there is a variant (t′, θ) ∈
V and a substitution ρ such that: (i) t′ is E, Ax-irreducible, (ii) (tσ)↓E,Ax =Ax t′ρ, and (iii)
(σ↓E,Ax)|Var(t) =Ax (θρ)|Var(t).

Example 3. The equational theory (Σ,E) of Example 2 has a decomposition into E consisting
of the oriented equations below, and Ax the associativity and commutativity (AC) axioms for ⊕:

X ⊕ 0 = X (6) X ⊕ X = 0 (7)
X ⊕ X ⊕ Y = Y (8)

pk(K, sk(K,M)) = M (9)
sk(K, pk(K,M)) = M (10)

Note that equations (6)–(7) are not AC-coherent, but adding equation (8) is sufficient to recover
that property (see [49, 15]). For term t = M ⊕ M, the set {(0, id)} provides a complete set of
E, Ax-variants, since any possible variant of t is an instance of (0, id).

The following characterization of variants in terms of a variant semantics for decompositions
is useful in various applications discussed later in the paper.

9

Definition 5 (Variant Semantics). Let (Σ, Ax, E) be a decomposition of an equational theory
(Σ,E) and t be a Σ-term. We define the set of (normalized) E, Ax-variants of t as

[[t]]?E,Ax = {(t′, θ) | θ ∈ Subst(Σ,X), tθ →!
E,Ax t′′, and t′′ =Ax t′}.

Of course, some variants are more general than others, that is, there is a natural preorder
(t′, θ′) vE,Ax (t′′, θ′′) defining when variant (t′′, θ′′) is more general than variant (t′, θ′). This is
important, because even though the set of E,Ax-variants of a term t may be infinite, the set of most
general variants (that is maximal elements in the generalization preorder up to Ax-equivalence
and variable renaming) may be finite. Our notion of being more general takes into account not
only the instantiation relation between the two substitutions θ1 and θ2 and the two normal forms
t1 and t2 of a term t, but also whether θ2 is already an E,Ax-normalized substitution, since, for a
substitution θ, the less E,Ax rewrite steps, the better.

Definition 6 (Variant Preordering). Let (Σ, Ax, E) be a decomposition of an equational theory
(Σ,E) and t be a Σ-term. Given two variants (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we write (t1, θ1) vE,Ax

(t2, θ2), meaning (t2, θ2) is more general than (t1, θ1), iff there is a substitution ρ such that t1 =Ax

t2ρ and (θ1↓E,Ax)|Var(t) =Ax (θ2ρ)|Var(t). We write (t1, θ1) <E,Ax (t2, θ2) iff (t1, θ1) vE,Ax (t2, θ2)
and for every substitution ρ such that t1 =Ax t2ρ and (θ1↓E,Ax)|Var(t) =Ax (θ2ρ)|Var(t), ρ is not a
renaming.

We are, indeed, interested in equivalence classes for variant semantics to provide a notion of
semantic equality, written 'E,Ax, based on vE,Ax.

Definition 7 (Variant Equality). Let (Σ, Ax, E) be a decomposition of an equational theory (Σ,E)
and t be a Σ-term. For S 1, S 2 ⊆ [[t]]?E,Ax, we write S 1 vE,Ax S 2 iff for each (t1, θ1) ∈ S 1, there ex-
ists (t2, θ2) ∈ S 2 s.t. (t1, θ1) vE,Ax (t2, θ2). We write S 1 'E,Ax S 2 iff S 1 vE,Ax S 2 and S 2 vE,Ax S 1.

Despite the previous semantic notion of equivalence, we write (t1, θ1) =Ax (t2, θ2) to denote
that t1 =Ax t2 and θ1 =Ax θ2, and we provide a notion of equality of variants up to renaming. Both
relations =Ax and ≈Ax will be useful.

Definition 8 (Ax-Equality). Let (Σ, Ax, E) be a decomposition of an equational theory (Σ,E)
and t be a Σ-term. For (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we write (t1, θ1) ≈Ax (t2, θ2) if there is a renaming
ρ such that t1ρ =Ax t2ρ and (θ1ρ)|Var(t) =Ax (θ2ρ)|Var(t). For S 1, S 2 ⊆ [[t]]?E,Ax, we write S 1 ≈Ax S 2 if
for each (t1, θ1) ∈ S 1, there exists (t2, θ2) ∈ S 2 s.t. (t1, θ1) ≈Ax (t2, θ2), and for each (t2, θ2) ∈ S 2,
there exists (t1, θ1) ∈ S 1 s.t. (t2, θ2) ≈Ax (t1, θ1).

The preorder of Definition 6 allows us to define a most general and complete set of variants
that encompasses (modulo Ax and modulo renaming) all the variants for a term t.

Definition 9 (Most General and Complete Variant Semantics). Let (Σ, Ax, E) be a decompo-
sition of an equational theory (Σ,E) and t be a Σ-term. A most general and complete variant
semantics of t, denoted [[t]]E,Ax, is a subset [[t]]E,Ax ⊆ [[t]]?E,Ax such that: (i) [[t]]?E,Ax vE,Ax [[t]]E,Ax,
and (ii) for each (t1, θ1) ∈ [[t]]E,Ax, there is no (t2, θ2) ∈ [[t]]E,Ax \ {(t1, θ1)} s.t. (t1, θ1) vE,Ax (t2, θ2).

For any term t, [[t]]E,Ax characterizes the set of maximal elements of the preorder ([[t]]?E,Ax,vE,Ax).
The set [[t]]E,Ax is unique up to ≈Ax-equivalence. By definition, [[t]]E,Ax ⊂ [[t]]?E,Ax and all the
substitutions in [[t]]E,Ax are E,Ax-normalized.

10

Example 4. In the equational theory of Example 3, for terms t = M ⊕ sk(K, pk(K,M)) and
s = X ⊕ sk(K, pk(K,Y)), we have that [[t]]E,Ax = {(0, id)} and

[[s]]E,Ax = { (X ⊕ Y, id),
(Z, {X 7→ 0,Y 7→ Z}), (Z, {X 7→ Z,Y 7→ 0}),
(Z, {X 7→ Z ⊕ U,Y 7→ U}), (Z, {X 7→ U,Y 7→ Z ⊕ U}),
(0, {X 7→ U,Y 7→ U}), (Z1 ⊕ Z2, {X 7→ U ⊕ Z1,Y 7→ U ⊕ Z2})}

These two sets are the most general ones w.r.t. vE,Ax.

In the next section, we study how to compute the variants of a term.

4. Narrowing Strategies and Optimal Variant Termination

In this section, we introduce narrowing, narrowing strategies and their use for variant gen-
eration. As already mentioned, we are not interested in optimal evaluation narrowing strategies
[6, 30], which is an extensive topic in the literature on functional logic programming, and not
even on the standard completeness results for narrowing strategies. We are interested in narrow-
ing strategies that are terminating and complete for computing variants. A comparison of the
folding variant narrowing strategy, defined in this paper, with the related literature on optimal
evaluation narrowing strategies is outside the scope of this paper.

Narrowing generalizes rewriting by performing unification at non-variable positions instead
of the usual matching. The essential idea behind narrowing is to symbolically represent the
rewriting relation between terms as a narrowing relation between more general terms with vari-
ables.

Definition 10 (Narrowing modulo). [33, 37] Let R = (Σ, Ax,R) be an order-sorted rewrite the-
ory. Let CSUAx(u = u′) be a finite and complete set of Ax-unifiers for any pair of terms u, u′

with the same top sort. Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W.
The R, Ax-narrowing relation on T

Σ
(X) is defined as t p,σ,R,Ax t′ (σ,R,Ax if p is understood,

 σ if R, Ax are also understood, and if σ is also understood) if there is a non-variable po-
sition p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. Var(l) ∩ W = ∅, and a unifier
σ ∈ CSUW′

Ax (t|p = l) for W ′ = W ∪ Var(l), such that t′ = (t[r]p)σ.

For convenience, in each narrowing step t σ t′ we only specify the part of σ that binds variables
of t. The transitive (resp. transitive and reflexive) closure of is denoted by + (resp. ∗).
We may write t k

σ t′ if there are u1, . . . , uk−1 and substitutions ρ1, . . . , ρk such that t ρ1 u1 · · ·

uk−1 ρk t′, k ≥ 0, and σ = ρ1 · · · ρk.

Example 5. Consider Example 3. Given the term t = X ⊕ Y, there are several narrowing steps
that can be performed

X ⊕ Y φ1,E,Ax Z using φ1 = {X 7→ 0,Y 7→ Z} and Equation (6)
X ⊕ Y φ2,E,Ax Z using φ2 = {X 7→ Z,Y 7→ 0} and Equation (6)
X ⊕ Y φ3,E,Ax Z using φ3 = {X 7→ Z ⊕ U,Y 7→ U} and Equation (8)
X ⊕ Y φ4,E,Ax Z using φ4 = {X 7→ U,Y 7→ Z ⊕ U} and Equation (8)
X ⊕ Y φ5,E,Ax 0 using φ5 = {X 7→ U,Y 7→ U} and Equation (7)
X ⊕ Y φ6,E,Ax Z1 ⊕ Z2 using φ6 = {X 7→ U ⊕ Z1,Y 7→ U ⊕ Z2} and Equation (8)

11

And some redundant narrowing steps with non-normalized substitutions due to the prolific AC-
unification such as

X ⊕ Y φ7,E,Ax Z1 ⊕ Z2 using φ7 = {X 7→ Z1 ⊕ 0,Y 7→ Z2} and Equation (6)
X ⊕ Y φ8,E,Ax Z1 ⊕ Z2 using φ8 = {X 7→ Z1,Y 7→ 0 ⊕ Z2} and Equation (6)
X ⊕ Y φ9,E,Ax Z using φ9 = {X 7→ U ⊕ U,Y 7→ Z} and Equation (8)
X ⊕ Y φ10,E,Ax Z using φ10 = {X 7→ Z,Y 7→ U ⊕ U} and Equation (8)
X ⊕ Y φ11,E,Ax Z1 ⊕ Z2 using φ11 = {X 7→ U ⊕ U ⊕ Z1,Y 7→ Z2} and Equation (8)
X ⊕ Y φ12,E,Ax Z1 ⊕ Z2 using φ12 = {X 7→ Z1,Y 7→ U ⊕ U ⊕ Z2} and Equation (8)

Indeed, the narrowing search command of Maude [9] computes 124 different narrowing steps
from term t. When we consider narrowing sequences instead of single steps, we can easily
get a combinatorial explosion, since after any of the narrowing steps: X ⊕ Y φ6,E,Ax Z1 ⊕ Z2,
X⊕Y φ8,E,Ax Z1⊕Z2, or X⊕Y φ11,E,Ax Z1⊕Z2, we have another 124 different narrowing steps.
Also, there are clearly many infinite narrowing sequences, such as the one repeating substitution
φ6 again and again: X ⊕ Y φ6,E,Ax Z1 ⊕ Z2 φ′6,E,Ax Z′1 ⊕ Z′2 φ′′6 ,E,Ax Z′′1 ⊕ Z′′2 E,Ax · · · where
φ′6 = {Z1 7→ U′ ⊕ Z′1,Z2 7→ U′ ⊕ Z′2} and φ′′6 = {Z′1 7→ U′′ ⊕ Z′′1 ,Z

′
2 7→ U′′ ⊕ Z′′2 }. Clearly,

strategies that dramatically reduce this search space, yet are complete, are surely needed.

4.1. Completeness of Narrowing w.r.t. Rewriting
Several notions of completeness of narrowing w.r.t. rewriting have been given in the literature

(e.g., [32, 33, 37]).

Theorem 2 (Completeness of Full Narrowing Modulo). [33] Let (Σ, Ax, E) be a decomposi-
tion of an equational theory (Σ,E). Let t1 be a Σ-term and σ be an E,Ax-normalized substitution.
If t1σ→E,Ax t2 →E,Ax · · · →E,Ax tn such that tn = (t1σ)↓E,Ax, then there exist terms t′2, . . . , t

′
n and

E,Ax-normalized substitutions θ1, . . . , θn and ρ s.t. t1 θ1,E,Ax t′2 θ2,E,Ax · · · θn,E,Ax t′n,
σ|Var(t1) =Ax (θ1 · · · θnρ)|Var(t1), and ti =Ax t′iρ for 1 ≤ i ≤ n.

We can easily extend the previous result to allow non-normalized substitutions.

Lemma 1 (Completeness). Let (Σ, Ax, E) be a decomposition of an equational theory (Σ,E).
Let t1 be a Σ-term and θ be any substitution. If t1θ →!

E,Ax t2, then there exists a term t′2 and
two E, Ax-normalized substitutions σ and ρ s.t. t1 ∗σ,E,Ax t′2, (θ↓E,Ax)|Var(t1) =Ax (σρ)|Var(t1), and
t2 =Ax t′2ρ.

Proof. Let θ̄ = θ↓E,Ax. By coherence, confluence and termination of→E,Ax, t1θ →!
E,Ax t2 implies

∃t3 : t1θ̄ →!
E,Ax t3 and t3 =Ax t2. By Theorem 2, there exists a term t′3 and two E, Ax-normalized

substitutions σ and ρ s.t. t1 ∗σ,R,E t′3, θ̄|Var(t1) =Ax (σρ)|Var(t1), and t3 =Ax t′3ρ. 2

As a direct consequence of Lemma 1 we obtain the following result.

Corollary 1 (Complete Variant Semantics by Full Narrowing). Let (Σ, Ax, E) be a decompo-
sition of an equational theory (Σ,E). Then for each term t, the set

[[t]]Full
E,Ax = {(t′, θ) | t ∗θ,E,Ax t′ ∧ t′ = t′↓E,Ax}

is a complete set of variants, i.e., [[t]]?E,Ax vE,Ax [[t]]Full
E,Ax.

12

Note that, although [[t]]?E,Ax vE,Ax [[t]]Full
E,Ax, not all (t′, θ) ∈ [[t]]Full

E,Ax need to be most general,
i.e., [[t]]Full

E,Ax is not necessarily a most general complete set of variants as shown by Example 5.
Therefore, full narrowing gives us a way of computing a complete variant semantics, [[t]]Full

E,Ax,
from which we would like to obtain a subset S ⊆ [[t]]Full

E,Ax such that S is a most general and
complete variant semantics, i.e., S = [[t]]E,Ax. The key question, then, is:

Can we compute the set [[t]]E,Ax of most general E-variants of a term t effectively?

This is not entirely obvious. Full (i.e., unrestricted) E,Ax-narrowing may never terminate and the
set [[t]]Full

E,Ax can easily be infinite, even though a finite set of most general elements for it exists.
The solution, of course, is that we should look for adequate narrowing strategies that have better
properties than full E,Ax-narrowing so that if [[t]]E,Ax is finite, then the narrowing strategy will
terminate and will compute [[t]]E,Ax.

4.2. Narrowing Strategies and Their Properties
In order to obtain an appropriate narrowing strategy that enjoys better properties than full

E,Ax-narrowing and allows to compute [[t]]E,Ax, we need to characterize what a narrowing strat-
egy is and which properties it must satisfy. E.g., the notion of variant-completeness rather than
the standard full narrowing completeness becomes essential.

First, we define the notion of a narrowing strategy and several useful properties. Given a
narrowing sequence α : (t0 p0,σ0,R,Ax t1 · · · pn−1,σn−1,R,Ax tn), we denote by αi the narrowing
sequence αi : (t0 p0,σ0,R,Ax t1 · · · pi−1,σi−1,R,Ax ti) which is a prefix of α. Given an order-sorted
rewrite theory R, we denote by FullR(t) the (possibly infinite) set of all narrowing sequences
starting at term t.

Definition 11 (Narrowing Strategy). A narrowing strategy S is a function of two arguments,
namely, a rewrite theory R = (Σ, Ax,R) and a term t ∈ T

Σ
(X), which we denote by SR(t), such

that SR(t) ⊆ FullR(t). We require SR(t) to be prefix closed, i.e., for each narrowing sequence
α ∈ SR(t) of length n, and each i ∈ {1, . . . , n}, we also have αi ∈ SR(t).

Note that this definition of a narrowing strategy is very general and does not consider any aspect
about efficient narrowing strategies at all, see [6] for efficient narrowing strategies.

Each narrowing strategy is trivially sound w.r.t. rewriting. We say that a narrowing strategy
S is complete w.r.t. rewriting if it satisfies Theorem 2 above, concretized as follows.

Definition 12 (Completeness of a Narrowing Strategy). Let R = (Σ, Ax, E) be a decomposi-
tion of an equational theory (Σ,E). A narrowing strategy SR is called complete iff for each
pair of terms t1 and t2 and each E,Ax-normalized substitution θ such that t1θ →!

E,Ax t2, there
exists a term t′2 and two E,Ax-normalized substitutions σ and ρ s.t. (t1 ∗σ,E,Ax t′2) ∈ SR(t),
θ|Var(t1) =Ax (σρ)|Var(t1), and t2 =Ax t′2ρ.

In this paper we are interested in a notion of completeness of a narrowing strategy slightly
different than previous notions, which we call variant-completeness. First, we extend the variant
semantics to narrowing strategies and consider only narrowing sequences to normalized terms.

Definition 13 (Narrowing Variant Semantics). Let R = (Σ, Ax, E) be a decomposition of an
equational theory (Σ,E) and SR be a narrowing strategy. We define the set of narrowing variants
of a term t w.r.t. SR as [[t]]SRE,Ax = {(t′, θ) | (t ∗θ,E,Ax t′) ∈ SR(t) and t′ = t′↓E,Ax}.

13

Now, we can define our notion of variant-completeness.

Definition 14 (Variant Completeness and Minimality). Let R = (Σ, Ax, E) be a decomposi-
tion of an equational theory (Σ,E). A narrowing strategy SR is called E, Ax-variant-complete
(or just variant-complete) iff for any Σ-term t we have that [[t]]E,Ax 'E,Ax [[t]]SRE,Ax. The narrowing
strategy SR is called E, Ax-variant-minimal (or just variant-minimal) iff, in addition, for any
Σ-term t we have that [[t]]E,Ax ≈Ax [[t]]SRE,Ax and for each pair of variants (t1, θ1), (t2, θ2) ∈ [[t]]SRE,Ax
such that (t1, θ1) 6=Ax (t2, θ2), we have that (t1, θ1) 0Ax (t2, θ2).

In practice, the set SR(t) of narrowing sequences from a term t will be generated by an
algorithmASR . That is,ASR is a computable function such that, given a pair (R, t), it enumerates
the set SR(t). Even when R = (Σ, Ax, E) is a decomposition of an equational theory, the strategy
SR is variant-complete, and [[t]]E,Ax is finite on an input term t, it may happen that [[t]]SRE,Ax is not
finite. Furthermore, even if [[t]]SRE,Ax is finite, its enumeration using the algorithm ASR may not
terminate. We are of course interested in variant-complete narrowing strategies that will always
terminate on an input term t whenever [[t]]E,Ax is finite. This leads to the following notion of
variant termination for an algorithmAS, restricting the class of algorithms we are interested in.

Definition 15 (Optimal Variant Termination). Let R = (Σ, Ax, E) be a decomposition of an
equational theory (Σ,E) and SR be an E, Ax-variant-complete narrowing strategy. An algorithm
ASR for computing SR is variant-terminating iff ASR (t) terminates on input (R, t) iff [[t]]SRE,Ax is
finite. An algorithmASR is optimally variant-terminating iff bothASR is variant-terminating and
[[t]]SRE,Ax is variant-minimal for every Σ-term t.

By abuse of language, we say that a narrowing strategy S is variant-terminating (resp. optimally
variant-terminating) whenever AS is. The term “optimally variant-terminating” is justified as
follows.

Proposition 1. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). Let SR be
an E, Ax-variant-complete narrowing strategy and S′

R
be an optimally variant-terminating nar-

rowing strategy. Then, for each Σ-term t such that SR(t) terminates, then S′
R

(t) also terminates.

Proof. If SR(t) terminates, then [[t]]SRE,Ax is necessarily finite. Therefore, [[t]]
S′
R

E,Ax is also necessarily
finite, since S′

R
is variant-minimal. Therefore, S′

R
(t) also terminates. 2

Therefore, if a variant-complete narrowing strategy SR is optimally variant-terminating, then
whenever any other narrowing strategy S′

R
enjoying the same variant-completeness property

terminates on a term t, SR is guaranteed to terminate on t as well. Such an optimally variant-
terminating strategy would be a powerful tool, improving over many narrowing strategies defined
previously in the literature, as shown in the next section. Later, in Sections 5 and 6 below, we
introduce a narrowing strategy that is optimally variant-terminating under some conditions.

4.3. Basic Narrowing (Modulo) is neither Variant-Complete nor Optimally Variant-Terminating

In this section we show that basic narrowing modulo AC is not variant-complete. Further-
more, we show that even basic narrowing without axioms is not optimally variant-terminating,
thus motivating that there is room for improvement even in the free case. We extend the standard
definition of basic narrowing given in [31] to the modulo case.

14

Definition 16 (Basic Narrowing modulo Ax). Let (Σ, Ax,R) be an order-sorted rewrite theory.
Given a term t ∈ T

Σ
(X), a substitution ρ, and a set W of variables such that Var(t) ⊆ W and

Var(ρ) ⊆ W, a basic narrowing step modulo Ax for 〈t, ρ〉 is defined by 〈t, ρ〉 b
 p,θ,R,Ax 〈t

′, ρ′〉
iff there is p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. Var(l) ∩ W = ∅, and θ ∈
CSUW′

Ax (t|pρ = l) for W ′ = W ∪ Var(l) such that t′ = t[r]p, and ρ′ = ρθ.

Basic narrowing modulo AC is incomplete w.r.t. innermost rewriting modulo AC [48] despite
its completeness in the free case [38], i.e., there are innermost rewriting sequences modulo AC
that are not lifted to basic narrowing sequences modulo Ax. In particular, basic narrowing modulo
AC is not variant-complete.

Example 6. The following full narrowing sequence relevant for the unification problem
X1 + X2

?
= 0 of Example 1:

X1 + X2 ρ1,E,Ax X′ + X′′

using ρ1 = {X1 7→ a + X′, X2 7→ a + X′′} and rule (3)

X′ + X′′ ρ2,E,Ax 0
using ρ2 = {X′ 7→ b, X′′ 7→ b} and rule (2)

is not a basic narrowing sequence modulo AC, since after the first step it results in a variable X
and no further basic narrowing step modulo AC is possible:

〈X1 + X2, id〉
b
 τ1,E,Ax 〈X, τ1〉

using τ1 = {X1 7→ a + X′, X2 7→ a + X′′, X 7→ X′ + X′′} and rule (3)

Since the pair (0, ρ1ρ2) is a variant of X1 + X2 not subsumed by any basic narrowing sequence
generated from X1 + X2, basic narrowing modulo AC is not variant-complete.

Moreover, basic narrowing in the free case is not optimally variant-terminating, as shown by
the following example.

Example 7. Consider the rewrite theory R = (Σ, ∅, E) where E is the set of confluent and ter-
minating rules E = { f (x) → x, f (f (x)) → f (x)} and Σ contains only the unary symbol f and a
constant a. The term t = f (x) has only one variant: [[f (x)]]E,Ax = {(x, id)}. Indeed, the theory has
the finite variant property (see Example 15 in Section 6, or also [19]). Basic narrowing performs
the following two narrowing steps:

(i) 〈 f (x), id〉 b
 {x 7→x′},E 〈x′, {x 7→ x′}〉 and

(ii) 〈 f (x), id〉 b
 {x 7→ f (x′)},E 〈 f (x′), {x 7→ f (x′)}〉.

However, the second narrowing step leads to the following non-terminating basic narrowing
sequence:

〈 f (x), id〉 b
 {x 7→ f (x′)},E 〈 f (x′), {x 7→ f (x′)}〉
b
 {x′ 7→ f (x′′)},E 〈 f (x′′), {x 7→ f (f (x′′)), x′ 7→ f (x′′)}〉
· · ·

and basic narrowing is unable to terminate and provide the finite number of variants associated
to the term t.

In the next section we define a variant-complete narrowing strategy.
15

5. Folding Variant Narrowing

In order to compute the variants of a term, we can simply keep track of all the variants
generated so far by narrowing, since we know that for any decomposition there is a (possibly
infinite) set of most general variants (modulo axioms and modulo renaming) and sooner or later
full narrowing will generate those most general variants, thanks to Corollary 1. In this section,
we define a narrowing strategy called folding narrowing, which works in this way and achieves
variant-completeness. Note that the folding narrowing strategy is parametric on another complete
narrowing strategy, which will allow us later to define more concise narrowing strategies for
obtaining the variants. Also note that only when a term has a finite number of most general
variants, a narrowing strategy can be optimally variant-terminating for that term; this is studied
in detail in Section 6 below.

First, we need to introduce the notion of variant preordering with normalization, which is
very close to Definition 6, in order to capture when a newly generated variant is subsumed by a
previously generated one.

Definition 17 (Normalized Variant Preordering). Let (Σ, Ax, E) be a decomposition of an equa-
tional theory (Σ,E) and t be a Σ-term. Given two variants (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we write
(t1, θ1) v!

E,Ax (t2, θ2), meaning (t2, θ2) is a more general variant of t than (t1, θ1), iff
(t1↓E,Ax, θ1) vE,Ax (t2, θ2).

We define in Definition 18 below the folding narrowing strategy, which is based on the dif-
ferent levels of reachable states, denoted as Frontier

v!
E,Ax

(I)i, and the relation v!
E,Ax for identify-

ing variants subsumed by previously generated ones. We are presenting a specialized version
of the folding reachable transition system of [18] rolled together with our folding narrowing
strategy. Given a decomposition R = (Σ, Ax, E) of an equational theory (Σ,E) and a narrow-
ing strategy SR, we extend SR to variants as follows: given a term t and a substitution ρ,
SR((t, ρ)) = {(t, ρ) ∗

σ,E,Ax(t′, ρσ) | (t ∗
σ,E,Ax t′) ∈ SR(t)}.

Definition 18 (Folding Narrowing Strategy). Let R = (Σ, Ax, E) be a decomposition of an
equational theory (Σ,E) and SR a narrowing strategy. Let t be a Σ-term. The frontier from
I = (t, id) with folding v!

E,Ax is defined as

Frontier
v!

E,Ax
(I)0 = I,

Frontier
v!

E,Ax
(I)n+1 = {(y, ρσ) | (∃(z, ρ) ∈ Frontier

v!
E,Ax

(I)n : (z, ρ) σ,E,Ax(y, ρσ))∧

(@k ≤ n, (w, τ) ∈ Frontier
v!

E,Ax
(I)k : (y, ρσ) v!

E,Ax (w, τ))}

The folding SR-narrowing strategy, denoted by S	
R

(t), is defined as

S
	
R

(t) = {t k
σ,E,Ax t′ | ((t, id) k

σ,E,Ax(t′, σ)) ∈ SR(t) ∧ (t′, σ) ∈ Frontier
v!

E,Ax
(I)k}

We write Full	
R

to denote the folding version of the full narrowing strategy FullR. The follow-
ing example shows the advantages of folding full-narrowing for computing variants, for instance
w.r.t. basic narrowing modulo AC.

Example 8. Considering Example 7. Using the Full	
R

strategy, we only get step (i), since step
(ii) is subsumed by step (i). That is, (f (x′), {x 7→ f (x′)}) v!

E,∅ (x′, {x 7→ x′}), since f (x′)↓E,Ax = x′.
So even though basic narrowing does not terminate for this equational theory, Full	

R
does.

16

The following example shows what steps are performed by Full	
R

and its termination on our
running example.

Example 9. Using the theory from Example 3, for t = X ⊕ Y we get the following Full	
R

steps.
First, we show the narrowing steps with normalized substitutions.

(i) (X ⊕ Y, id) φ1 (Z, φ1), using Equation (6) and substitution φ1 = {X 7→ 0,Y 7→ Z},
(ii) (X ⊕ Y, id) φ2 (Z, φ2), using Equation (6) and substitution φ2 = {X 7→ Z,Y 7→ 0},

(iii) (X ⊕ Y, id) φ3 (Z, φ3), using Equation (8) and substitution φ3 = {X 7→ Z ⊕ U,Y 7→ U},
(iv) (X ⊕ Y, id) φ4 (Z, φ4), using Equation (8) and substitution φ4 = {X 7→ U,Y 7→ Z ⊕ U},
(v) (X ⊕ Y, id) φ5 (0, φ5), using Equation (7) and substitution φ5 = {X 7→ U,Y 7→ U},

(vi) (X ⊕ Y, id) φ6 (Z1 ⊕ Z2, φ6), using Equation (8) and φ6 = {X 7→ U ⊕ Z1,Y 7→ U ⊕ Z2}.

Non-normalized narrowing steps such as

(X ⊕ Y, id) φ6 (Z, φ7), using Equation (8) and φ7 = {X 7→ U ⊕ U,Y 7→ Z}

are also computed by Full	
R

but all are finally subsumed by a variant with the normalized version
of the same substitution, e.g., (Z, φ7) vE,Ax (Z, φ1). Note that Full	

R
terminates after generating

all narrowing steps above:

1. There are no further steps possible from (i)-(iv), since any instantiation of Z for which a
narrowing step is possible would mean that the computed substitution is not normalized.

2. There is no further step possible from (v), since 0 is a normal form.
3. There are no further steps possible from (vi), since we are back at the beginning, i.e,

(Z1 ⊕ Z2, φ6) v!
E,Ax (t, id), and can repeat all of the steps possible from (t, id), but all of the

results are subsumed by the same step we already have from (t, id).

Note that by the use of the folding definition we get only the shortest paths to each possible
term (depending on the substitution), since the longer paths are simply subsumed by shorter ones
using vE,Ax.

Any folding narrowing strategy is sound as it is a further restriction of the narrowing strat-
egy. We prove that any folding narrowing strategy S	 is variant-complete provided the given
narrowing strategy S that is restricted by folding is complete according to Definition 12. First,
we provide two auxiliary definitions and an auxiliary result.

Definition 19. Given a decomposition (Σ, Ax, E), a term t, and two narrowing sequences
α1 : t ∗σ1,E,Ax t1 and α2 : t ∗σ2,E,Ax t2, we write α1 vE,Ax α2 if there is a substitution θ such
that (σ1↓E,Ax)|Var(t) =Ax (σ2θ)|Var(t) and t1 =Ax t2θ. We write α1 ≈Ax α2 if there is a renaming
substitution ρ such that σ1|Var(t) =Ax (σ2ρ)|Var(t) and t1 =Ax t2ρ.

Definition 20 (Most General Narrowing Sequence). Given a decomposition (Σ, Ax, E), a nar-
rowing sequence α : t ∗θ,E,Ax(tθ)↓E,Ax is called a most general narrowing sequence if for any
narrowing sequence α′ : t ∗θ′,E,Ax(tθ′)↓E,Ax such that α vE,Ax α

′, then α ≈Ax α
′.

Lemma 2. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). Let SR be
a complete narrowing strategy. If α : t ∗σ,E,Ax(tσ)↓E,Ax and α is most general, then there is a
narrowing sequence α′ : t ∗σ′,E,Ax(tσ′)↓E,Ax such that α′ ∈ S	

R
(t) and α ≈Ax α

′.

17

Proof. By contradiction. Let α : t σ1,E,Ax t1 · · · tk−1 σk ,E,Ax tk = (tσ)↓E,Ax. Since there is no
narrowing sequence α′ : t ∗σ′,E,Ax(tσ′)↓E,Ax such that α′ ∈ S	

R
(t) and α′ ≈Ax α, by completeness

of SR there is an alternative narrowing sequence β : t θ1,E,Ax u1 · · · un−1 θn,E,Ax un = (tθ)↓E,Ax

in S	
R

(t) with θ = θ1 · · · θn and n ≤ k such that (tn, σ1 · · ·σn) v!
E,Ax (un, θ1 · · · θn), i.e., there is

a substitution ρ such that tn↓E,Ax =Ax unρ and ((σ1 · · ·σn)↓E,Ax)|Var(t) =Ax (θ1 · · · θnρ)|Var(t). Note
that ρ cannot be a renaming, since ρ being a renaming implies β ≈Ax α. Then, by confluence,
there is a rewriting sequence starting from un that reaches tσ↓E,Ax, i.e., (unρσn+1 · · ·σk) →∗E,Ax
(tσ)↓E,Ax. But this rewriting sequence can be lifted to a narrowing sequence, i.e., by complete-
ness of SR there is a narrowing sequence β′ : un ∗τ,E,Ax t′′ and a substitution ρ′ such that
(σn+1 · · ·σk)↓E,Ax|Var(un) =Ax (τρ′)|Var(un) and (tσ)↓E,Ax =Ax t′′ρ′. Then, we can concatenate both
narrowing sequences β; β′ : t ∗θ,E,Ax un ∗τ,E,Ax t′′ such that (σ1 · · ·σnσn+1 · · ·σk)↓E,Ax|Var(t) =Ax

(θ1 · · · θnρτρ
′)|Var(t) and (tθ)↓E,Ax =Ax t′′ρ′ρ. Since ρ is not a renaming, the narrowing sequence

β; β′ is more general than α. But this contradicts that α is a most general narrowing sequence
and, thus, the conclusion follows. 2

Theorem 3 (Variant Completeness of Folding Narrowing). Let R = (Σ, Ax, E) be a decom-
position of an equational theory (Σ,E). Let t1 be a Σ-term and θ be an E,Ax-normalized substi-
tution. Let SR be a complete narrowing strategy. If t1θ →!

E,Ax t2 then there exist a term t′2 and
two E,Ax-normalized substitutions σ and ρ s.t. (t1 ∗σ,E,Ax t′2) ∈ S	

R
(t1), θ|Var(t1) =Ax (σρ)|Var(t1),

and t2 =Ax t′2ρ.

Proof. Given t1θ →!
E,Ax t2, by completeness of narrowing (Theorem 2), there exist a term t′2 and

two E,Ax-normalized substitutions σ and ρ such that (α : t1 ∗σ,E,Ax t′2) ∈ SR(t1), θ|Var(t1) =Ax

(σρ)|Var(t1), and t2 =Ax t′2ρ. Let us assume that α is most general, since there is always at least
one most general narrowing sequence. Then, by Lemma 2, there exists (β : t1 ∗φ,E,Ax u) ∈ SR(t1)
such that α ≈Ax β and the conclusion follows. 2

We can effectively compute a complete set of variants by folding narrowing in the following
way.

Corollary 2 (Computing the Variants). Let R = (Σ, Ax, E) be a decomposition of an equa-
tional theory (Σ,E). Let t be a Σ-term. Let SR be a complete narrowing strategy. If (t′, σ) ∈
[[t]]E,Ax, then there are t′′, σ′, and ρ such that (t ∗σ′,E,Ax t′′) ∈ S	

R
(t), t′′ is→E,Ax-irreducible, σ′

is→E,Ax-normalized, ρ is a renaming, t′ =Ax t′′ρ, and σ|Var(t) =Ax (σ′ρ)|Var(t).

We can conclude that the folding full-narrowing strategy is a variant-complete narrowing
strategy.

Corollary 3. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). The folding

full-narrowing strategy Full	
R

is variant-complete, i.e., for each Σ-term t, [[t]]E,Ax 'E,Ax [[t]]
Full	

R

E,Ax .

Note that folding full-narrowing is not variant-minimal (and thus not optimally variant-
terminating).

Example 10. Consider the following decomposition without axioms

f (s(X)) = g(X) g(s(X)) = 0 f (s(s(0))) = 0.

For term f (X), we have that {(f (X), id), (g(X′), {X 7→ s(X′)}), (0, {X 7→ s(s(X′′))})} is the set of
most general variants. However, folding full-narrowing will generate those three variants plus
(0, {X 7→ s(s(0))}), which is subsumed by variant (0, {X 7→ s(s(X′′))})}:

18

1. The variant (f (X), id) without any narrowing step.
2. Variants with one narrowing step: (g(X′), {X 7→ s(X′)}) and (0, {X 7→ s(s(0))}), i.e.,

(f (X) {X 7→s(X′)},E,Ax g(X′)) ∈ Full	
R

and (f (X) {X 7→s(s(0))},E,Ax 0) ∈ Full	
R

.
3. The variant (0, {X 7→ s(s(X′′))}) with two narrowing steps:

(f (X) {X 7→s(X′)},E,Ax g(X′) {X′ 7→s(X′′)},E,Ax 0) ∈ Full	
R

In the next section, we refine the folding narrowing strategies and improve over the folding
full-narrowing strategy for computing variants.

5.1. Variant Narrowing Strategy
We have shown that the folding full-narrowing strategy Full	

R
is variant-complete. However,

there is another interesting aspect about narrowing strategies:

Are there strategies more effective than full-narrowing which can be extended to
folding narrowing in order to compute variants?

We answered this question in the positive in our paper [20] with the notion of variant narrowing
strategy, but we improve the presentation here.

Let us first motivate with two ideas why a narrowing strategy which is an alternative to full
narrowing can be very useful for a decomposition. First, the completeness of a narrowing strat-
egy w.r.t. a decomposition is restricted to normalized substitutions. Therefore, we are interested
in narrowing strategies that provide only narrowing sequences with normalized substitutions.
Basic narrowing was an attempt at this but, as we show in Example 6, it is incomplete for the
modulo case as well as (possibly) non-terminating for computing variants, as shown in Exam-
ple 7. Here we present a narrowing strategy that computes only normalized substitutions without
losing completeness. Second, applying narrowing E,Ax to perform (E ∪ Ax)-unification with-
out any restriction, as done in FullR, is very wasteful, because as soon as a rewrite step→E,Ax is
enabled in a term that has also narrowing steps E,Ax, such a rewrite step should always be taken
before any further narrowing steps are applied, thanks to confluence and coherence modulo Ax.
This idea is consistent with the implementation of rewriting logic [49] and, therefore, the relation
→!

E,Ax; E,Ax makes sense as an optimization of E,Ax (see [29] for discussion about this idea
in a context without axioms). However, this is still a naive approach, since a rewrite step and
a narrowing step satisfy a more general property, which is the reason for being able to take the
rewrite step and avoiding the narrowing step. Namely, for a decomposition R = (Σ, Ax, E), if
two narrowing steps t σ1,E,Ax t1 and t σ2,E,Ax t2 are possible and we have that σ1 vAx σ2 (i.e.,
σ2 is more general than σ1), then it is enough to take only the narrowing step using σ2. These
improvements are formalized as follows. First, we introduce a partial order between narrowing
steps, defining when a narrowing step is more general than another narrowing step.

Definition 21 (Preorder and equivalence of narrowing steps). Let R = (Σ, Ax, E) be a de-
composition of (Σ,E). Let us consider two narrowing steps α1 : t σ1,E,Ax s1 and α2 : t σ2,E,Ax s2.
We write α1 �Ax α2 if σ1|Var(t) vAx σ2|Var(t) and α1 ≺Ax α2 if σ1|Var(t) <Ax σ2|Var(t) (i.e., σ2
is strictly more general than σ1). We write α1 'Ax α2 if σ1|Var(t) 'Ax σ2|Var(t). The relation
α1 'Ax α2 between two narrowing steps from t defines a set of equivalence classes between
such narrowing steps. In what follows we will be interested in choosing a unique representative
α ∈ [α]'Ax in each equivalence class of narrowing steps from t. Therefore, α will always denote
a chosen unique representative α ∈ [α]'Ax .

19

The relation �Ax provides an improvement on narrowing executions, since narrowing steps
with more general computed substitutions will be selected instead of narrowing steps with more
instantiated computed substitutions. Also, this relation ensures that, when both a rewriting step
and a narrowing step are available, the rewriting step will always be chosen. Finally, the rela-
tion 'Ax provides another improvement, since only one narrowing (or rewriting) step is chosen
in each equivalence class, reducing the width of the narrowing tree even more. The very last
improvement is to restrict to normalized computed substitutions, as motivated at the beginning
of this section.

Definition 22 (Variant Narrowing). Let R = (Σ, Ax, E) be a decomposition of (Σ,E). Given a
Σ-term t, we define the variant narrowing strategy VNR(t) = {t ∗σ,E,Ax s}, where: (i) σ|Var(t) is
E, Ax-normalized and (ii) each narrowing step u ρ,E,Ax v is defined as the narrowing step α :
u ρ,E,Ax v such that α is maximal w.r.t. the order �Ax, and α is the chosen unique representative
of its 'Ax-equivalence class.

Example 11. Consider Example 3. For the term t = X ⊕ Y ⊕ X ⊕ Y, there are nearly 150
full narrowing steps, since subterm X ⊕ Y had 124 narrowing steps as explained in Example 5
and there are even more combinations. However, variant narrowing recognizes that this term is
not yet normalized, i.e., X ⊕ Y ⊕ X ⊕ Y → 0, and such a rewriting step is more general than
any narrowing step. Thus, variant narrowing performs only a rewriting step and avoids such
an exceptionally large number of narrowing steps. Note that there are two other rewrite steps
X ⊕ Y ⊕ X ⊕ Y → Y ⊕ Y and X ⊕ Y ⊕ X ⊕ Y → X ⊕ X and variant narrowing will choose one of
these three as the unique representative of the 'AC-equivalence class of rewrite steps.

We denote the extended folding version of variant narrowing, i.e., folding variant narrowing,
by VN	

R
. The condition in Definition 22 that σ|Var(t) is E, Ax-normalized (in contrast to σ being

E, Ax-normalized) is essential for a correct behavior of the strategy, as shown below.

Example 12. Consider the following decomposition (Σ, ∅, E) where E contains f (a, b, X) →
f (a, b), symbol f is AC, and X is a variable. Consider the term t = f (a, a, a, b, b, b), whose
normal form is f (a, b), i.e., f (a, a, a, b, b, b) →E,Ax f (a, b). Any rewriting sequence leading
to its normal form does not consider a normalized substitution, i.e., the first rewriting step of
any rewriting sequence will use substitution {X 7→ f (a, a, b, b)}. Therefore, we cannot restrict
ourselves to normalized substitution w.r.t. rewriting steps.

On the other hand, consider now the term s = f (Y1,Y2) and the narrowing step
f (Y1,Y2) ρ2,E,Ax f (a, b) with ρ2 = {Y1 7→ f (a, b,Y3), X 7→ f (Y2,Y3)}. The unifier ρ2 is not
normalized, since f (a, b,Y3)↓E,Ax = f (a, b). Note that we cannot normalize the substitution,
since it would not correspond to any narrowing step and we simply discard this narrowing step
because there is another more general narrowing step (i.e., (f (a, b), ρ2↓E,Ax) vAx (f (a, b), ρ1)).
Note that the ability to discard narrowing steps in confluent, terminating, and coherent sys-
tems whose computed substitution is not normalized is a key point for achieving termination for
variant generation. The set of most general unifiers computed by all the narrowing steps is as
follows:

ρ1 = {Y1 7→ f (a, b), X 7→ Y2} ρ7 = {Y1 7→ b,Y2 7→ a}
ρ2 = {Y1 7→ f (a, b,Y3), X 7→ f (Y2,Y3)} ρ8 = {Y1 7→ b,Y2 7→ f (a,Y3), X 7→ Y3}

ρ3 = {Y2 7→ f (a, b), X 7→ Y1} ρ9 = {Y1 7→ f (a,Y3),Y2 7→ b, X 7→ Y3}

ρ4 = {Y2 7→ f (a, b,Y3), X 7→ f (Y1,Y3)} ρ10 = {Y1 7→ f (a,Y3),Y2 7→ f (b,Y4), X 7→ f (Y3,Y4)}
ρ5 = {Y1 7→ a,Y2 7→ b} ρ11 = {Y1 7→ f (b,Y3),Y2 7→ a, X 7→ Y3}

ρ6 = {Y1 7→ a,Y2 7→ f (b,Y3), X 7→ Y3} ρ12 = {Y1 7→ f (b,Y3),Y2 7→ f (a,Y4), X 7→ f (Y3,Y4)}
20

Note that the relation→!
E,Ax; E,Ax is (appropriately) simulated by +

E,Ax, since in the rela-
tion +

E,Ax rewriting steps are always given priority over narrowing steps.

Lemma 3 (Normalization of Variant Narrowing). Let R = (Σ, Ax, E) be a decomposition of
(Σ,E). Let t be a Σ-term. If t is not E, Ax-irreducible, then, relative to the unique choice of
α ∈ [α]'Ax in Definition 21 , there is a unique E,Ax-narrowing sequence from t performing only
rewriting steps.

Proof. Immediate, since t is not E, Ax-irreducible and the theory is confluent and sort-decreasing.
2

The following result ensures that variant narrowing is complete.

Theorem 4 (Completeness of Variant Narrowing). Let R = (Σ, Ax, E) be a decomposition of
(Σ,E). If α : t ∗σ,E,Ax(tσ)↓E,Ax such that σ|Var(t) is E, Ax-normalized and α is a most general
narrowing sequence, then there exists σ′ such that t ∗σ′,E,Ax(tσ′)↓E,Ax, and σ|Var(t) ≈Ax σ

′|Var(t).

Proof. If α : t ∗σ,E,Ax(tσ)↓E,Ax such that σ|Var(t) is E, Ax-normalized and α is a most general
narrowing sequence, then it is sufficient to show that the computed substitution at each step in α
is maximal w.r.t. vAx.

We prove this by contradiction. Let us consider a narrowing step i ∈ {1, . . . , n} in α, i.e.
ti σi,E,Ax ti+1, such that σi is not maximal w.r.t. vAx. That is, there is an alternative nar-
rowing step from ti, i.e., ti τ,E,Ax w, with a strictly more general substitution τ, i.e., there
is a substitution τ′ s.t. σi|Var(ti) =Ax (ττ′)|Var(ti) and τ′ is not a renaming. Note that, since
α is most general, there is no narrowing sequence w ∗φ,E,Ax tn and substitution φ′ such that
σ|Var(t) =Ax (σ1 · · ·σi−1τφφ

′)|Var(t). Then, we have that tiσi →E,Ax ti+1 and that there is a
term w′ such that tiσi →E,Ax w′ and w′ =Ax wτ′. By confluence, there is a term u such that
ti+1 →

∗
E,Ax u and w′ →∗E,Ax u. But then, for any narrowing sequence u ∗µ,E,Ax u′ such that

µ|Var(ti+1) =Ax (σi+1 · · ·σn)|Var(ti+1), there is a whole narrowing sequence t ∗σ′,E,Ax(tσ′)↓E,Ax such
that σ′|Var(t) = (σ1 · · ·σi−1τµ)|Var(t). This implies that σ <Ax σ′, since (σi · · ·σn)|Var(ti) =Ax

(τµτ′)|Var(ti). Therefore, we have a contradiction because σ′ is strictly more general than σ. 2

Note that the previous theorem is only valid when E is confluent2 modulo Ax, and not just
ground confluent [46] modulo Ax, as shown by the following example.

Example 13. Let us consider the following rewrite theory without axioms, which is terminating
and ground confluent but not confluent:

f (X) = 0 f (X) = g(X) g(0) = 0 g(s(X)) = g(X)

If we consider the term f (X) and the narrowing step taking the first equation, then we compute the
most general substitution, i.e. f (X) id,E,Ax 0. However, if we consider f (X) and the narrowing
step that takes the second equation, i.e., f (X) id,E,Ax g(X), we will compute an infinite number
of substitutions, i.e., ∀n ≥ 0 : g(X) ∗

{X 7→sn(0)},E,Ax 0, and none of them is more general than the
identity substitution computed with the first equation.

2Note that a decomposition already requires confluence instead of ground confluence.

21

The following interesting result holds for folding variant narrowing but not for folding full-
narrowing.

Theorem 5 (Minimality of Folding Variant Narrowing). Let R = (Σ, Ax, E) be a decomposi-
tion of (Σ,E). If α : t ∗σ,E,Ax(tσ)↓E,Ax with σ|Var(t) being E, Ax-normalized and
α′ : t ∗σ′,E,Ax(tσ′)↓E,Ax with σ′|Var(t) being E, Ax-normalized such that σ|Var(t) <Ax σ

′|Var(t), and
α′ is a most general narrowing sequence, then there is a narrowing sequence β : t ∗θ,E,Ax(tθ)↓E,Ax

in VN	
R

such that α′ ≈Ax β but there is no narrowing sequence β′ : t ∗θ′,E,Ax(tθ′)↓E,Ax in VN	
R

such that α ≈Ax β
′.

Proof. The first statement is proved by the most generality of α′ and Theorem 4, i.e., there is β :
t ∗θ,E,Ax(tθ)↓E,Ax in VN	

R
such that α′ ≈Ax β. The second statement is proved by contradiction,

i.e., we asume that there is β′ : t ∗θ′,E,Ax(tθ′)↓E,Ax in VN	
R

such that α ≈Ax β
′. For simplicity, we

assume that α′ ∈ VN	
R

and use α′ instead of β in the rest of the proof. Let α and α′ be as follows:

α′ : t σ′1,E,Ax t′1 σ′2,E,Ax t′2 · · · t
′
m−1 σ′m,E,Ax t′m = (tσ′)↓E,Ax

and
α : t σ1,E,Ax t1 σ2,E,Ax t2 · · · tn−1 σn,E,Ax tn = (tσ)↓E,Ax

Let us consider the first narrowing step i ∈ {1, . . . , n} in α, i.e. ti−1 σi,E,Ax ti, where there is a sub-
stitution τ such that σi|Var(ti) =Ax (σ′iτ)|Var(ti) and τ is not a renaming. Since (σ1 · · ·σi−1)|Var(t) ≈Ax

(σ′1 · · ·σ
′
i−1)|Var(t), by coherence and confluence, there are two terms w and w′ such that

tσ1 · · ·σi−1 →
∗
E,Ax w, tσ′1 · · ·σ

′
i−1 →

∗
E,Ax w′, and w ≈Ax w′. Let ρ be such that (σ1 · · ·σi−1)|Var(t)

=Ax (σ′1 · · ·σ
′
i−1ρ)|Var(t) and w =Ax w′ρ. We can add substitution σ′i to have rewrite sequences

tσ1 · · ·σi−1σ
′
i →

∗
E,Ax wσ′i and tσ′1 · · ·σ

′
i−1ρσ

′
i →

∗
E,Ax wσ′i . By completeness of narrowing, there

exist substitutions φ and φ′ and a most general narrowing sequence α′′ : ti−1 ∗φ,E,Ax u such that
σ′i |Var(ti−1) =Ax (φφ′)|Var(ti−1), and wσ′i =Ax uφ′. But then there are two narrowing steps from term
ti−1, ti−1 σi,E,Ax ti and the first step of α′′ s.t. the first step of α′′ has a substitution more general
than σi. But the VNR strategy would have chosen the first step of α′′ instead of the narrowing
step ti−1 σi,E,Ax ti and this contradicts that there is β′ : t ∗θ′,E,Ax(tθ′)↓E,Ax in VN	

R
such that

α ≈Ax β
′. 2

Now, we know that VN	
R

is an efficient variant-complete and variant-minimal strategy, so we
can use it to effectively compute variants.

Corollary 4. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). The folding
variant narrowing strategy VN	

R
is variant-complete and variant-minimal, i.e., for any Σ-term t,

[[t]]E,Ax ≈Ax [[t]]
VN	
R

E,Ax .

Finally, we return to our running example for the VN	
R

strategy.

Example 14. Consider Example 9. For t = X ⊕ Y we get the following VN	
R

steps with normal-
ized substitutions:

(i) (X ⊕ Y, id) φ1 (Z, φ1), using Equation (6) and substitution φ1 = {X 7→ 0,Y 7→ Z},
(ii) (X ⊕ Y, id) φ2 (Z, φ2), using Equation (6) and substitution φ2 = {X 7→ Z,Y 7→ 0},

(iii) (X ⊕ Y, id) φ3 (Z, φ3), using Equation (8) and substitution φ3 = {X 7→ Z ⊕ U,Y 7→ U},

22

(iv) (X ⊕ Y, id) φ4 (Z, φ4), using Equation (8) and substitution φ4 = {X 7→ U,Y 7→ Z ⊕ U},
(v) (X ⊕ Y, id) φ5 (0, φ5), using Equation (7) and substitution φ5 = {X 7→ U,Y 7→ U},

(vi) (X ⊕ Y, id) φ6 (Z1 ⊕ Z2, φ6), using Equation (8) and φ6 = {X 7→ U ⊕ Z1,Y 7→ U ⊕ Z2}.

Note that VN	
R

terminates (as Full	
R

does) after generating all these narrowing steps.

In the following, we study under which conditions the folding variant narrowing strategy is
optimally variant-terminating, providing the best narrowing strategy for computing variants in
the modulo case but also in the free theory, improving beyond basic narrowing.

6. The Finite Variant Property

An interesting case is when we know a priori that any Σ-term has a finite number of most
general variants.

Definition 23 (Finite variant property). [11] Let R = (Σ, Ax, E) be a decomposition of an
equational theory (Σ,E). Then (Σ,E), and thus R, has the finite variant property (FV) iff for
each Σ-term t, the set [[t]]E,Ax is finite. We call R a finite variant decomposition of (Σ,E) iff R has
the finite variant property.

The following corollary is immediate for finite variant decompositions.

Corollary 5. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E) and SR be
an E, Ax-variant-complete narrowing strategy. S	

R
is variant-terminating iff R is a finite variant

decomposition of (Σ,E).

Proof. Given a Σ-term t, for each (t′, σ) ∈ [[t]]E,Ax, by Corollary 2, there are t′′, σ′, and ρ
such that (t ∗σ′,E,Ax t′′) ∈ S	

R
(t), t′′ is →E,Ax-irreducible, σ′|Var(t) is →E,Ax-normalized, ρ is a

renaming, t′ =Ax t′′ρ, and σ|Var(t) =Ax (σ′ρ)|Var(t). Since [[t]]E,Ax is finite and it contains the most
general variants w.r.t. vE,Ax, for each possible variant (u, φ) ∈ [[t]]?E,Ax, there is a node (u′, φ′)
in the narrowing tree such that (u, φ) vE,Ax (u′, φ′) and, thus, the narrowing tree generated by
S
	
R

(t) has a bounded depth. 2

The folding variant narrowing VN	
R

is variant-minimal and the following corollary holds for
finite variant decompositions.

Corollary 6. If R = (Σ, Ax, E) is a finite variant decomposition of (Σ,E), then VN	
R

is optimally
variant-terminating.

Proof. By Corollary 4, VN	
R

is variant-minimal and, thus, the narrowing tree generated by VN	
R

contains all and only all the variants of the set [[t]]E,Ax for a given Σ-term t. Therefore, the
narrowing tree is always the shortest tree possible for generating the set of most general variants
[[t]]E,Ax and we conclude that VN	

R
is optimally variant-terminating. 2

23

6.1. Computing Variants for Theories with the Finite Variant Property
Comon and Delaune characterize the finite variant property in terms of the following bound-

edness property, which is equivalent to FV.

Lemma 4. [11] Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). R has the
finite variant property if and only if for every term t, there is a finite set Θ(t) of substitutions such
that

∀σ,∃θ ∈ Θ(t),∃τ : (σ↓E,Ax)|Var(t) =Ax (θτ)|Var(t) ∧ (tσ)↓E,Ax =Ax ((tθ)↓E,Ax)τ

Definition 24 (Boundedness property). [11] LetR = (Σ, Ax, E) be a decomposition of an equa-
tional theory (Σ,E). R has the boundedness property (BP) iff for every term t there exists an
integer n, denoted by #E,Ax(t), such that for every E, Ax-normalized substitution σ the normal
form of tσ is reachable by an E, Ax-rewriting sequence whose length can be bounded by n (thus
independently of σ), i.e.,

∀t,∃n,∀σ, t(σ↓E,Ax)
≤n
−→E,Ax (tσ)↓E,Ax.

Lemma 4 and Definition 24 allow the following result.

Theorem 6. [11] Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). Then, R
satisfies the boundedness property if and only if R is a finite variant decomposition of (Σ,E).

Obviously, if for a term t, the minimal length of a rewrite sequence to the canonical form of
an instance tσ, with σ normalized, cannot be bounded, the theory does not have the finite variant
property. It is easy to see that for the addition equations

0 + Y = Y s(X) + Y = s(X + Y)

the term t = X + Y , and the family of substitutions σn = {X 7→ sn(0)}, n ∈ N, this is the case, and
therefore, since FV ⇔ BP, the addition theory lacks the finite variant property.

Example 15. Consider again Example 7 consisting of the rewrite theory R = (Σ, ∅, E) where E
is the set of confluent and terminating rules E = { f (x)→ x, f (f (x))→ f (x)} and Σ contains only
the unary symbol f and a constant a. The theory has the finite variant property as it does have
the boundedness property, since for any term t and a normalized substitution θ, a bound for t is
given by the number of f symbols in the term.

Proposition 2 (Computing the Finite Variants). [20] Let R = (Σ, Ax, E) be a finite variant
decomposition of an order-sorted equational theory (Σ,E). Let t be a Σ-term and #E,Ax(t) = n.
Then, (s, σ) ∈ [[t]]E,Ax if and only if there is a narrowing sequence t ≤n

σ,E,Ax s such that s is
→E,Ax-irreducible and σ is→E,Ax-normalized.

Example 16. Consider again Example 3. For this theory, narrowing clearly does not terminate
because Z1 ⊕ Z2 {Z1 7→X1⊕Z′1, Z2 7→X1⊕Z′2},E,Ax Z′1 ⊕ Z′2 and this can be repeated infinitely often. This
equational theory has the boundedness property, as it is shown to have FV in Example 26 below.
A bound for this theory is the number of ⊕ symbols in the term, so that the narrowing tree can
be restricted to depth 1 for the term t = Z1 ⊕ Z2. Let us explain in detail why the bound is the
number of ⊕ symbols. Given the narrowing sequence

Z1⊕Z2 {Z17→X1⊕Z′1,Z27→X1⊕Z′2},E,Ax Z′1⊕Z′2 {Z′17→X′1⊕Z′′1 ,Z
′
27→X′1⊕Z′′2 },E,Ax Z′′1 ⊕Z′′2 (11)

24

we have the variant (Z′′1 ⊕Z′′2 , ρ) with ρ = {Z1 7→X1⊕X′1⊕Z′′1 ,Z2 7→X1⊕X′1⊕Z′′2 ,Z
′
1 7→X′1⊕Z′′1 ,Z

′
2 7→

X′1 ⊕ Z′′2 }. Also, the normalization sequence corresponding to tρ that mimics the narrowing
sequence (11) is

X1 ⊕ X′1 ⊕ Z′′1 ⊕ X1 ⊕ X′1 ⊕ Z′′2 →E,Ax X′1 ⊕ Z′′1 ⊕ X′1 ⊕ Z′′2 →E,Ax Z′′1 ⊕ Z′′2 (12)

However, we can also reduce tρ to the same normal form of (12) using only one application of
(8) and the following normalized substitution ρ = {X 7→ X1 ⊕ X′1,Y 7→ Z′′1 ⊕ Z′′2 }:

X1 ⊕ X′1 ⊕ Z′′1 ⊕ X1 ⊕ X′1 ⊕ Z′′2 →E,Ax Z′′1 ⊕ Z′′2 (13)

The trick is that rule (8) allows combining all pairs of canceling terms and thus gets rid of all of
them at once. That is why the theory has the finite variant property.

At this point, we have three different ways of computing variants that we would like to discuss
with some examples:

1. Computing the narrowing tree associated to a term t up to the bound #E,Ax(t) and extracting
the variants from the narrowing tree.

2. Computing the narrowing tree using Full	
R

and extracting the variants from the narrowing
tree.

3. Computing the narrowing tree using VN	
R

and extracting the variants from the narrowing
tree.

VN	
R

is the best approach, since the other two approaches are cruder and can be massively inef-
ficient. This can be illustrated as follows.

Example 17. Consider again Example 3 and the term u = X ⊕ Y ⊕ X ⊕ Y, whose most general
variant is (0, id). As explained in Example 11, this term can be normalized in one rewriting step.
However, the approaches (1)–(3) work very differently.

1. Since we showed that the narrowing bound is the number of ⊕ symbols, we have #E,Ax(u) =

3. The full narrowing tree up to bound 3 is huge and we do not include it here (see
Examples 5, 9, and 11).

2. Full	
R

will behave a little better by producing only narrowing sequences of length 1, since
it will compute the rewriting step to the term 0 among the 150 narrowing steps, but all
these extra narrowing steps are unnecessary. Again, we are not including here the Full	

R

narrowing tree (see Examples 5, 9, and 11).
3. Only VN	

R
performs just one rewriting step to the normal form, being optimal in both

length and number of sequences (see Example 11).

In the following section, we study conditions for checking whether a theory has the finite
variant property or not.

6.2. Necessary and Sufficient Conditions for FV

Deciding whether an equational theory has the finite variant property is a nontrivial task,
since we have to decide whether we can stop generating normalized substitution instances by
narrowing for each term. We present here an algorithm for checking whether a decomposition of
an equational theory has the finite variant property (FV) which is based on two notions: (i) a new

25

notion, called variant-preservingness (VP), that ensures that an intuitive bottom-up generation
of variants is complete; and (ii) the property that there are no infinite sequences when we restrict
ourselves to such intuitive bottom-up generation of variants (FVNS). In what follows, we show
that (VP ∧ FVNS) ⇒ FV . Note that the folding variant narrowing VN	

R
will be used for

effectively computing the variants but a different narrowing strategy will be used for a bottom-
up generation of variants in the procedure of detecting whether a theory has the finite variant
property (FV).

Variant-preservingness (VP) ensures that we can perform an intuitive bottom-up generation
of variants. The following notion is useful for the definition of VP.

Definition 25 (Variant-pattern). Let R = (Σ, Ax, E) be a decomposition of (Σ,E). We call a
term f (t1, . . . , tn) a variant-pattern if all subterms t1, . . . , tn are→E,Ax-irreducible. We say that a
term t has a variant-pattern if there is a variant-pattern t′ s.t. t′ =Ax t.

It is worth pointing out that whether a term has a variant-pattern is decidable, assuming a finitary
and complete Ax-matching procedure: given a term t, t has a variant-pattern t′ iff there is a symbol
f ∈ Σ with arity k and variables X1, . . . , Xk of the appropriate top sorts and there is a substitution
θ such that t =Ax f (X1, . . . , Xk)θ and θ is E, Ax-normalized, where t′ = f (X1, . . . , Xk)θ. We can
simplify this procedure when term t is rooted by an AC symbol to say that we only have to
consider the same AC symbol at the root of t, instead of every symbol. And we can simplify this
procedure even more when term t is rooted by a free function symbol (i.e., such a symbol does
not satisfy any axiom of Ax) to say that t has a variant-pattern if it is already a variant-pattern,
i.e., every argument of the root symbol must be E, Ax-irreducible.

Variant-preservingness induces a bottom-up variant generation; note that a bottom-up variant
generation is not the same as innermost narrowing.

Definition 26 (Variant-preserving). Let R = (Σ, Ax, E) be a decomposition of (Σ,E). We say
that R is variant-preserving (VP) if for any variant-pattern t, either t is →E,Ax-irreducible or
there is a→E,Ax step at the top position with a→E,Ax-normalized substitution.

Note that a theory can have the finite variant property even if it is not variant-preserving.

Example 18. Consider the decomposition of Example 12. This theory does not have the variant-
preserving property, e.g., given the term t = f (X,Y) and any normalized substitution θ ∈ {X 7→
f (an),Y 7→ f (bn,Z)} for n ≥ 2, there is no normalized reduction for tθ. However, the theory does
have the boundedness property, and therefore FV, since for any term rooted by f (which is the
only non-constant symbol), its normal form can be obtained in at most one step.

The following example motivates why narrowing sequences have to be restricted for a bottom-
up variant generation.

Example 19. Consider the decomposition f (f (X)) = X without axioms. This theory is well-
known to be non-terminating for narrowing, e.g.,

c(f (X), X) {X 7→ f (X′)},E,Ax c(X′, f (X′)) {X′ 7→ f (X′′)},E,Ax c(f (X′′), X′′) · · ·

Although the theory is non-terminating for narrowing, it is FV. When we consider all possible
instances of the term c(f (X), X) for normalized substitutions, we obtain the term c(f (X), X) itself
and the sequence c(f (X), X) {X 7→ f (X′)},E,Ax c(X′, f (X′)). The theory does have the boundedness
property, and therefore FV, since for any term t and a normalized substitution θ, a bound for t is
the number of f symbols in the term.

26

Therefore, for a bottom-up generation of variants in a finite decomposition, not all the nar-
rowing sequences are relevant, as shown in the previous example, and thus we must identify the
relevant ones associated to the notion of variant pattern.

Definition 27 (Shortest Rewrite Sequence). Given a decomposition (Σ, Ax, E), a rewrite se-
quence t0 →p1,E,Ax t1 · · · →pn,E,Ax tn is called shortest if there is no sequence t0 →m

E,Ax t′m such
that m < n and tn =Ax t′m.

Definition 28 (Variant-preserving sequences). LetR = (Σ, Ax, E) be a decomposition of (Σ,E).
A rewrite sequence α : t0 →p1,E,Ax t1 · · · →pn,E,Ax tn is called variant-preserving if, for i ∈
{1, . . . , n}, ti−1|pi has a variant-pattern and α is a shortest rewrite sequence. A narrowing se-
quence t0 p1,σ1,E,Ax t1 · · · pn,σn,E,Ax tn, σ = σ1 · · ·σn, is called variant-preserving if σ is E, Ax-
normalized and t0σ→p1,E,Ax t1σ · · · →pn,E,Ax tn is variant-preserving.

The set of variant-preserving sequences is not computable in general. However, we provide
sufficient conditions in Section 7. Note that we are not going to use variant-preserving narrowing
sequences for computing variants but only for deciding whether a theory has the finite variant
property.

Example 20. The infinite narrowing sequence of Example 19 is not variant-preserving, since
for any finite prefix of length greater than 1 the computed substitution is non-normalized. The
only variant-preserving sequences for the term c(f (X), X) are the term itself and the one-step
sequence with substitution {X 7→ f (X′)}.

Example 21. For Example 3, the narrowing sequence

Z1⊕Z2 {Z17→X1⊕Z′1,Z2 7→X1⊕Z′2},E,Ax Z′1⊕Z′2 {Z′17→X′1⊕Z′′1 ,Z
′
2 7→X′1⊕Z′′2 },E,Ax Z′′1 ⊕Z′′2

is not a variant-preserving sequence, since the alternative rewrite sequence
X1 ⊕ X′1 ⊕ Z′′1 ⊕ X1 ⊕ X′1 ⊕ Z′′2 →E,Ax Z′′1 ⊕ Z′′2 is shorter.

The following result provides sufficient conditions for the finite variant property.

Theorem 7 (Sufficient conditions for FV). LetR = (Σ, E,R) be a decomposition of (Σ,E). If (i)
R is variant-preserving (VP), and (ii) there is no infinite variant-preserving narrowing sequence
(FVNS), then R satisfies the finite variant property.

Proof. Since we assume that the Ax unification algorithm is finitary, and therefore the narrowing
tree is finitely branching, by König’s Lemma the tree of variant-preserving narrowing sequences
is finite. Given a term t, we denote by #(t) the length of the longest variant-preserving narrowing
sequence from t. We prove that, for any substitution σ, t(σ↓E,Ax) →≤n

E,Ax (tσ)↓E,Ax by induction
on n = #(t).

• (n = 0) Then t is irreducible and, for any substitution σ, t(σ↓E,Ax) is also irreducible.

• (n > 0) Let t = f (t1, . . . , tk) and σ be a substitution. Let us assume that tσ is eventually
reduced at the top in every variant-preserving rewrite sequence. Otherwise, we can prove
by structural induction and the boundedness property that the bound for t is the sum of
the bounds for the arguments t1, . . . , tk. We have #(ti) < #(t). By induction hypothesis, for
any substitution σ, ti(σ↓E,Ax) is bounded by #(ti) for i ∈ {1, . . . , k}. Let us pick any variant

27

(t′i , ρi) for each ti, i ∈ {1, . . . , k} such that σ vAx (ρ1 · · · ρk). Let t′ = f (t′1, . . . , t
′
k). By

variant-preservingness, there is a rule l→ r ∈ E and a normalized substitution θ such that
t′ =Ax lθ. Since #(r) < #(t), we can apply the induction hypothesis and, for any substitution
σ′, r(σ′↓E,Ax) is bounded by #(r). Since θ is normalized, rθ is also bounded by #(r). Note
that #(t1) + · · ·+ #(tk) + #(tr) < #(t). Thus, for any substitution σ, tσ is bounded by #(t). 2

Note that variant-preservingness is not a necessary condition for FV, as shown in Example 18.
However, there are many theories where lack of variant preservingness causes loss of FV, as
illustrated below.

Example 22. Consider again Example 3, which as we show in Example 26 below is an FV
decomposition, but let us assume now that some variables in rules (7) and (8) of that example
are restricted to a subsort Element, so that they cannot match any term rooted by ⊕. That is, we
have two sorts Xor and Element such that ⊕ : Xor Xor → Xor and all other symbols a, b, 0,
pk(,), and sk(,) are defined on sort Element and not on sort Xor. The new equations are as
follows:

X:Xor ⊕ 0 = X:Xor X:Element ⊕ X:Element = 0 (14)
X:Element ⊕ X:Element ⊕ Y:Xor = Y:Xor (15)

Let us consider the term t = a ⊕ (b ⊕ (a ⊕ b)). Rule (14) cannot be applied at any position,
and only rule (15) can be applied at the top. However, there is no possible application with a
normalized substitution and thus term t cannot be reduced to its normal form in one step, i.e.,
a⊕ (b⊕ (a⊕ b))→E,Ax b⊕ b→E,Ax 0. Indeed, note that given a term s = X:Xor⊕ Y:Xor and any
normalized substitution σ, the number of reduction steps for sσ to reach its normal form clearly
depends on the number of ⊕ symbols introduced by σ, and therefore this modified example fails
to satisfy FV.

Although VP is not a necessary condition, the absence of infinite variant-preserving narrow-
ing sequences is a necessary condition for FV.

Theorem 8 (Necessary condition for FV). Let R = (Σ, E,R) be a decomposition of (Σ,E). If
there is an infinite variant-preserving narrowing sequence, then R does not have the finite variant
property.

Proof. Let us consider an infinite variant-preserving narrowing sequence. We can take any fi-
nite prefix t ∗σ,E,Ax s and build a variant-preserving rewrite sequence tσ →∗E,Ax (tσ)↓E,Ax. Note
that σ|Var(t) is E, Ax-normalized by definition. Thus, we obtain an infinite number of rewrite se-
quences with increasing length. Since the theory is terminating for rewriting and the computed
substitutions are normalized, the rewrite sequences are increasing in length because the com-
puted substitutions are increasing in depth. Since these rewrite sequences are the shortest ones,
this contradicts the boundedness property. 2

7. Checking the Finite Variant Property

In the following we show that the property of being variant-preserving is clearly checkable,
but the absence of infinite variant-preserving narrowing sequences is not computable in general.
In Section 7.2, we approximate the absence of infinite variant-preserving narrowing sequences
by a checkable condition using the dependency pairs technique of [24] for the modulo case.

28

t3

t1
p

E,Ax
//

��
Ax (p\\t3 =∅)

KS

p′ (p′≤p,p′\\t3 =∅)

E,Ax��

t2

∗
E,Ax��

t′3

∗
E,Ax��

t5 t4+3Ax
ks

Figure 2: Upper-Ax-coherence

t1 E,Ax
//

KS

Ax
��

t2

∗
E,Ax��

t3

+
E,Ax��

t5 t4+3Ax
ks

Figure 3: Ax-coherence

7.1. Checking Variant-Preservingness
The following class of equational theories is relevant. The notion of Ax-descendants is a

straightforward extension of the standard notion of descendant for rules.

Definition 29 (Descendants). [46] Let A : t
p
→l→r s and q ∈ Pos(t). The set q\\A of descendants

of q in s w.r.t. A is defined as follows:

q\\A =

{q} if q < p or q ‖ p (i.e., q � p and p � q),
{p.p3.p2 | r|p3 = l|p1 } if q = p.p1.p2 with p1 ∈ PosX(l), i.e., p1 is a variable position
∅ otherwise.

If Q ⊆ Pos(t) then Q\\A denotes the set
⋃

q∈Q q\\A. The notion of descendant extends to rewrite
sequences in the obvious way. If Q is a set of pairwise disjoint positions in t and A : t →∗ s, then
the positions in Q\\A are pairwise disjoint. The notion of descendant is extended to an equational
theory Ax as follows.

Definition 30 (Ax-descendants). Let Ax be a set of regular and sort-preserving Σ-equations.

Let
↔

Ax = {u → v | u = v or v = u ∈ Ax}. Given two terms t =Ax s, i.e., A : t →∗↔
Ax

s, and a set Q

of pairwise disjoint positions in t, the Ax-descendants of Q in s are Q\\s = Q\\A.

Now we can introduce the relevant notion of upper-Ax-coherence, depicted in Figure 2. Note
that dotted arrows imply they are involved in an existential quantifier.

Definition 31 (Upper-Ax-coherence). Let R = (Σ, Ax, E) be a decomposition of (Σ,E). We say
R is upper-Ax-coherent iff for all t1, t2, t3, t1

p
→E,Ax t2, t1 =Ax t3, p > Λ, and p\\t3 = ∅ imply

that for all p′ ≤ p such that p′\\t3 = ∅, there exist t′3, t4, t5 such that t1
p′
→E,Ax t′3, t2 →∗E,Ax t4,

t′3 →
∗
E,Ax t5, and t4 =Ax t5.

Assuming Ax-coherence (defined by Condition (4) in Section 2.1 and depicted in Figures 1 and 3,
both identical but using R,Ax or E,Ax labels), checking upper-Ax-coherence consists in consid-
ering each term t in each equation t = t′ ∈ Ax (or its reverse), finding a position p ∈ Pos(t) s.t.
p > Λ and a substitution σ s.t. tσ|p is →E,Ax-reducible and then, if p = p1. · · · .pk, then, for
i ∈ {1, . . . , k − 1}, tσ|pi must be→E,Ax-reducible. In general, upper-Ax-coherence is much more
demanding than Ax-coherence, as shown below.

29

Example 23. Let us consider the equational theory E = {g(f (X)) → d, a → c} and Ax =

{g(f (f (a))) = g(b)}. For the term t = g(f (f (a))), subterm a is reducible, t =Ax g(b), but subterms
f (f (a)) and f (a) are not reducible and thus the theory is not upper-Ax-coherent. However, the
theory is trivially Ax-coherent because of the use of symbol g at the top of both sides of the
equation in Ax.

Note that upper-AC-coherence and AC-coherence coincide, since the axioms of associativity
and commutativity can never satisfy t1 =AC t3, p > Λ, and p\\t3 = ∅. We can now provide an
algorithm for checking variant-preservingness.

Theorem 9 (Checking Variant-preservingness). Let R = (Σ, Ax, E) be a decomposition of
(Σ,E) that is upper-Ax-coherent. R has the variant-preserving property iff for all l → r, l′ →
r′ ∈ E (possibly renamed s.t. Var(l) ∩ Var(l′) = ∅) and for each X ∈ Var(l), the term t = lθ,
where θ = {X 7→ l′} is an order-sorted substitution, satisfies that either: (i) t does not have a
variant-pattern, or (ii) otherwise there is a normalized reduction on t.

Proof. The only if part is immediate by definition. For the if part, we consider a term t =

f (t1, . . . , tk) such that t1, . . . , tk are →E,Ax-irreducible terms. If t is →E,Ax-irreducible, we are
done. Otherwise, there is a rule l → r ∈ E and a substitution θ such that t = lθ. If θ is→E,Ax-
normalized, we are done. Otherwise, we prove below that there is a rule l′ → r′ ∈ E and a
substitution θ′ such that t = l′θ′ and θ′ is→E,Ax-normalized.

Let l → r ∈ E and θ be such that θ has the maximum number of redexes possible for t. Let n
be such a maximum number. We prove the fact by induction on n.

(n = 0) This means that θ is→E,Ax-normalized and we are done.

(n > 0) Let X 7→ u be one of the non-normalized bindings in θ. Let p be one of the topmost
positions in u with an actual redex, i.e., there is a rule l̂ → r̂ ∈ E and a substitution σ
such that u|p =Ax l̂σ. We can take the maximum prefix û of u with no redexes and build
a substitution θ̂ = {X 7→ û[l̂]p}. Let us assume that û[l̂]p is properly renamed so that
Var(û[l̂]p) ∩ Var(l) = ∅. There is a substitution ρ such that θ =Ax θ̂ρ. Since the terms
t1, . . . , tk are irreducible, l̂ is not a subterm of any of them and there is a context C[] of
t and another context Ĉ[] of lθ̂ such that C[] =Ax Ĉ[] and l̂ must overlap with Ĉ[].
Then, p = Λ, because of coherence, i.e., if u|p is a redex, then u must also be a redex. Just
note that a coherence completion algorithm adds rules of the form C[lσ] → C[rσ] for
any rule l → r where C[] and σ are determined by the equational theory Ax. Now, by
the condition given in the Theorem, there is a normalized substitution on lθ̂, i.e., there is a
rule l′ → r′ and a substitution τ such that lθ̂ =Ax l′τ and τ is→E,Ax-normalized. Finally,
when we consider the term l′τρ, we can apply the induction hypothesis because ρ contains
less redexes than θ and obtain that there is a rule l′′ → r′′ and a substitution τ′ such that
t =Ax l′τρ =Ax l′′τ′ and τ′ is→E,Ax-normalized. 2

The upper-Ax-coherence condition is necessary, as shown below.

Example 24. The theory of Example 23 satisfies the conditions of Theorem 9 except upper Ax-
coherence. That is, when the left-hand sides g(f (X)) and a are used to build the term g(f (a)), this
term does not have a variant-pattern, as required by Theorem 9. Similarly, when the properly
renamed left-hand sides g(f (X)) and g(f (X′)) are used to build the term g(f (g(f (X′)))), this

30

term does not have a variant-pattern either. However, according to Definition 26, we have to test
also the variant-pattern g(b). Although this term is reducible, it is not →E,Ax-reducible with a
normalized substitution. Thus the equational theory is not variant-preserving.

Let us first show another example of a theory that is not variant-preserving.

Example 25. Let us consider again Example 12. Let us check this rewrite theory with the con-
dition from Theorem 9. Using the rule given with the renamed version f (a, b, X′) → f (a, b) we
get lθ = f (a, b, a, b, X′), which has a variant-pattern, namely f (f (a, a, X′), f (b, b)) where the
extra appearances of f inside are to show which are the irreducible subterms. Also, there is no
reduction with a normalized substitution, since the only reduction possible is by using the given
rule, with X renamed to V and the substitution σ = {V 7→ f (a, b, X′)} which is not normalized.
So this theory is not variant-preserving.

Let us prove that the exclusive or theory has the the variant-preservingness property.

Example 26. LetR = (Σ, E,R) be the exclusive or theory from Example 3, with only (6)–(8) used
as rules. Using Theorem 9 we find that this theory is variant-preserving. All the combinations
of rules not involving (8) as the first rule do not have a variant-pattern, let us just show one
of the combinations of rule (8) with itself where l = X ⊕ X ⊕ Y and l′ = X′ ⊕ X′ ⊕ Y ′. We
get two terms, one for each of the substitutions θ1 = {X 7→ l′} and θ2 = {Y 7→ l′}. We get
lθ1 = X′ ⊕ X′ ⊕ Y ′ ⊕ X′ ⊕ X′ ⊕ Y ′ ⊕ Y, which does not have a variant-pattern. On the other hand,
lθ2 = X ⊕ X ⊕ X′ ⊕ X′ ⊕Y ′ does have a variant-pattern, but has also a normalized reduction with
another renaming of rule (8), namely V ⊕V ⊕W → W, and substitution σ = {V 7→ X ⊕ X′,W 7→
Y ′}. Note that the theory has the finite variant property (FV), since it is VP and the right hand
sides of all the equations are constants or variables, which trivially satisfies the FVNS property.

7.2. Checking Finiteness of Variant-Preserving Narrowing Sequences

In this section, we approximate the absence of infinite variant-preserving narrowing se-
quences by a checkable condition using the dependency pairs technique of [24] for the modulo
case. Note that we do not really extend the dependency pairs technique to narrowing, since we do
not allow extra variables in right-hand sides of rules; see [1] for an extension of the dependency
pairs technique to narrowing, and [40] for termination of narrowing using the dependency pair
technique. Termination of narrowing is a much harder problem than that of termination of rewrit-
ing [2] and we do not prove that narrowing or folding variant narrowing terminate; indeed recall
that we are only interested in termination of the variant generation process rather than termina-
tion of narrowing strategies in general. In this section, we reuse the dependency pair technique
and approximate the property of the absence of infinite variant-preserving narrowing sequences
by avoiding any possible cycle in function calls. For avoiding cycles we use the dependency
graph and adapt the notion of dependency pair chain to the variant case.

First, we need to extend the notion of a defined symbol. An equation u = v is called collaps-
ing if v ∈ X or u ∈ X. We say a theory is collapse-free3 if all its equations are non-collapsing.

3Note that regularity does not imply collapse-free, e.g., equation (6) of Example 3 is regular but also collapsing.
Note also that if Ax contains collapsing axioms such as the identity axiom (6), it may be possible to use the variant
based technique in [14] (see also the discussion in Section 9) to transform a decomposition (Σ, Ax,R) into a semantically
equivalent one (Σ, Ax0,R ∪

−→
Aclps) where Ax0 is collapse-free and

−→
Aclps are rewrite rules for the collapse axioms.

31

Definition 32 (Defined Symbols for Rewriting Modulo Equations). [24] Let (Σ, Ax,R) be an
order-sorted rewrite theory with Ax collapse-free. Then the set of defined symbols D is the
smallest set such that D = {root(l) | l → r ∈ R} ∪ {root(v) | u = v ∈ Ax or v = u ∈ Ax, root(u) ∈
D}.

In order to correctly approximate the dependency relation between defined symbols in the
theory, we need to extend the equational theory in the following way.

Definition 33 (Adding Instantiations). [24] Given an order-sorted rewrite theoryR = (Σ, Ax,R)
with Ax collapse-free, let InsAx(R) be a set containing only rules of the form lσ → rσ (where σ
is a substitution and l → r ∈ R). InsAx(R) is called an instantiation of R for the equations Ax
iff InsAx(R) is the smallest set such that: (a) R ⊆ InsAx(R), (b) for all l → r ∈ R, all v such that
u = v ∈ Ax or v = u ∈ Ax, and all σ ∈ CSUAx(v = l), there exists a rule l′ → r′ ∈ InsAx(R) and a
variable renaming ρ such that lσ =Ax l′ρ and rσ =Ax r′ρ.

Note that when Ax = ∅ or Ax contains only AC or C axioms, InsAx(R) = R. Dependency pairs
are obtained as follows. Since we are dealing with the modulo case, it will be notationally more
convenient to use terms directly in dependency pairs, without the usual capital letters for the top
symbols.

Definition 34 (Dependency Pair). [24] Let R = (Σ, Ax,R) be an order-sorted rewrite theory
with Ax collapse-free. Let InsAx(R) be the instantiations of R for the equations Ax. If l →
C[g(t1, . . . , tm)] is a rule of InsAx(R) with C a context and g a defined symbol in InsAx(R), then
〈l, g(t1, . . . , tm)〉 is called a dependency pair of R.

Example 27 (Abelian Group). The following presentation of the Abelian group theory, called
R∗ = (Σ, Ax, E), has been shown to satisfy the finite variant property in [11]. The operators Σ

are ∗ , ()−1, and 1. The set of equations Ax consists of associativity and commutativity for ∗ .
The rules E are:

x ∗ 1 → x (16)
1−1 → 1 (17)

x ∗ x−1 → 1 (18)
x−1 ∗ y−1 → (x ∗ y)−1 (19)

(x ∗ y)−1 ∗ y → x−1 (20)

x−1−1
→ x (21)

(x−1 ∗ y)−1 → x ∗ y−1 (22)
x ∗ (x−1 ∗ y) → y (23)

x−1 ∗ (y−1 ∗ z) → (x ∗ y)−1 ∗ z (24)
(x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z (25)

The AC-dependency pairs for this rewrite theory are as follows.

(19)a: 〈x−1 ∗ y−1 , (x ∗ y)−1〉 (19)b: 〈x−1 ∗ y−1 , x ∗ y〉
(22)a: 〈(x−1 ∗ y)−1 , x ∗ y−1〉 (22)b: 〈(x−1 ∗ y)−1 , y−1〉

(24)a: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1 ∗ z〉 (24)b: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1〉

(24)c: 〈x−1 ∗ y−1 ∗ z , x ∗ y〉 (20)a: 〈(x ∗ y)−1 ∗ y , x−1〉

(25)a: 〈(x ∗ y)−1 ∗ y ∗ z , x−1 ∗ z〉 (25)b: 〈(x ∗ y)−1 ∗ y ∗ z , x−1〉

We have used the AProVE tool [25] to generate the dependency pairs. AProVE first applies the
coherence algorithm of [24] to this example, which is unnecessary here and thus we drop the
dependency pairs created that way.

The relevant notions from the dependency pairs technique are chains of dependency pairs and
the dependency graph.

32

(19)a ..(19)boo //

yysss
sss

sss
sss

�� %%KK
KKK

KKK
KKK

K

**UUU
UUUU

UUUU
UUUU

UUUU
UUUU

U

,,XXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXX
��

(20)a // --(22)aooqqmm

rrffffff
ffffff

ffffff
ffffff

ffffff
ffffff

ff

ttiiii
iiii

iiii
iiii

iiii
iiii

yysss
sss

sss
sss

�� %%KK
KKK

KKK
KKK

(22)boo
��

(24)a

OO 99ssssssssssss

44iiiiiiiiiiiiiiiiiiiiiiii // 11 11 00
XX (24)b

22ffffffffffffffffffffffffffffffffffffff (24)c

jjUUUUUUUUUUUUUUUUUUUUUUUU

eeKKKKKKKKKKKK

OO

qq oo // 11XX (25)a

llXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

jjUUUUUUUUUUUUUUUUUUUUUUUU

eeKKKKKKKKKKK
qq qq oo //

XX (25)b

Figure 4: Dependency graph of Abelian group

Definition 35 (Chain). [8] LetR = (Σ, Ax,R) be an order-sorted rewrite theory with Ax collapse-
free. A sequence of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of R is an R-chain if there is a sub-
stitution σ such that t jσ→

∗
R,Ax s j+1σ holds for every two consecutive pairs 〈s j, t j〉 and 〈s j+1, t j+1〉

in the sequence.

Definition 36 (Dependency Graph). [8] Let R = (Σ, Ax,R) be an order-sorted rewrite theory
with Ax collapse-free. The dependency graph of R is the directed graph whose nodes (vertices)
are the dependency pairs of R and there is an arc (directed edge) from 〈s, t〉 to 〈u, v〉 if 〈s, t〉〈u, v〉
is a chain.

Chains are not computable in general and an approximation must be performed. The notions
of connectable terms and the estimated dependency graph as defined in [8] provide a useful
approximation of the dependency graph. The estimated dependency graph can be computed
using the Cap and Ren procedures [8]: For any term t ∈ T

Σ
(X), let Cap(t) replace each proper

subterm rooted by a defined symbol by a fresh variable and let Ren(t) independently rename all
occurrences of variables in t by fresh variables. Note that such an estimated dependency graph
has been used in all examples in this section.

Example 28. The dependency graph for Example 27 is shown in Figure 4. It was created with
AProVE [25]. We see that there are self-loops on (19)b, (22)b, (24)a, (24)c and (25)a. (19)a has
a loop with (22)a, (22)a has a loop with (24)b, and so on. It is a very highly connected graph.

The most important notion for the absence of infinite narrowing sequences is that of a cycle
in the dependency graph.

Definition 37 (Cycle). [8] A nonempty set P of dependency pairs is called a cycle if, for any two
dependency pairs 〈s, t〉, 〈u, v〉 ∈ P, there is a nonempty path from 〈s, t〉 to 〈u, v〉 and from 〈u, v〉 to
〈s, t〉 in the dependency graph that traverses dependency pairs from P only.

As already demonstrated in the previous section, not all the rewriting (narrowing) sequences
are relevant for the finite variant property, so that we can restrict the dependency graph only to
variant-preserving rewriting (narrowing) sequences.

Definition 38 (Variant-preserving chain). Let R = (Σ, Ax, E) be a variant-preserving decom-
position of an equational theory (Σ,E). A chain of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of
R is a variant-preserving chain if there is a substitution σ such that σ is→E,Ax-normalized and
the following rewrite sequence s1σ →E,Ax C1[t1]σ →∗E,Ax C1[s2]σ →E,Ax C1[C2[t2]]σ →∗E,Ax
· · · →∗E,Ax C1[C2[· · ·Cn−1[sn]]]σ →E,Ax C1[C2[· · ·Cn−1[Cn[tn]]]]σ obtainable from the chain
〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 is variant-preserving.

33

(19)a (19)b (20)a (22)a (22)b

(24)a (24)b (24)c (25)ajj jj mm

kk ii

(25)b

Figure 5: Variant-preserving dependency graph

The notions of a cycle, dependency graph, and estimated dependency graph are easily extended
to the variant-preserving case. The following result approximates the absence of infinite nar-
rowing sequences. We simply approximate such property by avoiding any cycle. We do not use
any of the dependency pair processors of the dependency pair framework (see [8, 26]) and we
do not require any term ordering. Obviously, there may be more specific techniques based on
termination of narrowing for deciding the termination of variant-preserving narrowing sequences
but this is left for future work.

Proposition 3 (Checking Finiteness of the VP Narrowing sequences). Let R = (Σ, Ax, E) be
a variant-preserving decomposition of an equational theory (Σ,E). Let Ax contain only linear,
non-collapsing equations. If the estimated dependency graph does not contain any variant-
preserving cycle, then there are no infinite variant-preserving narrowing sequences.

Proof. We prove this result by contradiction. Assume that the estimated dependency graph does
not contain any variant-preserving cycle but there is an infinite variant-preserving narrowing
sequence α : t0 p1,σ1,E,Ax t1 · · · pn,σn,E,Ax tn · · · . From α we can obtain an infinite number of
finite variant-preserving rewrite sequences of the form t0θi →p1,E,Ax t1θi · · · →pi,E,Ax tiθi with
θi = σ1 · · ·σi. For each variant-preserving rewrite sequence t0θi →p1,E,Ax t1θi · · · →pi,E,Ax tiθi,
there is a variant-preserving chain corresponding to such rewrite sequence. Since the number
of dependency pairs is finite, there is a natural number k such that for the variant-preserving
rewrite sequence t0θk →p1,E,Ax t1θk · · · →pk ,E,Ax tkθk, the variant-preserving chain associated to
it is a cycle. Thus, the conclusion follows, because we assume that there is no variant-preserving
cycle. 2

Note that the conditions that the axioms are non-collapsing and linear are necessary for com-
pleteness of the dependency graph, we refer the reader to [24] for explanations.

Example 29 (Abelian group variant-preserving dependency pair graph). We can show the variant-
preserving dependency graph of Example 27 in Figure 5. One can see in the picture that all the
cycles have disappeared, because they involved non-normalized substitutions, or terms without
a variant-pattern, or could be shortened. Detailed reasons are provided next.

For the dependency pair (19)b and its self-loop we need a substitution σ for which (X ∗
Y)σ =AC (X′−1 ∗ Y ′−1)σ. But then, e.g., σ = {X 7→ X′−1,Y 7→ Y ′−1} and the left-hand side
of the dependency pair becomes (X′−1)−1 ∗ (Y ′−1)−1, which does not have a variant-pattern, as
(X′−1)−1 is reducible, so the self-loop is not a variant-preserving sequence and thus not a variant-
preserving chain.

For the dependency pairs (24)a, i.e., 〈s1, t1〉 = 〈X−1 ∗ Y−1 ∗ Z, (X ∗ Y)−1 ∗ Z〉, and (25)a, i.e.,
〈s2, t2〉 = 〈(X′ ∗ Y ′)−1 ∗ Y ′ ∗ Z′, X′−1 ∗ Z′〉 let us consider both directions. For one direction we
have ((X ∗ Y)−1 ∗ Z)σ =AC ((X′ ∗ Y ′)−1 ∗ Y ′ ∗ Z′)σ so for example σ = {Z 7→ Y ′ ∗ Z′, X 7→
X′,Y 7→ Y ′}. Then s1σ =AC X′−1 ∗ Y ′−1 ∗ Y ′ ∗ Z′ which has a variant-pattern and for which the
rewriting sequence is X′−1 ∗ Y ′−1 ∗ Y ′ ∗ Z′ → (X′ ∗ Y ′)−1 ∗ Y ′ ∗ Z′ → X′−1 ∗ Z′. Nevertheless,

34

(19)a (19)b (20)a (22)a (22)b

(24)a (24)b (24)c (25)ajj jj mm

jj gg

(25)b

(27)a (27)b

OOddIIIIII

jjTTTTTTTTTTTT

]] [[66666666666

XX

::uuuuuu

55jjjjjjjjjjjj

Figure 6: Variant-preserving dependency graph for Diffie-Hellman

it is not a variant-preserving sequence as there is a shorter rewriting sequence using rule (23),
X′−1 ∗ Y ′−1 ∗ Y ′ ∗ Z′ → X′−1 ∗ Z′, so there is no variant-preserving chain here.

Similarly for the chain from (24)a to (25)b as the only difference is in t2, so that t2σ = X′−1

but that will be padded with the context of ∗ ([],Z′) (where [] is the hole) and so the same
shorter rewriting sequence exists.

In the other direction, from (25)a to (24)a, we have (X′−1 ∗Z′)σ =AC (X−1 ∗Y−1 ∗Z)σ so then
for example σ = {Z′ 7→ Y−1Z, X′ 7→ X} and s2σ =AC (X ∗Y ′)−1 ∗Y ′ ∗Y−1 ∗Z which has a variant-
pattern and the rewriting sequence (X ∗Y ′)−1 ∗Y ′ ∗Y−1 ∗Z → X−1 ∗Y−1 ∗Z → (X ∗Y)−1 ∗Z. The
alternative rewriting sequence applying the rules in reverse order is (X ∗ Y ′)−1 ∗ Y ′ ∗ Y−1 ∗ Z →
(X∗Y ′ ∗Y)−1 ∗Y ′ ∗Z → (X∗Y)−1 ∗Z which is not shorter, so this is a variant-preserving sequence
and thus we have a variant-preserving chain.

Let us first introduce a representation of the Diffie-Hellman theory and then show the VP
property for the theories of Abelian groups and Diffie-Hellman exponentiation, and also the
finite variant property for the Diffie-Hellman theory.

Example 30 (Diffie-Hellman). We get a rewrite theory representing the Diffie-Hellman theory,
called RDH , by extending the theory R∗ from Example 27 by adding a new binary symbol exp
and the following two rules:

exp(x, 1) → x (26)
exp(exp(x, y), z) → exp(x, y ∗ z) (27)

We can compute the dependency pairs and the associated graph using the results we already
have from Example 29. Also note, that the rewrite theories R∗ and RDH both have the variant-
preserving property, which we will check in Example 31, respectively Example 32. The following
additional dependency pairs are required:

(27)a : 〈exp(exp(x, y), z) , exp(x, y ∗ z)〉
(27)b : 〈exp(exp(x, y), z) , y ∗ z〉

As shown in Figure 6, for rule (27) there are a lot of possibilities to go from (27)b, but the
longest possible path has length 2. Let us show that there is actually a chain for the path from
(27)b via (25)a to (19)a. After substituting as needed for this in the left-hand side of (27) we
get exp(exp(X, (U ∗ V)−1),V ∗ W−1) → exp(X, (U ∗ V)−1 ∗ V ∗ W−1), let us call this term t.
Then from there we have t → exp(X,U−1 ∗ W−1) → exp(X, (U ∗ W)−1) and alternatively t →
exp(X, (U ∗ V ∗W)−1 ∗ V)→ exp(X, (U ∗W)−1) which is not shorter. So this is really a variant-
preserving chain and the longest chain from (27)b is length 2.

35

We show VP for our Abelian group representation next.

Example 31. Let us check variant-preservingness for R∗ by using Theorem 9. For rule (16) and
any other rule there is no variant-pattern for lθ where θ substitutes another left-hand side into
X. The reason is that the constant 1 needs to stay isolated, since otherwise a rewrite is possible,
and so the left-hand side that was inserted stays together and is reducible. As rule (17) does not
have any variable, the property holds trivially.

For all following rules let us note that instantiating a variable that is a subterm of an inverse
operator −1 with a left-hand side of another rule, immediately results in a term that has no
variant-pattern as that left-hand side stays together underneath. Thus the rules (18)–(22) do not
need to be considered as all variables appear at least once underneath an inverse operator.

In this vein for rule (23) we only need to consider the terms created when instantiating Y.
Only combination with (18),(20), (23), and (25) results in a term that has a variant-pattern.
Let us show for example (23) with (25) (renamed to primed variables). The resulting term is
X ∗ X−1 ∗ (X′ ∗ Y ′)−1 ∗ Y ′ ∗ Z′ which can be reduced by rule (24) (renamed to doubly primed
variables) with substitution {X′′ 7→ X,Y ′′ 7→ X′ ∗ Y ′,Z′′ 7→ X ∗ Y ′ ∗ Z′} which is normalized.

For rule (24) the only useful (i.e., with a chance of having a variant-pattern) instantiations
are for Z, but also as there are already two appearances of a term headed by the inverse only
left-hand sides with no inverse have a chance at having a variant-pattern. That only leaves rule
(16) which results in term X−1 ∗ Y−1 ∗ X′ ∗ 1 which also does not have a variant-pattern.

Finally, for rule (25) we only need to instantiate the variable Z. There are variant-patterns for
the combinations with (18), (20), (23), and (25), let us just show the last of these combinations,
(25) with itself. The resulting term is (X∗Y)−1∗Y ∗(X′∗Y ′)−1∗Y ′∗Z′, which has a variant-pattern
but also can rewrite with rule (24) (renamed with two primes) with the normalized substitution
{X′′ 7→ X ∗ Y,Y ′′ 7→ X′ ∗ Y ′,Z′′ 7→ Y ∗ Y ′ ∗ Z′}.

Therefore, R∗ has the variant-preserving property.

Based on VP for Abelian groups we can check VP for Diffie-Hellman. It also turns out that
Diffie-Hellman has the finite-variant property.

Example 32. Variant-preservingness of the Diffie-Hellman theoryRDH can be shown using The-
orem 9 based upon the variant-preservingness of R∗ shown in Example 31. Let us just observe
that RDH is obtained by just adding a new symbol exp and rules for it. Putting this into any vari-
able of any of the prior rules results in a term that has no variant-pattern. The other way around,
any left-hand side put into any of the variables of the left-hand sides of one of the two new rules
results in a term that has no variant-pattern. So RDH has the variant-preserving property, too.

The proof of our final result for this section is trivial: since if there are no cycles in the
estimated dependency graph, then we know for sure that there is no infinite variant-preserving
rewrite sequence.

Theorem 10 (Approximation for the finite variant property). LetR = (Σ, Ax, E) be a variant-
preserving decomposition of an equational theory (Σ,E) such that Ax contains only linear, non-
collapsing equations. If the estimated dependency graph does not contain any variant-preserving
cycle, then R has the finite variant property.

Proof. By Proposition 3 and Theorem 8. 2

36

7.3. Disproving the Finite Variant Property
If there are infinite variant-preserving narrowing sequences, we are done, because the finite

variant property does not hold by Theorem 8. We can give a simple sufficient condition, a
consequence of Theorem 8.

Theorem 11 (Non-termination of narrowing). Let R = (Σ, Ax, E) be a variant-preserving de-
composition of an equational theory (Σ,E). Let Ax contain only linear, non-collapsing equations.
If the estimated dependency graph does contain a variant-preserving chain 〈s, t〉〈s, t〉 such that
s vAx t, called a self-cycle, and the Cap and Ren procedures were not necessary for obtaining
term t, then there is an infinite variant-preserving narrowing sequence starting from term s.

Proof. The estimated dependency graph contains the chain 〈s, t〉〈s, t〉 for the dependency pair
〈s, t〉. The dependency pair 〈s, t〉 comes from a rule s → C[t]p. Let σ be such that s =Ax tσ.
Since the Cap and Ren procedures have not been applied to term t, we have the infinite narrowing
sequence s Λ,id,E,Ax C[t]p p,σ,E,Ax C[C′[t′]p]p p.p,σ′,E,Ax C[C′[C′′[t′′]p]p]p · · · where C′ and
C′′ are properly renamed versions of C, t′ and t′′ are properly renamed versions of t, and σ′ is a
properly renamed version of σ. 2

Example 33 (ACUNh). [11] Let us present the ACU example with nilpotence and homomor-
phism as discussed by Comon and Delaune.4 This is RACUNh, with + AC, which has the variant-
preserving property:

X + 0 → X (28)
X + X → 0 (29)

X + X + Y → Y (30)

h(0) → 0 (31)
h(X + Y) → h(X) + h(Y) (32)

For the last rule we get three dependency pairs:

(32)a : 〈h(x + y) , h(x) + h(y)〉 (32)b : 〈h(x + y) , h(x)〉
(32)c : 〈h(x + y) , h(y)〉

It is easy to see that there are self-cycles in (32)b and (32)c using the substitution x 7→ x1 + z1,
which also allows going back and forth between them. This gives rise to the following graph:

(32)a (32)b //
::

oo (32)cdd
oo

tt

By Theorem 8, this theory does not have the finite variant property, as also proved in a different
way in [11].

8. Variant-based Equational Unification

The intimate connection between variants and E-unification is then as follows.

Definition 39. For R = (Σ, Ax, E) with poset of sorts (S,≤) being a decomposition of an equa-
tional theory (Σ,E), we extend (Σ, Ax, E) and (S,≤) to (̂Σ, Ax, Ê) and (Ŝ,≤) as follows:

1. we add a new sort Truth to Ŝ, not related to any sort in Σ,

4There is another, alternative term rewriting system representing this theory, which suffers from the same problems.
37

2. we add a constant operator tt of sort Truth to Σ̂,
3. for each top sort of a connected component [s], we add an operator eq : [s] × [s] →

Truth to Σ̂, and
4. for each top sort [s], we add a variable X:[s] and an extra rule eq(X:[s], X:[s]) → tt to

Ê.

Then, given any two Σ-terms t, t′, if θ is an E-unifier of t and t′, then the E,Ax-canonical forms of
tθ and t′θ must be Ax-equal and therefore the pair (tt, θ) must be a variant of the term eq(t, t′).
Furthermore, if the term eq(t, t′) has a finite set of most general variants, then we are guaranteed
that the set of most general E-unifiers of t and t′ is finite.

Corollary 7. Let R = (Σ, Ax, E) with poset of sorts (S,≤) be a finite variant decomposition
of an equational theory (Σ,E). The equational theory (̂Σ, Ax, Ê) with poset of sorts (Ŝ,≤) of
Definition 39 is a finite decomposition.

Proof. Given a term eq(t, t′), for any variant (u, σ) ∈ [[eq(t, t′)]]E,Ax, either u = tt or u =

eq(v, v′) such that (v, φ) ∈ [[t]]E,Ax and (v′, φ′) ∈ [[t′]]E,Ax for some substitutions φ and φ′. Since
[[t]]E,Ax and [[t′]]E,Ax are finite, we conclude that [[eq(t, t′)]]E,Ax is finite. 2

Let us make explicit the relation between variants and E-unification. Given a decomposition
(Σ, Ax, E) of an equational theory, two Σ-terms t1 and t2 such that W∩ = Var(t1) ∩ Var(t2) and
W∪ = Var(t1) ∪ Var(t2), and two sets V1 and V2 of variants of t1 and t2, respectively, we define
V1 ∩ V2 = {(u1σ, θ1σ ∪ θ2σ ∪ σ) | (u1, θ1) ∈ V1 ∧ (u2, θ2) ∈ V2 ∧ ∃σ : σ ∈ CSUW∪

Ax (u1 = u2) ∧
(θ1σ)|W∩ =Ax (θ2σ)|W∩ }.

Proposition 4 (Variant-based Unification). Let R = (Σ, Ax, E) be a decomposition of an equa-
tional theory (Σ,E). Let t1, t2 be two Σ-terms. Then, ρ is an E-unifier of t1 and t2 iff ∃(t′, ρ) ∈
[[t1]]?E,Ax ∩ [[t2]]?E,Ax.

Proof. (⇒) If ρ is an E-unifier of t1 and t2, then (t1ρ)↓E,Ax =Ax (t2ρ)↓E,Ax. Let t′1 = (t1ρ)↓E,Ax

and t′2 = (t2ρ)↓E,Ax. We also have that (t′1, ρ) ∈ [[t1]]?E,Ax, (t′2, ρ) ∈ [[t1]]?E,Ax, (t′1, ρ) ∈ [[t2]]?E,Ax, and
(t′2, ρ) ∈ [[t2]]?E,Ax.

(⇐) If ∃(t′, ρ) ∈ [[t1]]?E,Ax ∩ [[t2]]?E,Ax, then t′ =Ax (t1ρ)↓E,Ax =Ax (t2ρ)↓E,Ax and clearly ρ is an
E-unifier of t1 and t2. 2

Proposition 5 (Minimal and Complete E-unification). Let R = (Σ, Ax, E) with poset of sorts
(S,≤) be a decomposition of an equational theory (Σ,E). Let t, t′ be two Σ-terms. Then, U = {θ |
(tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a minimal and complete set of E-unifiers for t = t′, where eq and tt

are new symbols as defined in Definition 39 and Ê = E ∪ {eq(X:[s], X:[s])→ tt | s ∈ S}.

Proof. We have to prove that for each E-unifier ρ of t and t′, there is an E-unifier σ in U such
that ρ vE σ. First, it is clear by definition of eq and tt that Ê satisfies properties (1)–(4) (see
Section 2.1). Let U∗ = {θ | (tt, θ) ∈ [[eq(t, t′)]]?

Ê,Ax
}. If ρ is an E-unifier of t and t′, then ρ ∈ U∗,

since for t̄ = (tρ)↓E,Ax and t̄′ = (t′ρ)↓E,Ax, we have that t̄ =Ax t̄′ and eq(t̄, t̄′) →Ê,Ax tt. If
ρ ∈ U∗, then ρ is an E-unifier of t and t′, since eq(tρ, t′ρ) →∗

Ê,Ax
tt and, by properties (1)–(4),

we have that there are t̄, t̄′ s.t. t̄ = (tρ)↓E,Ax, t̄′ = (t′ρ)↓E,Ax, and the following rewrite step exists
eq(t̄, t̄′)→Ê,Ax tt.

38

Now, completeness means that for each E-unifier ρ of t and t′, there is an E-unifier σ in
U such that ρ|t,t′ vE σ|t,t′ ; and minimality means that for each E-unifier σ in U there is no σ′

in U such that σ|t,t′ vAx σ
′|t,t′ . Finally, by completeness and minimality of [[eq(t, t′)]]Ê,Ax w.r.t.

[[eq(t, t′)]]?
Ê,Ax

, we conclude completeness and minimality of U w.r.t U∗. 2

Finally, it is clear that when we consider a finite variant decomposition, we obtain a decidable
unification algorithm.

Corollary 8 (Finitary E-unification). Let R = (Σ, Ax, E) be a finite variant decomposition of
an equational theory (Σ,E). Then, for any two given terms t, t′, U = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax}

is a finite, minimal, and complete set of E-unifiers for t = t′, where Ê, eq, and tt are defined in
Definition 39.

Note that the opposite does not hold: given two terms t, t′ that have a finite, minimal, and
complete set of E-unifiers, the equational theory R = (Σ,E) may not have a finite variant decom-
position (Σ, Ax, E). An example is the unification under homomorphism (or one-side distributiv-
ity), where there is a finite number of unifiers of two terms but the theory does not satisfy the
finite variant property (see Example 33); the key reason for this is that the term eq(t, t′) may have
an infinite number of variants, even though there is only a finite set of most general variants of
the form (tt, θ).

Once we have clarified the intimate relation between variants and equational unification, we
can consider how to compute a complete set of variants of a term using the variant minimality of
VN	
R

. The minimality property of Definition 14 motivates the following corollary.

Corollary 9. Let R = (Σ, Ax, E) be a decomposition of an equational theory (Σ,E). For any two

terms t, t′ with the same top sort, the set S = {θ | (tt, θ) ∈ [[eq(t, t′)]]
VN	
R

Ê,Ax
} is a complete set of

E-unifiers for t = t′, where Ê, eq, and tt are defined in Definition 39. If, in addition, R is a finite
decomposition, then the set S is a finite set of E-unifiers for t = t′.

9. Applications

A first obvious application is in the area of unification algorithms. The key distinction is
one between dedicated algorithms for a given theory T , for which a special-purpose algorithm
exists, and generic algorithms such as folding variant narrowing, which can be applied to a wide
range of theories not having a dedicated algorithm. The tradeoff is one of flexibility versus per-
formance: a dedicated unification algorithm for a given theory T uses intimate knowledge of the
theory’s details and is typically much more efficient; but a special-purpose algorithm has to be
developed for each such T , and combinations, though possible, are computationally expensive.
By contrast, variant-based unification, being a generic method, is much more flexible and, as
already mentioned and illustrated by several of our examples, if T and T ′ enjoy FV, T ∪ T ′ often
does so as well, so that obtaining unification algorithms for combined theories is typically easy
and does not require an explicit combination infrastructure. Of course, both methods should be
used together: dedicated algorithms should be used whenever possible; variant-based unification
can then be used to extend the range of theories that can be treated as follows: as soon as the
theory Ax has a dedicated unification algorithm under minimal assumptions on Ax, we can au-
tomatically derive a unification algorithm for any theory T = E ∪ Ax such that E is confluent,

39

terminating, sort-decreasing and coherent modulo Ax, and such an algorithm is guaranteed to be
finitary if T enjoys FV.

This is exactly the approach that has been followed for analyzing cryptographic protocols
modulo algebraic properties in the Maude-NPA tool [17, 45]. Such protocols can be modeled
as rewrite theories P = (Σ, E,R), where the algebraic properties of the cryptographic functions
are specified by equations E, and the protocol’s transition rules are specified by the rewrite rules
R. If E can be decomposed as G ∪ Ax, where G is confluent, terminating, sort-decreasing and
coherent modulo Ax and Ax has a finitary unification algorithm, we can perform symbolic reach-
ability analysis onP by narrowing its symbolic states with the transition rules R modulo E, where
E-unification can be carried out by folding variant narrowing with G modulo Ax and therefore
does not need a dedicated E-unification algorithm. In this way, the Maude-NPA has been able
to analyze a substantial collection of cryptographic protocols modulo their algebraic properties,
see [17]. What makes the application of folding variant narrowing to cryptographic protocol
verification interesting is its flexibility for accepting different equational theories specified by the
user and its order-sorted nature, which is essential for realistic protocol specification. The fol-
lowing paragraph from the conclusions of a survey of algebraic properties used in cryptographic
protocols [12] summarizes the actual situation in protocol verification:

In this survey, we have identified many algebraic properties that are particularly
relevant for the analysis of cryptographic protocols. ... Many recent results consider
some algebraic properties. However, the existing results presented in this survey
have two main weaknesses. Firstly, they are mostly theoretical: very few practical
implementations enable to automatically verify protocols with algebraic properties.
Secondly, in most of the cases, each paper develops an ad hoc decision procedure
for a particular property.

Besides being the first practical narrowing strategy we are aware of for narrowing modulo
axioms, the usefulness of folding variant narrowing goes way beyond the case of providing fini-
tary unification algorithms for FV theories, such as those used in the Maude-NPA tool to analyze
cryptographic protocols, and even beyond the case of providing a complete unification algorithm
for equational theories modulo axioms. As demonstrated by its recent applications to termination
algorithms modulo axioms in [14], and to algorithms for checking confluence and coherence of
rewrite theories modulo axioms, such as those used in the most recent Maude CRC and ChC
tools [16], computing the E∪Ax-variants of a term may be just as important as computing E∪Ax-
unifiers. In particular, even for theories such as the theory of associativity, which lacks a finitary
unification algorithm and a fortiori cannot be FV, the variants of a term (particularly in an order-
sorted setting, and for terms typically used in left-hand sides of rules) can be finite quite often in
practice and can provide a method to prove termination, and to check the local confluence and
the coherence of rewrite rules, modulo associativity.

The key idea of why variant narrowing is important for termination, confluence, and coher-
ence proofs, as demonstrated in [14] and in [16], is the following. Suppose that R ∪ Ax is a
collection of rewrite rules modulo axioms Ax for which we want to prove, say, termination, or
confluence, or coherence with some equations E (see [16] for an explanation of the coherence
case). We may not have any tools checking such properties that can work modulo the given set of
axioms Ax. For example, we are not aware of any termination tools that can handle termination
modulo the commonly occurring theory ACU of associativity, commutativity and identity. What
can we do? We can decompose Ax as a disjoint union E∪Ax′, where E is confluent, terminating,
sort-decreasing and coherent modulo Ax′, and where we have methods to prove, e.g., termination

40

or confluence modulo Ax′. For example, ACU decomposes in this way as U∪AC and enjoys FV.
As shown in [14], we can transform R ∪ Ax into a semantically equivalent5 theory R̂ ∪ E ∪ Ax′,
where now the set of rules is R̂ ∪ E, modulo the much simpler axioms Ax, where R̂ specializes
each rule in R to the family of variants of their left-hand sides. If E ∪ Ax′ has the finite variant
property, we are sure that R̂ will be a finite set; but in practice R̂ can often be finite without the
FV assumption. For example, Ax can be the theory A of associativity, for which unification is
not even finitary. We can view A as a rule and decompose it as A ∪ ∅. In an order-sorted setting,
it turns out that many theories R̂ ∪ A of practical interest can be decomposed as (R̂ ∪ A) ∪ ∅ with
R̂ finite, even though we know a priori that this is not possible in general, since A is not FV and
does not even have a finitary unification algorithm. For example, we can often prove confluence
modulo associativity of an equational specification in this way, while the usual approach to gen-
erate critical pairs may not be feasible because of the potentially infinite number of such pairs
modulo A.

10. Conclusions and Future Work

We have presented a self-contained and extended exposition of the key concepts, results,
and algorithms for variant narrowing and variant-based unification; and we have illustrated the
main ideas with a rich collection of examples. What these new techniques achieve is to bring
narrowing modulo axioms from a theoretical possibility with hopeless practical prospects into a
practically useful technique with many potential applications, some of which have already been
exploited in actual tools such as the Maude-NPA or the CRC and ChC tools.

As usual much remains to be done. The main issues are: (i) better variant generation strate-
gies and (ii) better algorithms for ensuring that a theory has the finite variant property. For
example, the current implementation of folding variant narrowing and variant-based unification
available in Maude [13] and used by the Maude-NPA only supports a subclass of FV theories,
and could be substantially optimized in many ways. Here lazy narrowing strategies may be use-
ful but no notion of needed or demanded evaluation step has been defined for the modulo case.
Another promising direction is to further advance the proof techniques for checking FV and im-
plement tools for such checking. There is recent work on extending techniques for termination
of rewriting to termination of narrowing which could be adapted to prove FV. Modularity results
for modular combination of theories enjoying the finite variant property are also interesting, sim-
ilarly to modularity results for termination of basic narrowing [3].

Furthermore, a promising direction is the study of symbolic, narrowing-based, reachability
analysis techniques for rewrite theories R = (Σ, E ∪ Ax,R), where E is confluent, terminating,
sort-decreasing and coherent modulo Ax and a finitary Ax-unification exists, but E∪Ax need not
be FV. And an even more ambitious future task is to extend these techniques to new techniques
for the development of finitary unification algorithms for theories that have such algorithms but
do not enjoy FV.

Acknowledgements. S. Escobar has been partially supported by the EU (FEDER) and the Span-
ish MEC/MICINN under grant TIN 2010-21062-C02-02, and by Generalitat Valenciana PROM-
ETEO2011/052. R. Sasse and J. Meseguer have been partially supported by NSF Grants CNS
07-16638, CNS 08-31064, CNS 09-04749, and CCF 09-05584.

5This semantic equivalence is very strong: that the original theory will be, e.g., terminating, confluent, and so on
modulo Ax iff the transformed theory is so modulo Ax′.

41

References

[1] M. Alpuente, S. Escobar, J. Iborra, Termination of narrowing using dependency pairs, in: M.G. de la Banda,
E. Pontelli (Eds.), Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy, December 9-13
2008, Proceedings, volume 5366 of Lecture Notes in Computer Science, Springer, 2008, pp. 317–331.

[2] M. Alpuente, S. Escobar, J. Iborra, Termination of narrowing revisited, Theoretical Computer Science 410 (2009)
4608–4625.

[3] M. Alpuente, S. Escobar, J. Iborra, Modular termination of basic narrowing and equational unification, Logic
Journal of the IGPL (2010). doi: 10.1093/jigpal/jzq009.

[4] M. Alpuente, M. Falaschi, G. Vidal, Partial Evaluation of Functional Logic Programs, ACM Transactions on Pro-
gramming Languages and Systems 20 (1998) 768–844.

[5] S. Anantharaman, P. Narendran, M. Rusinowitch, Unification modulo CUI plus distributivity axioms, J. Autom.
Reasoning 33 (2004) 1–28.

[6] S. Antoy, Evaluation strategies for functional logic programming, Journal of Symbolic Computation 40 (2005)
875–903.

[7] S. Antoy, R. Echahed, M. Hanus, A needed narrowing strategy, Journal of the ACM 47(4) (2000) 776–822.
[8] T. Arts, J. Giesl, Termination of term rewriting using dependency pairs, Theoretical Computer Science 236 (2000)

133–178.
[9] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C.L. Talcott, Unification and

narrowing in Maude 2.4, in: R. Treinen (Ed.), Rewriting Techniques and Applications, 20th International Confer-
ence, RTA 2009, Brası́lia, Brazil, June 29 - July 1, 2009, Proceedings, volume 5595 of Lecture Notes in Computer
Science, Springer, 2009, pp. 380–390.

[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C.L. Talcott, All About Maude - A High-
Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science, Springer, 2007.

[11] H. Comon-Lundh, S. Delaune, The finite variant property: How to get rid of some algebraic properties, in: [23],
pp. 294–307.

[12] V. Cortier, S. Delaune, P. Lafourcade, A survey of algebraic properties used in cryptographic protocols, Journal of
Computer Security 14 (2006) 1–43.

[13] F. Durán, S. Eker, S. Escobar, J. Meseguer, C.L. Talcott, Variants, unification, narrowing, and symbolic reachability
in maude 2.6, in: M. Schmidt-Schauss (Ed.), Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications, RTA 2011, May 30 - June 1, Novi Sad, Serbia, LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2011. To appear.

[14] F. Durán, S. Lucas, J. Meseguer, Termination modulo combinations of equational theories, in: S. Ghilardi, R. Se-
bastiani (Eds.), FroCos, volume 5749 of Lecture Notes in Computer Science, Springer, 2009, pp. 246–262.

[15] F. Durán, J. Meseguer, A Maude coherence checker tool for conditional order-sorted rewrite theories, in: [41], pp.
86–103.

[16] F. Durán, J. Meseguer, On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories,
Journal of Logic and Algebraic Programming (2012).

[17] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic protocol analysis modulo equational properties,
in: A. Aldini, G. Barthe, R. Gorrieri (Eds.), FOSAD, volume 5705 of Lecture Notes in Computer Science, Springer,
2007, pp. 1–50.

[18] S. Escobar, J. Meseguer, Symbolic model checking of infinite-state systems using narrowing, in: F. Baader (Ed.),
RTA, volume 4533 of Lecture Notes in Computer Science, Springer, 2007, pp. 153–168.

[19] S. Escobar, J. Meseguer, R. Sasse, Effectively checking the finite variant property, in: A. Voronkov (Ed.), RTA,
volume 5117 of Lecture Notes in Computer Science, Springer, 2008, pp. 79–93.

[20] S. Escobar, J. Meseguer, R. Sasse, Variant narrowing and equational unification, Electronic Notes Theoretical
Computer Science 238 (2009) 103–119.

[21] S. Escobar, J. Meseguer, P. Thati, Natural narrowing for general term rewriting systems, in: [23], pp. 279–293.
[22] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and optimal variant termination, in: [41], pp. 52–68.
[23] J. Giesl (Ed.), Term Rewriting and Applications, 16th International Conference, RTA 2005, Nara, Japan, April

19-21, 2005, Proceedings, volume 3467 of Lecture Notes in Computer Science, Springer, 2005.
[24] J. Giesl, D. Kapur, Dependency pairs for equational rewriting, in: A. Middeldorp (Ed.), RTA, volume 2051 of

Lecture Notes in Computer Science, Springer, 2001, pp. 93–108.
[25] J. Giesl, P. Schneider-Kamp, R. Thiemann, Automatic termination proofs in the dependency pair framework, in:

U. Furbach, N. Shankar (Eds.), IJCAR, volume 4130 of Lecture Notes in Computer Science, Springer, 2006, pp.
281–286.

[26] J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke, Mechanizing and improving dependency pairs, Journal of
Automated Reasoning 37 (2006) 155–203.

42

[27] J.A. Goguen, J. Meseguer, Equality, types, modules, and (why not ?) generics for logic programming, Journal of
Logic Programming 1 (1984) 179–210.

[28] M. Hanus, The Integration of Functions into Logic Programming: From Theory to Practice, Journal of Logic
Programming 19&20 (1994) 583–628.

[29] M. Hanus, Lazy narrowing with simplification, Journal of Computer Languages 23 (1997) 61–85.
[30] M. Hanus, Multi-paradigm declarative languages, in: V. Dahl, I. Niemelä (Eds.), ICLP, volume 4670 of Lecture

Notes in Computer Science, Springer, 2007, pp. 45–75.
[31] S. Hölldobler, Foundations of Equational Logic Programming, volume 353 of Lecture Notes in Computer Science,

Springer, 1989.
[32] J.M. Hullot, Canonical forms and unification, in: W. Bibel, R.A. Kowalski (Eds.), CADE, volume 87 of Lecture

Notes in Computer Science, Springer, 1980, pp. 318–334.
[33] J.P. Jouannaud, C. Kirchner, H. Kirchner, Incremental construction of unification algorithms in equational theories,

in: J. Dı́az (Ed.), ICALP, volume 154 of Lecture Notes in Computer Science, Springer, 1983, pp. 361–373.
[34] J.P. Jouannaud, H. Kirchner, Completion of a set of rules modulo a set of equations, SIAM J. Comput. 15 (1986)

1155–1194.
[35] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical Computer Science 96

(1992) 73–155.
[36] J. Meseguer, Membership algebra as a logical framework for equational specification, in: F. Parisi-Presicce (Ed.),

WADT, volume 1376 of Lecture Notes in Computer Science, Springer, 1997, pp. 18–61.
[37] J. Meseguer, P. Thati, Symbolic reachability analysis using narrowing and its application to verification of crypto-

graphic protocols, Higher-Order and Symbolic Computation 20 (2007) 123–160.
[38] A. Middeldorp, E. Hamoen, Completeness results for basic narrowing, Journal of Applicable Algebra in Engineer-

ing, Communication, and Computing 5 (1994) 213–253.
[39] J.C.G. Moreno, M.T. Hortalá-González, F.J. López-Fraguas, M. Rodrı́guez-Artalejo, An approach to declarative

programming based on a rewriting logic, Journal of Logic Programming 40 (1999) 47–87.
[40] N. Nishida, G. Vidal, Termination of narrowing via termination of rewriting, Appl. Algebra Eng. Commun. Com-

put. 21 (2010) 177–225.
[41] P.C. Ölveczky (Ed.), Rewriting Logic and Its Applications - 8th International Workshop, WRLA 2010, Held as a

Satellite Event of ETAPS 2010, Paphos, Cyprus, March 20-21, 2010, Revised Selected Papers, volume 6381 of
Lecture Notes in Computer Science, Springer, 2010.

[42] G.E. Peterson, M.E. Stickel, Complete sets of reductions for some equational theories, J. ACM 28 (1981) 233–264.
[43] M. Rodrı́guez-Artalejo, Functional and constraint logic programming, in: H. Comon, C. Marché, R. Treinen (Eds.),

CCL, volume 2002 of Lecture Notes in Computer Science, Springer, 1999, pp. 202–270.
[44] P.Y.A. Ryan, S.A. Schneider, An attack on a recursive authentication protocol. A cautionary tale, Inf. Process. Lett.

65 (1998) 7–10.
[45] R. Sasse, S. Escobar, C. Meadows, J. Meseguer, Protocol analysis modulo a combination of theories: A case study

in Maude-NPA, in: 6th International Workshop on Security and Trust Management (STM’10), Lecture Notes in
Computer Science, Springer, 2010. To appear.

[46] TeReSe (Ed.), Term Rewriting Systems, Cambridge University Press, Cambridge, 2003.
[47] L. Vigneron, Automated deduction techniques for studying rough algebras, Fundamenta Informaticae 33 (1998)

85–103.
[48] E. Viola, E-unifiability via narrowing, in: A. Restivo, S.R.D. Rocca, L. Roversi (Eds.), ICTCS, volume 2202 of

Lecture Notes in Computer Science, Springer, 2001, pp. 426–438.
[49] P. Viry, Equational rules for rewriting logic, Theoretical Computer Science 285 (2002) 487–517.

43

	Introduction
	Preliminaries
	R,Ax-rewriting

	Variants
	Narrowing Strategies and Optimal Variant Termination
	Completeness of Narrowing w.r.t. Rewriting
	Narrowing Strategies and Their Properties
	Basic Narrowing (Modulo) is neither Variant-Complete nor Optimally Variant-Terminating

	Folding Variant Narrowing
	Variant Narrowing Strategy

	The Finite Variant Property
	Computing Variants for Theories with the Finite Variant Property
	Necessary and Sufficient Conditions for FV

	Checking the Finite Variant Property
	Checking Variant-Preservingness
	Checking Finiteness of Variant-Preserving Narrowing Sequences
	Disproving the Finite Variant Property

	Variant-based Equational Unification
	Applications
	Conclusions and Future Work

