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Abstract. If a set of equations E∪Ax is such that E is confluent, termi-
nating, and coherent modulo Ax, narrowing with E modulo Ax provides
a complete E∪Ax-unification algorithm. However, except for the hope-
lessly inefficient case of full narrowing, nothing seems to be known about
effective narrowing strategies in the general modulo case beyond the quite
depressing observation that basic narrowing is incomplete modulo AC.
In this work we propose an effective strategy based on the idea of the
E∪Ax-variants of a term that we call folding variant narrowing. This
strategy is complete, both for computing E∪Ax-unifiers and for com-
puting a minimal complete set of variants for any input term. And it
is optimally variant terminating in the sense of terminating for an in-
put term t iff t has a finite, complete set of variants. The applications
of folding variant narrowing go beyond providing a complete E∪Ax-
unification algorithm: computing the E∪Ax-variants of a term may be
just as important as computing E∪Ax-unifiers in recent applications of
folding variant narrowing such as termination methods modulo axioms,
and checking confluence and coherence of rules modulo axioms.

1 Introduction

Narrowing is a fundamental rewriting technique useful for many purposes, in-
cluding equational unification and equational theorem proving [15], combinations
of functional and logic programming [12,13], partial evaluation [2], symbolic
reachability analysis of rewrite theories understood as transition systems [19],
and symbolic model checking [7].

Narrowing with confluent and terminating equations E enjoys key complete-
ness results, including the generation of a complete set of E-unifiers and the cov-
ering of all rewrite sequences starting at an instance of term t by a normalized
substitution, see [15]. However, full narrowing (i.e., narrowing at all non-variable
term positions) can be quite inefficient both in space and time. Therefore, much
work has been devoted to narrowing strategies that, while remaining complete,
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can have a much smaller search space. For instance, the basic narrowing strat-
egy [15] was shown to be complete w.r.t. a complete set of E-unifiers for confluent
and terminating equations E.

Termination aspects are another important potential benefit of narrowing
strategies, since they can sometimes terminate, generating a finite search tree
when narrowing an input term t, while full narrowing may generate an infinite
search tree on the same input term. For example, works such as [15,1] investigate
conditions under which basic narrowing, one of the most fully studied strategies
for termination purposes, terminates. Similarly, so-called lazy narrowing strate-
gies also seek to both reduce the search space and to increase the chances of
termination [10], but we are not aware of lazy narrowing strategies for the
modulo case.

By decomposing an equational theory E into a set of rules E and a set of
equational axioms Ax for which a finite and complete Ax-unification algorithm
exists, and imposing natural requirements such as confluence, termination and
coherence of the rules E modulo Ax, narrowing can be generalized to narrowing
modulo axioms Ax. As known since the original study [16], the good complete-
ness properties of standard narrowing extend naturally to similar completeness
properties for narrowing modulo Ax. This generalization of narrowing to the
modulo case has many applications. It is, to begin with, a key component of
theorem proving systems that often reason modulo axioms such as associativity–
commutativity, and greatly improves the efficiency of general paramodulation.
It is, furthermore, very important for adding functional-logical features to alge-
braic functional languages supporting rewriting modulo combinations of equa-
tional axioms. Yet another recent area with many applications is cryptographic
protocol analysis, where there is strong interest in analyzing protocol security
modulo the algebraic theory E of a protocol’s cryptographic functions, since pro-
tocols deemed to be secure under the standard Dolev-Yao model, which treats
the underlying cryptography as a black box, can sometimes be broken by clever
use of algebraic properties, e.g., [22].

However, very little is known at present about effective narrowing strategies
in the modulo case, and some of the known anomalies ring a cautionary note,
to the effect that the naive extensions of standard narrowing strategies can fail
rather badly in the modulo case. Indeed, except for [16,24], we are not aware of
any studies about narrowing strategies in the modulo case. Furthermore, as work
in [4,24] shows, narrowing modulo axioms such as associativity-commutativity
(AC) can very easily lead to non-terminating behavior and, what is worse, as
shown in the Example 1 below, due to Comon-Lundh and Delaune, basic nar-
rowing modulo AC is not complete.

Example 1. [4] Consider the equational theory (Σ,E ] Ax) where E contains
the following equations and Ax contains associativity and commutativity for +:

a+ a = 0 (1)

b+ b = 0 (2)

a+ a+X = X (3)

b+ b+X = X (4)

0 +X = X (5)
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The set E is terminating, AC-convergent, and AC-coherent. Consider now the

unification problem X1 + X2
?
= 0 and one of the possible solutions σ = {X1 7→

a+b;X2 7→ a+b}, which is a normalized solution. It is well-known that in the free
case (when Ax = ∅) basic narrowing is complete for unification in the sense of
lifting all innermost rewriting sequences (see [20]). That is, given a term t and a
substitution σ, every innermost rewriting sequence starting from tσ can be lifted
to a basic narrowing sequence from t computing a substitution more general than
σ. This completeness property fails for basic narrowing modulo AC as shown
by the above example when we consider the term t = X1 + X2 instantiated
with σ and the following innermost rewriting sequence modulo AC from tσ (we
underline the redex at each step): (a+ b) + (a+ b) →E,AC b+ b →E,AC 0. As
further explained in Example 3 below, basic narrowing modulo AC, i.e., the
extension of basic narrowing to AC where we just replace syntactic unification
by AC-unification, cannot lift the above innermost sequence for tσ, because it is
necessary to narrow inside the term generated by instantiation. Therefore, basic
narrowing modulo AC is incomplete in the sense of not providing a complete
E∪AC-unification algorithm, even though E may be confluent, terminating, and
coherent modulo AC.

It seems clear that full narrowing, although complete, is hopelessly inefficient
in the free case, and even more so modulo a set Ax of axioms. The above example
shows that known efficient strategies like basic narrowing can totally fail to enjoy
the desired completeness properties modulo axioms. What can be done? For
equational theories of the form E∪Ax, where E is confluent, terminating, and
coherent modulo Ax, and such that E∪Ax has the finite variant property (FVP)
in the sense of [4], we proposed in [9] a narrowing strategy that is complete
in the sense of generating a complete set of most general E∪Ax-unifiers, and
terminates for any input term computing its complete set of variants. And in
[8] we gave a method that can be used to check if E∪Ax is FVP. However,
FVP is a quite strong restriction. To the best of our knowledge, except for the
hopelessly inefficient case of full narrowing, nothing is known at present about a
general narrowing strategy that is effective and complete in an adequate sense,
including being complete for computing E∪Ax-unifiers, for any theory E∪Ax
under the minimum requirements that E is confluent, terminating, and coherent
modulo Ax. It turns out that the notion of variant, which makes sense for any
such theory E∪Ax and does not depend on FVP, provides the key to obtaining
a strategy meeting these requirements, and sheds considerable light on the very
process of computing E∪Ax-unifiers by narrowing.

Our contributions. In this paper, for any theory E∪Ax with E confluent,
terminating, and coherent modulo Ax, we propose folding variant narrowing as
such a general and effective strategy satisfying the following properties:

1. It is complete, both in the sense of computing a complete set of E∪Ax-
unifiers, and of computing a minimal and complete set of variants for any
input term t.
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2. It is optimal variant terminating, in the sense that it will terminate for an
input term t if and only if t has a finite, complete set of variants (in particular,
it will terminate for any term t iff E∪Ax is FVP).

Furthermore, we show that basic narrowing, both in the free case (Ax = ∅) and
in the AC case, fails to satisfy properties (1) and/or (2).

The rest of the paper is organized as follows. After some preliminaries in
Section 2, we present in Section 3 the notion of variant of a term w.r.t. an order-
sorted equational theory and its application to equational unification. Then, we
study in Section 4 how to effectively compute the set of variants of a term and
provide the folding variant narrowing strategy. In Section 5 we describe future
work and conclude the paper.

2 Preliminaries

We follow the classical notation and terminology from [23] for term rewriting
and from [18] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤) and for each sort s ∈ S
where the connected component of s in (S,≤) has a top sort, denoted [s], and
all f : s1 · · · sn → s with n ≥ 1 have a top sort overloading f : [s1] · · · [sn]→ [s].
We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras.

For a term t we write Var(t) for the set of all variables in t. The set of
positions of a term t is written Pos(t), and the set of non-variable positions
PosΣ(t). The root position of a term is Λ. The subterm of t at position p is t|p
and t[u]p is the term t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of
X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ is Ran(σ).
The identity substitution is id. Substitutions are homomorphically extended to
TΣ(X ). The application of a substitution σ to a term t is denoted by tσ. For
simplicity, we assume that every substitution is idempotent, i.e., for σ, Dom(σ)∩
Ran(σ) = ∅. Substitution idempotency ensures tσ = (tσ)σ. The restriction of
σ to a set of variables V is σ|V ; sometimes we write σ|t1,...,tn to denote σ|V
where V = Var(t1)∪ · · · ∪Var(tn). Composition of two substitutions is denoted
by σσ′. We call an idempotent substitution σ a variable renaming if there is
another substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )[s] for some

sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s 6= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ). Throughout this paper we assume that TΣ,s 6= ∅ for every sort s.
An equational theory (Σ, E) is a pair with Σ an order-sorted signature and E a
set of Σ-equations.

The E-subsumption preorder vE (or v if E is understood) holds between
t, t′ ∈ TΣ(X ), denoted t vE t′ (meaning that t′ is more general than t modulo
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E), if there is a substitution σ such that t =E t
′σ; such a substitution σ is said to

be an E-match from t to t′. The E-renaming equivalence t ≈E t′, holds if there
is a variable renaming θ such that tθ =E t

′θ. For substitutions σ, ρ and a set
of variables V we define σ|V =E ρ|V if xσ =E xρ for all x ∈ V ; σ|V vE ρ|V if
there is a substitution η such that σ|V =E (ρη)|V ; and σ|V ≈E ρ|V if there is a
renaming η such that (ση)|V =E ρ|V .

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t
′σ.

For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW
E (t = t′) is said to be

a complete set of unifiers of the equation t =E t′ away from W if: (i) each
σ ∈ CSUW

E (t = t′) is an E-unifier of t =E t
′; (ii) for any E-unifier ρ of t =E t

′ there
is a σ ∈ CSUW

E (t = t′) such that ρ|W vE σ|W ; (iii) for all σ ∈ CSUW
E (t = t′),

Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅. If the set of variables W
is irrelevant or understood from the context, we write CSUE(t = t′) instead of
CSUW

E (t = t′). An E-unification algorithm is complete if for any equation t = t′

it generates a complete set of E-unifiers. Note that this set needs not be finite. A
unification algorithm is said to be finitary and complete if it always terminates
after generating a finite and complete set of solutions. A unification algorithm
is said to be minimal if it always provides a maximal (w.r.t. vE) set of unifiers.

A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈ TΣ(X )[s]
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,Ax,R) with Σ an order-sorted signature, Ax a set of Σ-equations, and R a
set of rewrite rules. The rewriting relation on TΣ(X ), written t→R t

′ or t→p,R t
′

holds between t and t′ iff there exist p ∈ PosΣ(t), l→ r ∈ R and a substitution
σ, such that t|p = lσ, and t′ = t[rσ]p. The subterm t|p is called a redex. The
relation→R/Ax on TΣ(X ) is =Ax;→R; =Ax. Note that→R/Ax on TΣ(X ) induces
a relation →R/Ax on the free (Σ,Ax)-algebra TΣ/Ax(X ) by [t]Ax →R/Ax [t′]Ax

iff t →R/Ax t
′. The transitive closure of →R/Ax is denoted by →+

R/Ax and the

transitive and reflexive closure of →R/Ax is denoted by →∗R/Ax. We say that a

term t is→R/Ax-irreducible (or just R/Ax-irreducible) if there is no term t′ such
that t→R/Ax t

′.

For substitutions σ, ρ and a set of variables V we define σ|V →R/Ax ρ|V
if there is x ∈ V such that xσ →R/Ax xρ and for all other y ∈ V we have
yσ =Ax yρ. A substitution σ is called R/Ax-normalized (or normalized) if xσ is
R/Ax-irreducible for all x ∈ V .

We say that the relation→R/Ax is terminating if there is no infinite sequence
t1 →R/Ax t2 →R/Ax · · · tn →R/Ax tn+1 · · · . We say that the relation →R/Ax is
confluent if whenever t →∗R/Ax t

′ and t →∗R/Ax t
′′, there exists a term t′′′ such

that t′ →∗R/Ax t
′′′ and t′′ →∗R/Ax t

′′′. An order-sorted rewrite theory (Σ,Ax,R)

is confluent (resp. terminating) if the relation →R/Ax is confluent (resp. termi-
nating). In a confluent, terminating, order-sorted rewrite theory, for each term
t ∈ TΣ(X ), there is a unique (up to Ax-equivalence) R/Ax-irreducible term t′

obtained from t by rewriting to canonical form, which is denoted by t→!
R/Ax t

′

or t↓R/Ax (when t′ is not relevant).
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2.1 R,Ax-rewriting

Since Ax-congruence classes can be infinite, →R/Ax-reducibility is undecidable
in general. Therefore, R/Ax-rewriting is usually implemented [16] by R,Ax-
rewriting. We assume the following properties on R and Ax:

1. Ax is regular, i.e., for each t = t′ in Ax, we have Var(t) = Var(t′), and
sort-preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈
TΣ(X )s; furthermore all variables in Var(t) have a top sort.

2. Ax has a finitary and complete unification algorithm.
3. For each t→ t′ in R we have Var(t′) ⊆ Var(t).
4. R is sort-decreasing, i.e., for each t→ t′ in R, each s ∈ S, and each substitu-

tion σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The rewrite rules R are confluent and terminating modulo Ax, i.e., the rela-

tion →R/Ax is confluent and terminating.

Definition 1 (Rewriting modulo [25]). Let (Σ,Ax,R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We define the relation →R,Ax on
TΣ(X ) by t →p,R,Ax t

′ (or just t →R,Ax t
′) iff there is a p ∈ PosΣ(t), l → r in

R and substitution σ such that t|p =Ax lσ and t′ = t[rσ]p.

Note that, since Ax-matching is decidable, →R,Ax is decidable. Notions such
as confluence, termination, irreducible terms, and normalized substitution, are
defined in a straightforward manner for →R,Ax. Note that since R is confluent
and terminating modulo Ax, the relation →!

R,Ax is decidable, i.e., it terminates
and produces a unique term (up to Ax-equivalence) for each initial term t, de-
noted by t↓R,Ax. Of course t→R,Ax t

′ implies t→R/Ax t
′, but the converse does

not need to hold. To prove completeness of →R,Ax w.r.t. →R/Ax we need the
following additional coherence assumption; we refer the reader to [11,25,17] for
coherence completion algorithms.

6. →R,Ax is Ax-coherent [16], i.e., ∀t1, t2, t3 we have t1 →R,Ax t2 and t1 =Ax t3
implies ∃t4, t5 such that t2 →∗R,Ax t4, t3 →+

R,Ax t5, and t4 =Ax t5.

The following theorem in [16, Proposition 1] that generalizes ideas in [21] and
has an easy extension to order-sorted theories, links →R/Ax with →R,Ax.

Theorem 1 (Correspondence [21,16]). Let (Σ,Ax,R) be an order-sorted
rewrite theory satisfying properties (1)–(6). Then t1 →!

R/Ax t2 iff t1 →!
R,Ax t3,

where t2 =Ax t3.

Finally, we provide the notion of decomposition of an equational theory into
rules and axioms.

Definition 2 (Decomposition [9]). Let (Σ, E) be an order-sorted equational
theory. We call (Σ,Ax,E) a decomposition of (Σ, E) if E = E ] Ax and
(Σ,Ax,E) is an order-sorted rewrite theory satisfying properties (1)–(6).
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3 Variants & Equational Unification

Suppose that an equational theory E is decomposed into a set of rules E and
a set of equational axioms Ax such that a finite and complete Ax-unification
algorithm exists, and the rules E are confluent, terminating, sort-decreasing,
and coherent modulo Ax. Given a term t, an E,Ax-variant of t is a pair (t′, θ)
with t′ an E,Ax-canonical form of the term tθ. That is, the variants of a term
intuitively give us all the irreducible patterns that instances of t can reduce
to. Of course, some variants are more general than others, that is, there is a
natural preorder (t′, θ′) vE,Ax (t′′, θ′′) defining when variant (t′′, θ′′) is more
general than variant (t′, θ′). This is important, because even though the set of
E,Ax-variants of a term t may be infinite, the set of most general variants (that
is maximal elements in the generalization preorder up to Ax-equivalence and
variable renaming) may be finite.

The intimate connection of variants with E-unification is then as follows.
Suppose that we add to our theory decomposition E ] Ax a binary equality
predicate eq , a new constant tt3 and for each top sort [s] and x of sort [s] an
extra rule eq(x, x) → tt . Then, given any two terms t, t′, if θ is a E-unifier of
t and t′, then the E,Ax canonical forms of tθ and t′θ must be Ax-equal and
therefore the pair (tt , θ) must be a variant of the term eq(t, t′). Furthermore, if
the term eq(t, t′) has a finite set of most general variants, then we are guaranteed
that the set of most general E-unifiers of t and t′ is finite.

We characterize a notion of variant semantics for equational theories.

Definition 3 (Variant Semantics). Let (Σ,Ax,E) be a decomposition of an
equational theory and t be a term. We define the set of variants of t as [[t]]

?
E,Ax =

{(t′, θ) | θ ∈ Subst(Σ,X ), tθ →!
E,Ax t

′′, and t′′ =Ax t
′}.

Let us make explicit the relation between variants and E-unification.

Proposition 1 (Variant-based Unification). Let (Σ,Ax,E) be a decomposi-
tion of an equational theory (Σ, E). Let t1, t2 be two terms. Then, ρ is a E-unifier
of t1 and t2 iff ∃(t′, ρ) ∈ [[t1]]

?
E,Ax ∩ [[t2]]

?
E,Ax.

Some variants are more general than others. We write (t1, θ1) vE,Ax (t2, θ2)
to denote that variant (t2, θ2) is more general than variant (t1, θ1). Our notion of
being more general takes into account not only the instantiation relation between
the two substitutions θ1 and θ2 and the two normal forms t1 and t2 of a term
t, but also whether θ2 is already an E,Ax-normalized substitution, since, for a
substitution, the less E,Ax rewrite steps, the better.

Definition 4 (Variant Preordering). Let (Σ,Ax,E) be a decomposition of
an equational theory and t be a term. Given two variants (t1, θ1), (t2, θ2) ∈

3 We extend Σ to Σ̂ by adding a new sort Truth, not related to any sort in Σ, with
constant tt, and for each top sort of a connected component [s], an operator eq : [s]
× [s] → Truth.

7



[[t]]
?
E,Ax, we write (t1, θ1) vE,Ax (t2, θ2), meaning (t2, θ2) is more general than

(t1, θ1), iff there is a substitution ρ such that t1 =Ax t2ρ and θ1↓E,Ax =Ax θ2ρ.
We write (t1, θ1) @E,Ax (t2, θ2) if for every substitution ρ such that t1 =Ax t2ρ
and θ1↓E,Ax =Ax θ2ρ, then ρ is not a renaming.

We are, indeed, interested in equivalence classes for variant semantics and
provide a notion of semantic equality, written 'E,Ax, based on vE,Ax.

Definition 5 (Variant Equality). Let (Σ,Ax,E) be a decomposition of an
equational theory and t be a term. For S1, S2 ⊆ [[t]]

?
E,Ax, we write S1 vE,Ax S2

iff for each (t1, θ1) ∈ S1, there exists (t2, θ2) ∈ S2 s.t. (t1, θ1) vE,Ax (t2, θ2). We
write S1 'E,Ax S2 iff S1 vE,Ax S2 and S2 vE,Ax S1.

Despite the previous semantic notion of equivalence, the following, more syn-
tactic notion of equality of variants up to renaming is useful.

Definition 6 (Ax-Equality). Let (Σ,Ax,E) be a decomposition of an equa-
tional theory and t be a term. For (t1, θ1), (t2, θ2) ∈ [[t]]

?
E,Ax, we write (t1, θ1) ≈Ax

(t2, θ2) if there is a renaming ρ such that t1ρ =Ax t2ρ and θ1ρ =Ax θ2ρ. For
S1, S2 ⊆ [[t]]

?
E,Ax, we write S1 ≈Ax S2 if for each (t1, θ1) ∈ S1, there exists

(t2, θ2) ∈ S2 s.t. (t1, θ1) ≈Ax (t2, θ2), and for each (t2, θ2) ∈ S2, there exists
(t1, θ1) ∈ S1 s.t. (t2, θ2) ≈Ax (t1, θ1).

The preorder of Definition 4 allows us to provide a most general and complete
set of variants that encompasses all the variants for a term t.

Definition 7 (Most General and Complete Variant Semantics). Let
(Σ,Ax,E) be a decomposition of an equational theory and t be a term. A most
general and complete variant semantics of t, denoted [[t]]E,Ax, is a subset [[t]]E,Ax ⊆
[[t]]

?
E,Ax such that: (i) [[t]]

?
E,Ax vE,Ax [[t]]E,Ax, and (ii) for each (t1, θ1) ∈ [[t]]E,Ax,

there is no (t2, θ2) ∈ [[t]]E,Ax s.t. (t1, θ1) 6≈Ax (t2, θ2) and (t1, θ1) vE,Ax (t2, θ2).

Note that, for any term t, [[t]]
?
E,Ax 'E,Ax [[t]]E,Ax but, in general, [[t]]

?
E,Ax 6≈Ax

[[t]]E,Ax. Also, by definition, all the substitutions in [[t]]E,Ax are E,Ax-normalized.
Moreover, [[t]]E,Ax is unique up to ≈Ax and provides a very succinct description

of [[t]]
?
E,Ax. Indeed, up to Ax-equality, [[t]]E,Ax characterizes the set of maximal

elements (therefore, most general variants) of the preorder ([[t]]E,Ax,vE,Ax).
Again, let us make explicit the relation between variants and E-unification.

Proposition 2 (Minimal and Complete E-unification). Let
(Σ,Ax,E) be a decomposition of an equational theory (Σ, E). Let t, t′ be two
terms. Then, S = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a minimal and complete set

of E-unifiers for t = t′, where eq and tt are new symbols defined in Footnote 3
and Ê = E ∪ {eq(X,X)→ tt}.

Example 2. Let us consider the following equational theory for the exclusive or
operator and the cancellation equations for public encryption/decryption, which
is actually useful for protocol verification (see [19]). This equational theory is
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relevant because there are no unification procedures directly applicable to it, e.g.
unification algorithms for exclusive-or such as [3] do not directly apply if extra
equations are added. The exclusive or symbol ⊕ has associative and commuta-
tive (AC) properties with 0 as its unit. The symbol pk is used for public key
encryption and the symbol sk for private key encryption. The equational theory
(Σ, E) has a decomposition into E containing the following oriented equations
and Ax containing associativity and commutativity for ⊕:

X ⊕ 0 = X (6) X ⊕X = 0 (7)

X ⊕X ⊕ Y = Y (8)

pk(K, sk(K,M)) = M (9)

sk(K, pk(K,M)) = M (10)

Note that equations (6)–(7) are not AC-coherent, but adding equation (8) is
sufficient to recover that property. For t = M ⊕ sk(K, pk(K,M)) and s =
X ⊕ sk(K, pk(K,Y )), we have that [[t]]E,Ax = {(0, id)} and [[s]]E,Ax = {(X ⊕
Y, id), (Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}), (Z, {X 7→ Z ⊕ U, Y 7→
U}), (Z, {X 7→ U, Y 7→ Z ⊕ U}), (0, {X 7→ U, Y 7→ U}), (Z1 ⊕ Z2, {X 7→
U ⊕ Z1, Y 7→ U ⊕ Z2})}. This set is the most general one w.r.t. vE,Ax.

The finite variant property defined by Comon-Lundh and Delaune [4], pro-
vides a useful sufficient condition for finitary E-unification. Essentially, it deter-
mines whether every term has a finite number of most general variants.

Definition 8 (Finite variant property [4]). Let (Σ,Ax,E) be a decomposi-
tion of an equational theory (Σ, E). Then (Σ, E), and thus (Σ,Ax,E), has the
finite variant property iff for each term t, the set [[t]]E,Ax is finite. We will call
(Σ,Ax,E) a finite variant decomposition of (Σ, E) iff (Σ,Ax,E) has the finite
variant property.

In [8] we developed a technique to check whether an equational theory has the
finite variant property. Using our technique it is easy to check that Example 2
has the finite variant property, as every right–hand side is a constant symbol or
a variable.

Finally, it is clear that when we consider a finite variant decomposition, we
have a decidable unification algorithm.

Corollary 1 (Finitary E-unification). Let (Σ,Ax,E) be a finite variant de-
composition of an equational theory (Σ, E). Then, for any two given terms t, t′,
S = {θ | (tt, θ) ∈ [[eq(t, t′)]]Ê,Ax} is a finite, minimal, and complete set of

E-unifiers for t = t′, where Ê, eq, and tt are defined as in Proposition 2.

Note that the opposite does not hold: given two terms t, t′ that have a finite,
minimal, and complete set of E-unifiers, the equational theory (Σ, E) may not
have a finite variant decomposition (Σ,Ax,E). An example is the unification
under homomorphism (or one-side distributivity), where there is a finite number
of unifiers of two terms but the theory does not satisfy the finite variant property
(see [4,8]); the key idea is that the term eq(t, t′) may have an infinite number
of variants even though there is only a finite set of most general variants of the
form (tt, θ).
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Once we have clarified the intimate relation between variants and equational
unification, we consider in the next section how to compute a complete set of
variants of a term.

4 Variants and Narrowing-based Equational Unification

Narrowing generalizes rewriting by performing unification at non-variable po-
sitions instead of the usual matching. The essential idea behind narrowing is
to symbolically represent the rewriting relation between terms as a narrowing
relation between more general terms with variables.

Definition 9 (Narrowing modulo [16,19]). Let (Σ,Ax,R) be an order-sorted
rewrite theory. Let CSUAx(u = u′) provide a finitary and complete set of Ax-
unifiers for any pair of terms u, u′ with the same top sort. Let t be a term and
W be a set of variables such that Var(t) ⊆W . The R,Ax-narrowing relation on
TΣ(X ) is defined as t p,σ,R,Ax t

′ ( σ,R,Ax if p is understood, and if σ,R,Ax
are understood) if there is p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t.

Var(l) ∩ W = ∅, and σ ∈ CSUW ′

Ax (t|p = l) for W ′ = W ∪ Var(l) such that
t′ = (t[r]p)σ.

For convenience, in each narrowing step t σ t
′ we only provide the part of σ that

binds variables of t. The transitive closure of is denoted by + and the transi-
tive and reflexive closure by  ∗. We may write t ∗σ t

′ instead of t ∗ t′ if there
are s1, . . . , sk−1 and substitutions ρ1, . . . , ρk such that t ρ1 s1 · · · sk−1 ρk t

′,
k ≥ 0, and σ = ρ1 · · · ρk. Several notions of completeness of narrowing w.r.t.
rewriting have been given in the literature (e.g. [15,16,19]).

Theorem 2 (Completeness of Full Narrowing Modulo [16]). Let (Σ,Ax,E)
be a decomposition of an equational theory. Let t1 be a term and θ be an E,Ax-
normalized substitution. If t1θ →!

E,Ax t2, then there exists a term t′2 and
two E,Ax-normalized substitutions θ′ and ρ s.t. t1 ∗θ′,E,Ax t

′
2,

θ|Var(t1) =Ax (θ′ρ)|Var(t1), and t2 =Ax t
′
2ρ. Furthermore, the rewriting sequence

and the narrowing sequence have the same number of steps, with the same rules
and at the same positions.

Narrowing completeness ensures complete generation of all the variants of a
term and, thus, an E-unification algorithm: if the term eq(t, t′) has a finite set
of most general variants, then we are guaranteed that the set of most general
substitutions computed by E,Ax-narrowing is finite and provides the set of most
general E-unifiers of t and t′. However, can we compute the set of most general E-
unifiers of t and t′ effectively? This is not entirely obvious. Full E,Ax-narrowing
may never terminate, since it will compute a complete set of variants of the form
(tt , θ) for the term eq(t, t′), but that set may easily be infinite, even though a
finite set of most general elements for it exists. The solution, of course, is that we
should look for adequate narrowing strategies that have better properties than
full E,Ax-narrowing so that, in the end, we can obtain a terminating narrowing-
based E-unification algorithm to unify t and t′ whenever any term eq(t, t′) has
a finite set of most general variants.
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4.1 Narrowing Strategies and Their Properties

In order to provide an appropriate narrowing strategy that enjoys better proper-
ties than full E,Ax-narrowing, we need to characterize what a narrowing strategy
is and which properties it must satisfy. E.g., the notion of variant–completeness
rather than the standard full narrowing completeness becomes essential.

First, we define the notion of a narrowing strategy and several useful proper-
ties. Given a narrowing sequence α : (t0 σ0,p0,R,Ax t1 · · · σn−1,pn−1,R,Ax tn), we
denote by αi the narrowing sequence αi : (t0 σ0,p0,R,Ax t1 · · · σi−1,pi−1,R,Ax ti)
which is a prefix of α. We denote by FullR(t) the set of all narrowing sequences
starting at term t.

Definition 10 (Narrowing Strategy). A narrowing strategy S is a function
of two arguments, namely, a rewrite theory R = (Σ,Ax,R) and a term t ∈
TΣ(X ), which we denote by SR(t), such that SR(t) ⊆ FullR(t). We require
SR(t) to be prefix closed, i.e., for each narrowing sequence α ∈ SR(t), and each
i ∈ {1, . . . , n}, we also have αi ∈ SR(t).

We say a narrowing strategy S is complete if it satisfies Theorem 2. In this pa-
per we are interested in a notion of completeness of a narrowing strategy slightly
different than previous notions, which we call variant-completeness. First, we ex-
tend the variant semantics to narrowing and consider only narrowing sequences
to normalized terms.

Definition 11 (Narrowing Semantics). Let R = (Σ,Ax,E) be a decompo-
sition of an equational theory (Σ, E) and S be a narrowing strategy. We de-

fine the set of narrowing variants of a term t w.r.t. S as [[t]]
S
E,Ax = {(t′, θ) |

(t ∗θ,E,Ax t
′) ∈ SR(t) and t′ = t′↓E,Ax}.

Now, we can define our notion of variant–completeness.

Definition 12 (Variant Completeness and Minimality). Let (Σ,Ax,E) be
a decomposition of an equational theory (Σ, E). A narrowing strategy S is called
E-variant–complete (or just variant–complete) iff for any term t [[t]]E,Ax 'E,Ax
[[t]]
S
E,Ax. The narrowing strategy S is called E-variant–minimal (or just variant–

minimal) iff, in addition, we have that for any term t [[t]]E,Ax ≈Ax [[t]]
S
E,Ax and

for each pair of variants (t1, θ1), (t2, θ2) ∈ [[t]]
S
E,Ax such that (t1, θ1) 6=Ax (t2, θ2),

we have that (t1, θ1) 6≈Ax (t2, θ2).

This minimality property motivates the following corollary.

Corollary 2. Let (Σ,Ax,E) be a decomposition of an equational theory (Σ, E)
and S be an E-variant-complete narrowing strategy. For any two terms t, t′ with
the same top sort, the set S = {θ | (tt, θ) ∈ [[eq(t, t′)]]

S
Ê,Ax} is a complete set

of E-unifiers for t = t′, where Ê, eq, and tt are defined as in Proposition 2.
If, in addition, S is a E-variant-minimal narrowing strategy, then the set S is a
minimal set of E-unifiers for t = t′.
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In practice, the set SR(t) of narrowing sequences from a term t will be gener-
ated by an algorithm AS . That is, AS is a computable function such that, given
a pair (R, t), enumerates the set SR(t). If E = (Σ,Ax,E) is a decomposition of
an equational theory, the strategy SE is variant–complete, and [[t]]E,Ax is finite

on an input term t, then [[t]]
S
E,Ax may not be finite. Furthermore, even if [[t]]

S
E,Ax

is finite, its enumeration using the algorithm AS might not terminate. We are of
course interested in variant–complete narrowing strategies that will always ter-
minate on an input term t whenever [[t]]E,Ax is finite, since by Corollary 2 such
strategies will provide a finitary E-unification algorithm whenever E has the fi-
nite variant property. This leads to the following notion of variant–termination
for an algorithm AS restricting the class of algorithms we are interested in.

Definition 13 (Optimal Variant Termination). Let (Σ,Ax,E) be a decom-
position of an equational theory (Σ, E) and S be an E-variant-complete narrowing
strategy. An algorithm AS is variant terminating iff AS(E , t) terminates on in-

put (E , t) iff [[t]]
S
E,Ax is finite. An algorithm AS is optimally variant terminating

iff AS is variant terminating and [[t]]
S
E,Ax is variant–minimal for every term t.

By abuse of language, we say that a narrowing strategy S is variant terminat-
ing (resp. optimally variant terminating) whenever AS is. The term “optimally
variant terminating” is justified as follows.

Corollary 3. Let E = (Σ,Ax,E) be a decomposition of an equational theory
(Σ, E). Let S be a E-variant–complete narrowing strategy and S ′ be an optimally
variant terminating narrowing strategy. Then, for each term t such that SE(t) is
finite, then S ′E(t) is also finite.

4.2 Basic Narrowing Modulo is neither Variant–Complete nor
Optimally Variant–Terminating

In this section we show that basic narrowing modulo AC is not variant–complete.
Furthermore, we show that even basic narrowing without axioms is not optimally
variant–terminating, thus motivating that there is room for improvement even
in the free case. We extend the standard definition of basic narrowing given in
[14] to the modulo case.

Definition 14 (Basic Narrowing modulo Ax). Let (Σ,Ax,R) be an order-
sorted rewrite theory. Given a term t ∈ TΣ(X ), a substitution ρ, and a set W of
variables such that Var(t) ⊆W and Var(ρ) ⊆W , a basic narrowing modulo Ax

step for 〈t, ρ〉 is defined by 〈t, ρ〉 b
 p,θ,R,Ax 〈t′, ρ′〉 if there is p ∈ PosΣ(t), a rule

l → r ∈ R properly renamed s.t. Var(l) ∩W = ∅, and θ ∈ CSUW ′

Ax (t|pρ = l) for
W ′ = W ∪Var(l) such that t′ = t[r]p, and ρ′ = ρθ.

Basic narrowing modulo AC is incomplete w.r.t. innermost rewriting mod-
ulo AC despite the free case [20], i.e., there are innermost rewriting sequences
modulo AC that are not lifted to basic narrowing modulo Ax. And, therefore,
basic narrowing modulo AC is not variant–complete.
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Example 3. The narrowing sequence shown in Example 1 is not a basic nar-
rowing sequence modulo AC, as after the first step it results in 〈X, ρ1〉 and no
further basic narrowing modulo AC step is possible:

〈X1 +X2, id〉
b
 

Λ,ρ1,E,Ax
〈X, ρ1〉

using ρ1 = {X1 7→ a+X ′, X2 7→ a+X ′′, X 7→ X ′ +X ′′} and rule (3)

Therefore, basic narrowing modulo AC is not variant–complete, since the pair
(0, σ) is a variant of t. The (full or unrestricted) narrowing sequence associated

to the unification problem X1 +X2
?
= 0 in the extended equational theory Ê

defined in Proposition 2 is:

eq(X1 +X2, 0) ρ1,Ê,Ax
eq(X ′ +X ′′, 0)

using ρ1 = {X1 7→ a+X ′, X2 7→ a+X ′′} and rule (3)

eq(X ′ +X ′′, 0) ρ2,Ê,Ax
eq(0, 0) using ρ2 = {X ′ 7→ b,X ′′ 7→ b} and rule (2)

eq(0, 0) id,Ê,Ax tt using rule eq(X,X)→ tt

Furthermore, if we add a new equation 0+0+X = 0+X basic narrowing modulo
AC does not terminate though the number of variants does not change at all, due
to the following always available narrowing step 0 +X2 θ1,E,Ax 0 +X ′2 using
θ1 = {X2 7→ 0 +X ′2, X 7→ X ′2}.

Moreover, basic narrowing in the free case is not optimally variant–terminating,
as shown by the following example.

Example 4. Consider the rewrite theory R = (Σ, ∅, E) where E is the set of
convergent rules E = {f(x) → x, f(f(x)) → f(x)} and Σ contains only the
unary symbol f and a constant a. The term t = f(x) has only one vari-
ant: [[f(x)]]E,Ax = {(x, id)}. Indeed, the theory has the finite variant property
(see [8]). Basic narrowing performs the following two narrowing steps:

(i) 〈f(x), id〉 b
 {x 7→x′},E 〈x′, {x 7→ x′}〉 and

(ii) 〈f(x), id〉 b
 {x 7→f(x′)},E 〈f(x′), {x 7→ f(x′)}〉.

However, the second narrowing step leads to the following non-terminating basic
narrowing sequence:

〈f(x), id〉 b
 {x 7→f(x′)},E 〈f(x′), {x 7→ f(x′)}〉
b
 {x′ 7→f(x′′)},E 〈f(x′′), {x 7→ f(f(x′′)), x′ 7→ f(x′′)}〉
· · ·

and basic narrowing is unable to terminate and provide the finite number of
variants associated to the term t.

In the following section we provide a narrowing strategy to compute the vari-
ants of a term that is variant–complete, variant–minimal, and optimally variant–
terminating.
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4.3 An Optimally Variant–Terminating, and Variant–Minimal
Narrowing Strategy for Finite Variant Decompositions

For a finite variant decomposition, we achieve optimal variant termination by
simply keeping track of all the variants generated so far, since we know that there
is a finite set of more general variants and sooner or later narrowing will generate
all the most general variants. We have developed in [7] a way of detecting such
repetitions.

Definition 15 (Transition System). [7] A transition system is written A =
(A,→), where A is a set of states, and → is a transition relation between states,
i.e., →⊆ A×A. We write A = (A,→, I) when I ⊆ A is a set of initial states.

Intuitively, we define a global strategy that keeps track of previously com-
puted variants and discards narrowing steps that compute a previously met
variant.

Definition 16 (Folding Reachable Transition Subsystem [7]). Given a
transition system A = (A,→, I) and a relation G ⊆ A × A, the reachable sub-
system from I in A with folding G is written ReachGA(I) = (ReachG→(I),→G, I),
where ReachG→(I) =

⋃
n∈N Frontier

G
→(I)n and

FrontierG→(I)0 = I,
FrontierG→(I)n+1 = {y ∈ A | (∃z ∈ FrontierG→(I)n : z → y)∧

(@k ≤ n,w ∈ FrontierG→(I)k : y G w)},

→G=
⋃
n∈N →G

n+1,

x→G
n+1 y


if x ∈ FrontierG→(I)n, y ∈ FrontierG→(I)n+1,
x→ y;

if x ∈ FrontierG→(I)n, y 6∈ FrontierG→(I)n+1,
∃k ≤ n : y ∈ FrontierG→(I)k,∃w : (x→ w ∧ w G y)

Note that, the more general relation G, the greater the chances of ReachGA(I)
being a finite transition system. In [7], we study different relations G such as vAx
or ≈Ax and its properties. For computing the variants, G is just the preorder
vE,Ax between variants. Given a decomposition (Σ,Ax,E) of an equational the-
ory (Σ, E) and a narrowing strategy SE , we extend SE to variants as follows: given
a term t and a substitution ρ s.t. tρ =Ax t, SE((t, ρ)) = {(t, ρ) k

σ,E,Ax(t′, ρσ) |
(t k

σ,E,Ax t
′) ∈ SE(t)}. Given a narrowing strategy SR, we write S1R to denote

narrowing derivations produced by SR of length exactly 1.

Definition 17 (Folding Narrowing Strategy). Let (Σ,Ax,E) be a decompo-
sition of an equational theory (Σ, E) and SE a narrowing strategy. Let t be a term.
Let us consider the transition system (TΣ(X ) ×Subst(Σ,X ),S1E , I) for variants
with the one-step version of the strategy SE and the initial state I = (t, id). The
folding SE–narrowing strategy, denoted by S	E (t), is defined as

S	E (t) = {t k
σ,E,Ax t

′ | ((t, id) k
σ,E,Ax(t′, σ)) ∈ SE(t) ∧

(t′, σ) ∈ FrontiervE,AxS1
E

(I)k}
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We write Full	R for the folding version of the full narrowing strategy.
The following example shows that basic narrowing may be non-terminating

in cases when variant narrowing does terminate.

Example 5. Considering Example 4 and using the Full	R strategy we only get
step (i). Step (ii) is subsumed as (f(x′), {x 7→ f(x′)}) vE,∅ (x′, {x 7→ x′}). So
even though basic narrowing does not terminate in this case, Full	R does.

The following example shows what steps can be done by Full	R and termina-
tion of it on the given example.

Example 6. Using the theory from Example 2, for t = X⊕Y we get the following
Full	R steps. Note that we only need to consider steps with normalized substi-
tutions as otherwise the resulting variant would be subsumed by the variant
reachable using the normalized form of the same substitution.
(i) (t, id) φ1(Z, φ1), with φ1 = {X 7→ 0, Y 7→ Z},

(ii) (t, id) φ2
(Z, φ2), with φ2 = {X 7→ Z, Y 7→ 0},

(iii) (t, id) φ3
(Z, φ3), with φ3 = {X 7→ Z ⊕ U, Y 7→ U},

(iv) (t, id) φ4
(Z, φ4), with φ4 = {X 7→ U, Y 7→ Z ⊕ U},

(v) (t, id) φ5
(0, φ5), with φ5 = {X 7→ U, Y 7→ U},

(vi) (t, id) φ6
(Z1 ⊕ Z2, φ6), with φ6 = {X 7→ U ⊕ Z1, Y 7→ U ⊕ Z2}.

There are no further steps possible from (i)-(v) as any instantiation of Z for which
a narrowing step is possible would mean that the substitution is not normalized,
and 0 is a normal form without variables. For the result of (vi), (Z1⊕Z2, φ6), we
are back at the beginning and can repeat all of the steps possible for (t, id), but
all of the results are subsumed by the same step we already have from (t, id).
So, Full	R terminates for t.

Note that by the use of the folding definition we get only the shortest paths
to each possible term (depending on the substitution), since the longer paths are
simply subsumed by shorter ones using vE,Ax. Any folding narrowing strategy
is sound as it is a further restriction of the narrowing strategy. We prove that
any folding narrowing strategy is variant–complete provided the given narrowing
strategy is complete according to Theorem 2.

Theorem 3 (Variant Completeness of Folding Narrowing). Let (Σ,Ax,E)
be a decomposition of an equational theory (Σ, E). Let t1 be a term and θ be
an E,Ax-normalized substitution. Let SE be a complete narrowing strategy. If
t1θ →!

E,Ax t2 then there exists a term t′2 and two E,Ax-normalized substitutions

θ′ and ρ s.t. (t1 ∗θ′,E,Ax t
′
2) ∈ S	E (t), θ|Var(t1) =Ax (θ′ρ)|Var(t1), and t2 =Ax t

′
2ρ.

The following corollary establishes that folding full-narrowing is an optimally
variant–terminating, and variant–minimal narrowing strategy for finite variant
decompositions.

Corollary 4. Let (Σ,Ax,E) be a decomposition of an equational theory (Σ, E).
The folding full–narrowing Full	E is variant–complete and variant–minimal, i.e.,

for any term t, [[t]]E,Ax ≈Ax [[t]]
Full	E
E,Ax . Moreover, if (Σ,Ax,E) is a finite variant

decomposition of (Σ, E), then Full	E is also optimally variant–terminating.
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5 Conclusions

To the best our knowledge, the general problem of finding effective strategies
for narrowing modulo axioms that avoid the hopeless inefficiency of full narrow-
ing and the incompleteness in general of basic narrowing for the modulo case,
has remained unsolved up to now. We have presented folding variant narrowing
as an effective strategy that, by computing exactly and only a mimimal com-
plete set of variants for a term t, is optimally variant terminating, and complete
both for unification purposes and for computing variants. Besides yielding in
particular a new finitary unification algorithm for FVP equational theories that
improves upon the variant algorithm presented in [9], and does not require any-
more prior checking of FVP as described in [8], by being applicable to any equa-
tional theory modulo under minimal assumptions of confluence, termination,
and coherence, many more applications than just cryptographic protocol anal-
ysis modulo algebraic properties in the style of the Maude-NPA [6] are opened
up. In fact, several such applications, to termination methods modulo axioms
[5], and to the most recent Maude CRC and ChC tools modulo axioms (see
http://maude.lcc.uma.es/CRChC/), are already exploiting the general power
of folding variant narrowing.

As always, however, much work remains ahead, particularly in the two closely-
related areas of refining and optimizing the folding variant narrowing strategy,
and of developing an efficient implementation. There is already an existing im-
plementation in Maude of variant narrowing under the FVP assumption that
has been shown effective in formally analyzing a good number of cryptographic
protocols modulo a variety of algebraic theories describing their cryptographic
infrastructure (see [6] and references there). We expect that a good part of the
infrastructure of the current FVP variant narrowing strategy will be easily exten-
sible to an optimized form of the folding variant narrowing strategy; but this will
require substantial new work in design, implementation, and experimentation.
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