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Abstract. There is a growing interest in formal methods and tools to
analyze cryptographic protocols modulo algebraic properties of their un-
derlying cryptographic functions. It is well-known that an intruder who
uses algebraic equivalences of such functions can mount attacks that
would be impossible if the cryptographic functions did not satisfy such
equivalences. In practice, however, protocols use a collection of well-
known functions, whose algebraic properties can naturally be grouped to-
gether as a union of theories E1∪. . .∪En. Reasoning symbolically modulo
the algebraic properties E1∪ . . .∪En requires performing (E1∪ . . .∪En)-
unification. However, even if a unification algorithm for each individual
Ei is available, this requires combining the existing algorithms by meth-
ods that are highly non-deterministic and have high computational cost.
In this work we present an alternative method to obtain unification al-
gorithms for combined theories based on variant narrowing. Although
variant narrowing is less efficient at the level of a single theory Ei, it
does not use any costly combination method. Furthermore, it does not
require that each Ei has a dedicated unification algorithm in a tool im-
plementation. We illustrate the use of this method in the Maude-NPA
tool by means of a well-known protocol requiring the combination of
three distinct equational theories.

Keywords: Cryptographic protocol verification, equational unification,
variants, exclusive or, narrowing

1 Introduction

In recent years there has been growing interest in the formal analysis of proto-
cols in which the crypto-algorithms satisfy different algebraic properties [10,13,30,17].
Applications such as electronic voting, digital cash, anonymous communication,
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and even key distribution, all can profit from the use of such cryptosystems.
Thus, a number of tools and algorithms have been developed that can analyze
protocols that make use of these specialized cryptosystems [30,29,6,2,14].

Less attention has been paid to combinations of algebraic properties. How-
ever, protocols often make use of more than one type of cryptosystem. For ex-
ample, the Internet Key Exchange protocol [24] makes use of Diffie-Hellman
exponentiation (for exchange of master keys), public and private key cryptogra-
phy (for authentication of master keys), shared key cryptography (for exchange
of session keys), and exclusive-or (used in the generation of master keys). All
of these functions satisfy different equational theories. Thus it is important to
understand the behavior of algebraic properties in concert as well as separately.
This is especially the case for protocol analysis systems based on unification,
where the problem of combining unification algorithms [3,36] for different the-
ories is known to be highly non-deterministic and complex, even when efficient
unification algorithms exist for the individual theories, and even when the the-
ories are disjoint (that is, share no symbols in common).

The Maude-NPA protocol analysis tool, which relies on unification to perform
backwards reachability analysis from insecure states, makes use of two different
techniques to handle the combination problem. One is to use a general-purpose
approach to unification called variant narrowing [21], which, although not as
efficient as special purpose unification algorithms, can be applied to a broad class
of theories that satisfy a condition known as the finite variant property [12]. A
second technique applicable to special purpose algorithms, or theories that do not
satisfy the finite variant property, uses a more general framework for combining
unification algorithms; this is described in [15].

One advantage of using variant narrowing is that there are well-known meth-
ods and tools for checking that a combination of theories has the finite variant
property, including checking its local confluence and termination, and also its
satisfaction of the finite variant property itself [18]. Furthermore, under appro-
priate assumptions some of these checks can be made modularly (see, e.g., [34]
for a survey of modular confluence and termination proof methods). This makes
variant narrowing easily applicable for unification combination and very suitable
for experimentation with different theories. Later on, when the theory is better
understood, it may be worth the effort to invest the time to apply the framework
described in [15] to integrate more efficient special purpose algorithms.

In this paper we describe a case study involving the use of variant narrowing
to apply Maude-NPA to the analysis of a protocol that involves three theories: (i)
an associative-commutative theory satisfied by symbols used in state construc-
tion, (ii) a cancellation theory for public key encryption and decryption, and (iii)
the equational theory of the exclusive-or operator. This theory combination is
illustrated in the analysis of a version of the Needham-Schroeder-Lowe protocol
[29], denoted NSL⊕, in which one of the concatenation operators is replaced by
an exclusive-or [8].

The rest of this paper is organized as follows. In Section 2 we give some neces-
sary background. In Section 3 we give an overview of Maude-NPA. In Sections 4
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and 5 we describe variant narrowing and how it is used in Maude-NPA. In Sec-
tion 6 we describe our use of Maude-NPA on the NSL⊕ protocol. In Section 7
we discuss related work, and Section 8 concludes the paper.

2 Background on Term Rewriting

We follow the classical notation and terminology from [37] for term rewriting and
from [31,32] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ with a finite poset of sorts (S,≤) (such that each connected
component of (S,≤) has a top sort) and a finite number of function symbols.
We assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. TΣ(X )s denotes the set of terms of sort s, and TΣ,s the set
of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding term
algebras. We write Var(t) for the set of variables present in a term t. The set
of positions of a term t is written Pos(t), and the set of non-variable positions
PosΣ(t). The subterm of t at position p is t|p, and t[u]p is the result of replacing
t|p by u in t. A substitution σ is a sort-preserving mapping from a finite subset
of X to TΣ(X ).

A Σ-equation is an unoriented pair t = t′, where t ∈ TΣ(X )s, t′ ∈ TΣ(X )s′ ,
and s and s′ are sorts in the same connected component of the poset (S,≤). For
a set E of Σ-equations, an E-unifier for a Σ-equation t = t′ is a substitution σ
s.t. σ(t) =E σ(t′). A complete set of E-unifiers of an equation t = t′ is written
CSUE(t = t′). We say that CSUE(t = t′) is finitary if it contains a finite number
of E-unifiers. A rewrite rule is an oriented pair l → r, where l 6∈ X and l, r ∈
TΣ(X )s for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a
triple R = (Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations,
and R a set of rewrite rules. The rewriting relation →R,E on TΣ(X ) is t

p→R,E t′

(or →R,E) if p ∈ PosΣ(t), l → r ∈ R, t|p =E σ(l), and t′ = t[σ(r)]p for
some σ. Assuming that E has a finitary and complete unification algorithm,
the narrowing relation  R,E on TΣ(X ) is t

p
 σ,R,E t′ (or  σ,R,E ,  R,E) if p ∈

PosΣ(t), l → r ∈ R, σ ∈ CSUE(t|p = l), and t′ = σ(t[r]p).
We say that the relation →R,E is terminating if there is no infinite sequence

t1 →R,E t2 →R,E · · · tn →R,E tn+1 · · · . We say that the relation →R,E is con-
fluent if whenever t →∗

R,E t′ and t →∗
R,E t′′, there exists a term t′′′ such that

t′ →∗
R,E t′′′ and t′′ →∗

R,E t′′′. An order-sorted rewrite theory (Σ,E,R) is conflu-
ent (resp. terminating) if the relation →R,E is confluent (resp. terminating). In
a confluent, terminating, order-sorted rewrite theory, for each term t ∈ TΣ(X ),
there is a unique (up to E-equivalence) R,E-irreducible term t′ obtained from
t by rewriting to canonical form, which is denoted by t →!

R,E t′ or t↓R,E (when
t′ is not relevant). The relation →R,E is E-coherent [25] if ∀t1, t2, t3 we have
t1 →R,E t2 and t1 =E t3 implies ∃t4, t5 such that t2 →∗

R,E t4, t3 →+
R,E t5, and

t4 =E t5.
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3 Protocol Specification and Analysis in Maude-NPA

Given a protocol P, we should first explain how its states are modeled alge-
braically. The key idea is to model such states as elements of an initial algebra
TΣP/EP , where ΣP is the signature defining the sorts and function symbols for
the cryptographic functions and for all the state constructor symbols and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t] ∈ TΣP/EP with t a ground ΣP -term. However, since the number of states
TΣP/EP is in general infinite, rather than exploring concrete protocol states
[t] ∈ TΣP/EP we explore symbolic state patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X) on
the free (ΣP , EP)-algebra over a set of variables X. In this way, a state pattern
[t(x1, . . . , xn)] represents not a single concrete state but a possibly infinite set
of such states, namely all the instances of the pattern [t(x1, . . . , xn)] where the
variables x1, . . . , xn have been instantiated by concrete ground terms.

Let us introduce a motivating example that we will use to illustrate our ap-
proach based on exclusive–or. We use an exclusive–or version borrowed from [8]
of the Needham-Schroeder-Lowe protocol [29] which we denote NSL⊕. In our
analysis we use the protocol based on public key encryption, i.e., operators pk
and sk satisfying the equations pk(P, sk(P,M)) = M and sk(P, pk(P,M)) = M
and the messages are put together using concatenation and exclusive–or. Note
that we use a representation of public-key encryption in which only principal P
can compute sk(P,X) and everyone can compute pk(P,X). For exclusive–or we
have the associativity and commutativity (AC) axioms for ⊕, plus the equations4

X⊕0 = X, X⊕X = 0, X⊕X⊕Y = Y.

1. A → B : pk(B,NA;A)
A sends to B, encrypted under B’s public key, a communication request
containing a nonce NA that has been generated by A, concatenated with its
name.

2. B → A : pk(A,NA;B⊕NB)
B answers with a message encrypted under A’s public key, containing the
nonce of A, concatenated with the exclusive–or combination of a new nonce
created by B and its name.

3. A → B : pk(B,NB)
A responds with B’s nonce encrypted under B’s public key.

A and B agree that they both know NA and NB and no one else does.
In the Maude-NPA [16,17], a state in the protocol execution is a term t of

sort state, t ∈ TΣP/EP (X)state. A state is a multiset built by an associative
and commutative union operator & . Each element in the multiset can be a
strand or the intruder knowledge at that state (intruder knowledge is wrapped
by { }). A strand [22] represents the sequence of messages sent and received
by a principal executing the protocol and is indicated by a sequence of mes-
sages [msg−1 , msg+

2 , msg−3 , . . . , msg−k−1, msg+
k ] where each msgi is a term

4 The third equation follows from the first two. It is needed for coherence modulo AC.
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of sort Msg (i.e., msgi ∈ TΣP/EP (X)Msg), msg− represents an input message,
and msg+ represents an output message. In Maude-NPA, strands evolve over
time and thus we use the symbol | to divide past and future in a strand, i.e.,
[msg±1 , . . . ,msg±j−1 | msg±j ,msg±j+1, . . . ,msg±k ] where msg±1 , . . . ,msg±j−1 are the
past messages, and msg±j ,msg±j+1, . . . ,msg±k are the future messages (msg±j is
the immediate future message). The intruder knowledge is represented as a mul-
tiset of facts unioned together with an associative and commutativity union
operator _,_. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows m, i.e., m∈I), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m/∈I), where m is a
message expression. Facts of the form m/∈I make sense in a backwards analysis,
since one state can have m∈I and a prior state can have m/∈I.

The strands associated to the three protocol steps above are given next.
There are two strands, one for each principal in the protocol. Note that the
first message passing A → B : pk(B,NA;A) is represented by a message in
Alice’s strand sending (pk(B,n(A, r);A))+, together with another message in
Bob’s strand that receives (pk(B,N ;A))−. When a principal cannot observe
the contents of a concrete part of a received message (e.g., because a key is
necessary to look inside), we use a generic variable for such part of the message
in the strand (as with variable N of sort Nonce above, and similarly for X, Y
below). We encourage the reader to compare the protocol in strand notation to
the presentation of the protocol above. We also omit the initial and final nil in
strands, which are needed in the tool but clutter the presentation.

– (Alice) :: r :: [(pk(B,n(A, r);A))+, (pk(A,n(A, r);B⊕Y ))−, (pk(B, Y ))+]

– (Bob) :: r′ :: [(pk(B,X;A))−, (pk(A,X;B⊕n(B, r′)))+, (pk(B,n(B, r′)))−]

Note that r, r′ are used for nonce generation (they are special variables handled
as unique constants in order to obtain an infinite number of available constants,
see [17]).

There are also strands for initial knowledge and actions of the intruder, such
as concatenation, deconcatenation, encryption, decryption, etc. For example,
concatenation by the intruder is described by the strand [(X)−, (Y )−, (X;Y )+].
We will show the full list of intruder capabilities in Section 6.

Our protocol analysis methodology is then based on the idea of backward
reachability analysis, where we begin with one or more state patterns corre-
sponding to attack states, and want to prove or disprove that they are unreach-
able from the set of initial protocol states. In order to perform such a reachability
analysis we must describe how states change as a consequence of principals per-
forming protocol steps and of intruder actions. This can be done by describing
such state changes by means of a set RP of rewrite rules, so that the rewrite the-
ory (ΣP , EP , RP) characterizes the behavior of protocol P modulo the equations
EP . The following rewrite rules describe the general state transitions, where each
state transition implies moving rightwards the vertical bar of one strand:
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SS & [L | M−, L′] & {M∈I, IK} → SS & [L, M− | L′] & {IK}

SS & [L | M+, L′] & {IK} → SS & [L, M+ | L′] & {IK}

SS & [L | M+, L′] & {M /∈I, IK} → SS & [L, M+ | L′] & {M∈I, IK}

variables L,L′ denote lists of input and output messages (m+,m−) within a
strand, IK denotes a set of intruder facts (m∈I,m/∈I), and SS denotes a set
of strands. An unbounded number of sessions is handled by another rewrite
rule introducing an extra strand [m±

1 , . . . ,m±
j−1 | m+

j ,msg±j+1, . . . ,m
±
k ] for an

intruder knowledge fact of the form mj∈I. See [16] for further information.
The way to analyze backwards reachability is then relatively easy, namely

to run the protocol “in reverse.” This can be achieved by using the set of rules
R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis can be
performed symbolically, not on concrete states but on symbolic state patterns
[t(x1, . . . , xn)] by means of narrowing modulo EP (see Section 2 and [25,33]).

EP -unification precisely models all the different ways in which an intruder
could exploit the algebraic properties EP of P to break the protocol; therefore,
if an initial state can be shown unreachable by backwards reachability analysis
modulo EP from an attack state pattern, this ensures that, even if the intruder
uses the algebraic properties EP , the attack cannot be mounted. This means that
efficient support for EP -unification is a crucial feature of symbolic reachability
analysis of protocols modulo their algebraic properties EP .

4 A Unification Algorithm for XOR ∪ pk-sk ∪ AC

In general, combining unification algorithms for a theory E = E1∪E2∪ . . .∪En

is computationally quite expensive, and typically assumes that the symbols in
Ei and Ej are pairwise disjoint for each i 6= j. This is due to the substantial
amount of non–determinism involved in the inference systems supporting such
combinations (see [3]). In our NSL⊕ example, E = E1 ∪ E2 ∪ E3, where E1 is
the XOR theory, E2 is the theory pk-sk given by the two public key encryption
equations pk(K, sk(K, M)) = M and sk(K, pk(K, M)) = M , and E3 is the AC
theory for each of the state constructors _,_ and & explained in Section 3. To
further complicate the matter, we need to combine not just untyped unification
algorithms, but typed, and more precisely order-sorted ones.

Fortunately, the variant–narrowing–based approach that we use in this paper
avoids all these difficulties by obtaining the (XOR ∪ pk-sk ∪ AC)-unification
algorithm as an instance of the variant narrowing methodology supported by
Maude-NPA. The point is that if an equational theory E has the finite variant
property [12], then a finitary E-unification algorithm can be obtained by variant
narrowing [21,20], as further explained in Section 5. In our case, the equations
in the theory pk-sk are confluent and terminating and, furthermore, have the
finite variant property. Likewise, the equations in the XOR theory presented
in Section 3 are confluent, terminating and coherent modulo the AC axioms of
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⊕ and also have the finite variant property. Finally, the theory of AC for the
state-building constructors _,_ and & is of course finitary and can be viewed
as a trivial case of a theory with the finite variant property (decomposed with
no rules and only axioms). Note that all these three equational theories are
disjoint, i.e., they do not share any symbols. The good news is that the following
disjoint union theory XOR ∪ pk-sk ∪ AC with ΣNSL⊕ being the entire (order-
sorted) signature of our NSL⊕ protocol example is also confluent, terminating
and coherent modulo the AC axioms5, and satisfy the finite variant property:

1. Rules:
– pk(K, sk(K, M)) = M , sk(K, pk(K, M)) = M ,
– X⊕0 = X, X⊕X = 0, X⊕X⊕Y = Y ,

2. Axioms: AC for ⊕, AC for _,_ and AC for &

Therefore, Maude-NPA can analyze the NSL⊕ protocol using variant narrowing.
In the following we explain variant narrowing in more detail.

5 Variant Narrowing and Variant Unification

Suppose that an equational theory E is decomposed according to the following
definition.

Definition 1 (Decomposition [20]). Let (Σ, E) be an order-sorted equational
theory. We call (Σ,Ax, E) a decomposition of (Σ, E) if E = E ] Ax and
(Σ, Ax, E) is an order-sorted rewrite theory satisfying the following properties.

1. Ax is regular, i.e., for each t = t′ in Ax, we have Var(t) = Var(t′), and
sort-preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈
TΣ(X )s; furthermore all variables in Var(t) have a top sort.

2. Ax has a finitary and complete unification algorithm.
3. For each t → t′ in E we have Var(t′) ⊆ Var(t).
4. E is sort-decreasing, i.e., for each t → t′ in E, each s ∈ S, and each substi-

tution σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The rewrite rules E are confluent and terminating modulo Ax, i.e., the re-

lation →E,Ax is confluent and terminating.
6. The relation →E,Ax is Ax-coherent.

5 All these conditions are easily checkable. Indeed, coherence modulo the combined AC
axioms is immediate, and we can use standard methods and tools to check the local
confluence and termination of the combined theory; similarly, the method described
in [18] can be used to check the finite variant property of the combined theory. Alter-
natively, one can use modular methods to check that a combined theory satisfies all
these properties under certain assumptions: see [34] for a good survey of modularity
results for confluence and termination. Likewise, the finite variant property can also
be checked modularly under appropriate assumptions, but a discussion of this topic
is beyond the scope of this paper.
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Given a term t, an E,Ax-variant of t is a pair (t′, θ) with t′ an E,Ax-canonical
form of the term tθ. That is, the variants of a term intuitively give us all the ir-
reducible patterns that instances of t can reduce to. Of course, some variants are
more general than others, i.e., there is a natural preorder (t′, θ′) vE,Ax (t′′, θ′′)
defining when variant (t′′, θ′′) is more general than variant (t′, θ′). This is impor-
tant, because even though the set of E,Ax-variants of a term t may be infinite,
the set of most general variants (i.e., maximal elements in the generalization
preorder up to Ax-equivalence and variable renaming) may be finite.

The intimate connection of variants with E-unification is then as follows.
Suppose that we add to our theory decomposition E ] Ax a binary equality
predicate eq , a new constant tt6 and for each top sort [s] and x of sort [s] an
extra rule eq(x, x) → tt. Then, given any two terms t, t′, if θ is a E-unifier of
t and t′, then the E,Ax canonical forms of tθ and t′θ must be Ax-equal and
therefore the pair (tt, θ) must be a variant of the term eq(t, t′). Furthermore, if
the term eq(t, t′) has a finite set of most general variants, then we are guaranteed
that the set of most general E-unifiers of t and t′ is finite.

For any theory E ∪Ax with E confluent, terminating, and coherent modulo
Ax, the folding variant narrowing of [21] is a general and effective complete
strategy. Complete both in the sense of computing a complete set of E∪Ax-
unifiers, and of computing a minimal and complete set of variants for any input
term t.

In the following, we characterize a notion of variant semantics for equational
theories.

Definition 2 (Variant Semantics [21]). Let (Σ,Ax, E) be a decomposition
of an equational theory and t be a term. We define the set of variants of t as
[[t]]?E,Ax = {(t′, θ) | θ ∈ Subst(Σ,X ), tθ →!

E,Ax t′′, and t′′ =Ax t′}.

Example 1. Let us consider the equational theory XOR∪pk-sk, which, together
with AC for _,_ and & is used for our NSL⊕ protocol presented in Section 3.
This equational theory is relevant because there are none of our previously de-
fined unification procedures directly applicable to it, e.g. unification algorithms
for exclusive–or such as [23] do not directly apply if extra equations are added.

For (Σ,Ax, E) a decomposition of XOR ∪ pk-sk, and for terms
t = M⊕sk(K, pk(K, M)) and s = X⊕sk(K, pk(K, Y )), we have that [[t]]?E,Ax =
{(0, id), . . .} and

[[s]]?E,Ax = {(X⊕Y, id),
(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z⊕U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z⊕U}),
(0, {X 7→ U, Y 7→ U}), (Z1⊕Z2, {X 7→ U⊕Z1, Y 7→ U⊕Z2}),
(0, {X 7→ V⊕W,Y 7→ V⊕W}), . . .}

6 We extend Σ to bΣ by adding a new sort Truth, not related to any sort in Σ, with
constant tt, and for each top sort [s] of a connected component, an operator eq : [s]
× [s] → Truth.
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We write (t1, θ1) vE,Ax (t2, θ2) to denote that variant (t2, θ2) is more general
than variant (t1, θ1).

Definition 3 (Variant Preordering [21]). Let (Σ,Ax, E) be a decomposition
of an equational theory and t be a term. Given two variants (t1, θ1), (t2, θ2) ∈
[[t]]?E,Ax, we write (t1, θ1) vE,Ax (t2, θ2), meaning (t2, θ2) is more general than
(t1, θ1), iff there is a substitution ρ such that t1 =Ax t2ρ and θ1↓E,Ax =Ax θ2ρ.
We write (t1, θ1) @E,Ax (t2, θ2) if for every substitution ρ such that t1 =Ax t2ρ
and θ1↓E,Ax =Ax θ2ρ, then ρ is not a renaming.

Example 2. Continuing Example 1 we have v1 = (0, {X 7→ U, Y 7→ U}) as a valid
variant of s. Also, v2 = (0, {X 7→ V⊕W,Y 7→ V⊕W}) is a valid variant of s but
clearly v2 vE,Ax v1, and thus v2 should not be included in the most general set of
variants. On the other hand for u1 = (X⊕Y, id) and u2 = (Z, {X 7→ 0, Y 7→ Z}),
we have that neither u1 vE,Ax u2 nor u2 vE,Ax u1 hold.

We are, indeed, interested in equivalence classes for variant semantics and
provide a notion of semantic equality, written 'E,Ax, based on vE,Ax.

Definition 4 (Variant Equality [21]). Let (Σ,Ax, E) be a decomposition of
an equational theory and t be a term. For S1, S2 ⊆ [[t]]?E,Ax, we write S1 vE,Ax S2

iff for each (t1, θ1) ∈ S1, there exists (t2, θ2) ∈ S2 s.t. (t1, θ1) vE,Ax (t2, θ2). We
write S1 'E,Ax S2 iff S1 vE,Ax S2 and S2 vE,Ax S1.

Despite the previous semantic notion of equivalence, the following, more syn-
tactic notion of equality of variants up to renaming is useful.

Definition 5 (Ax-Equality [21]). Let (Σ,Ax, E) be a decomposition of an
equational theory and t be a term. For (t1, θ1), (t2, θ2) ∈ [[t]]?E,Ax, we write
(t1, θ1) ≈Ax (t2, θ2) if there is a variable renaming ρ such that t1ρ =Ax t2ρ and
θ1ρ =Ax θ2ρ. For S1, S2 ⊆ [[t]]?E,Ax, we write S1 ≈Ax S2 if for each (t1, θ1) ∈ S1,
there exists (t2, θ2) ∈ S2 s.t. (t1, θ1) ≈Ax (t2, θ2), and for each (t2, θ2) ∈ S2,
there exists (t1, θ1) ∈ S1 s.t. (t2, θ2) ≈Ax (t1, θ1).

The preorder of Definition 3 allows us to provide a most general and complete
set of variants that encompasses all the variants for a term t.

Definition 6 (Most General and Complete Variant Semantics [21]).
Let (Σ,Ax, E) be a decomposition of an equational theory and t be a term. A
most general and complete variant semantics of t, denoted [[t]]E,Ax, is a sub-
set [[t]]E,Ax ⊆ [[t]]?E,Ax such that: (i) [[t]]?E,Ax vE,Ax [[t]]E,Ax, and (ii) for each
(t1, θ1) ∈ [[t]]E,Ax, there is no (t2, θ2) ∈ [[t]]E,Ax s.t. (t1, θ1) 6≈Ax (t2, θ2) and
(t1, θ1) vE,Ax (t2, θ2).

Example 3. Continuing Example 1 it is obvious that the following variants are
most general w.r.t. vE,Ax: [[t]]E,Ax = {(0, id)} and
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[[s]]E,Ax = {(X⊕Y, id),
(Z, {X 7→ 0, Y 7→ Z}), (Z, {X 7→ Z, Y 7→ 0}),
(Z, {X 7→ Z⊕U, Y 7→ U}), (Z, {X 7→ U, Y 7→ Z⊕U}),
(0, {X 7→ U, Y 7→ U}), (Z1⊕Z2, {X 7→ U⊕Z1, Y 7→ U⊕Z2})}.

Note that, for any term t, [[t]]?E,Ax 'E,Ax [[t]]E,Ax but, in general, [[t]]?E,Ax 6≈Ax

[[t]]E,Ax. Also, by definition, all the substitutions in [[t]]E,Ax are E,Ax-normalized.
Moreover, [[t]]E,Ax is unique up to ≈Ax and provides a very succinct description
of [[t]]?E,Ax. Indeed, up to Ax-equality, [[t]]E,Ax characterizes the set of maximal
elements (therefore, most general variants) of the preorder ([[t]]E,Ax,vE,Ax).

Again, let us make explicit the relation between variants and E-unification.

Proposition 1 (Minimal and Complete E-unification [21]). Let (Σ,Ax, E)
be a decomposition of an equational theory (Σ, E). Let t, t′ be two terms. Then,
S = {θ | (tt, θ) ∈ [[eq(t, t′)]] bE,Ax} is a minimal and complete set of E-unifiers

for t = t′, where eq and tt are new symbols defined in Footnote 6 and Ê =
E ∪ {eq(X, X) → tt}.

The finite variant property defined by Comon-Lundh and Delaune [12], pro-
vides a useful sufficient condition for finitary E-unification. Essentially, it deter-
mines whether every term has a finite number of most general variants.

Definition 7 (Finite variant property [12]). Let (Σ, Ax, E) be a decompo-
sition of an equational theory (Σ, E). Then (Σ, E), and thus (Σ, Ax, E), has the
finite variant property iff for each term t, the set [[t]]E,Ax is finite. We will call
(Σ,Ax, E) a finite variant decomposition of (Σ, E) iff (Σ,Ax, E) has the finite
variant property.

In [19] a technique is proposed to check whether an equational theory has the
finite variant property. Using this technique it is easy to check that Example 1
has the finite variant property, as every right–hand side is a constant symbol or
a variable. See [19, Example 2] for more details.

Finally, it is clear that when we have a finite variant decomposition, we also
have a finitary unification algorithm.

Corollary 1 (Finitary E-unification [21]). Let (Σ,Ax, E) be a finite variant
decomposition of an equational theory (Σ, E). Then, for any two given terms t, t′,
S = {θ | (tt, θ) ∈ [[eq(t, t′)]] bE,Ax} is a finite, minimal, and complete set of E-

unifiers for t = t′, where Ê, eq, and tt are defined as in Proposition 1.

Note that the opposite does not hold: given two terms t, t′ that have a finite,
minimal, and complete set of E-unifiers, the equational theory (Σ, E) may not
have a finite variant decomposition (Σ,Ax, E). An example is the unification
under homomorphism (or one-side distributivity), where there is a finite number
of unifiers of two terms but the theory does not satisfy the finite variant property
(see [12,19]); the key idea is that the term eq(t, t′) may have an infinite number
of variants even though there is only a finite set of most general variants of the
form (tt, θ). We refer the reader to [21] for further information.
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6 Finding attacks modulo XOR ∪ pk-sk ∪ AC using
Maude-NPA

We have analyzed the NSL⊕ protocol presented in Section 3 modulo its equa-
tional theory XOR ∪ pk-sk ∪AC in Maude-NPA using variant narrowing.

We now explain in more detail all the operations available to the intruder.
Its capabilities are all given in strand notation. Note that we are omitting the
position marker | which is assumed to be at the beginning.

(s1) [(X)−, (Y )−, (X;Y )+] Concatenation
(s2) [(X;Y )−, (X)+] Left-deconcatenation
(s3) [(X;Y )−, (Y )+] Right-deconcatenation
(s4) [(X)−, (Y )−, (X⊕Y )+] Exclusive–or
(s6) [(X)−, (sk(i,X))+] Encryption with i’s private key
(s7) [(X)−, (pk(A,X))+] Encryption with any public key
(s8) [(0)+] Generate the exclusive–or neutral element
(s9) [(A)+] Generate any principal’s name.

The attack state pattern from which we start the backwards narrowing search
in this example is given by one strand, representing Bob (b) wanting to commu-
nicate with Alice (a)

:: r :: [(pk(b, X; a))−, (pk(a,X; b⊕n(b, r)))+, (pk(b, n(b, r)))−|nil]

together with requiring the intruder (i) to have learned Bob’s nonce, i.e., n(b, r)∈I.
What this represents is an attack in which Bob has properly executed the pro-
tocol and believes to be talking to Alice, while the intruder has obtained the
nonce that Bob created and that he considers a secret shared between Alice and
him.

See Figure 1 for a pictorial representation of the strand space and messages
sent and received, depicting the attack found by Maude-NPA. This attack agrees
with the one described in [8]. The figure has been created with the help of the
Maude-NPA GUI [35], with the exclusive–or symbol ⊕ textually represented as
∗ in the figure. Let us explain here how the attack proceeds, based on Figure 1.

7 Related Work

There is a substantial amount of research on formal verification of cryptographic
protocols. Much of it abstracts away from any equational theories obeyed by the
cryptographic operators, but there is a growing amount of work addressing this
problem. The earliest was the NRL Protocol Analyzer [30], which, like Maude-
NPA, was based on unification and backwards search, implemented via narrowing
over confluent equational theories. This was sufficient to handle, for example, the
cancellation of encryption and decryption, although there were many theories
of interest it did not address, such as exclusive-or and other Abelian group
operators.
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Fig. 1. Pictorial representation of the initial state, leading to an attack

More recently, tools have begun to offer support for specification and, to some
degree, analysis of protocols involving equational theories. These tools include,
for example, ProVerif [6], OFMC [4], and CL-Atse [38]. Both OFMC and CL-
Atse work in the bounded session model, while ProVerif uses abstraction and
unbounded sessions. Both OFMC and CL-Atse support exclusive-or and Diffie-
Hellman exponentiation. ProVerif can also be used to analyze these, but the
equational theories it is known to work well with are more limited, e.g. not sup-
porting associativity-commutativity or Diffie-Hellman exponentiation. However,
Küsters and Truderung [26,27] have developed algorithms that, can translate
protocols using exclusive-or or Diffie-Hellman exponentiation to protocols that
can be analyzed by ProVerif in a free algebra model; for exclusive-or they can
handle protocols satisfying the ⊕-linearity property. According to a study by
Lafourcade et al. [28], this produces analysis times that are only slightly slower
than analyses by OFMC and CL-Atse, mainly because of the translation time.

There is also a growing amount of theoretical work on cryptographic proto-
col analysis using equational theories, e.g. [1,9,7,11,5]. This concentrates on the
decidability of problems of interest to cryptographic protocol analysis, such as
deducibility, which means that it is possible (e.g. for an intruder) to deduce a
term from a set of terms, and static equivalence, which means that an intruder
cannot tell the difference between two sets of terms. However, there is much less
work on the combination of different theories, although Arnaud, Cortier, and
Delaune [13] have considered the problem in terms of decidability of the prob-
lem for combination of disjoint theories, showing that if any two disjoint theo-

12



ries have decidable static equivalence problems, then so does their combination.
More recently Chevalier and Rusinowitch analyze the security of cryptographic
protocols via constraint systems and have also studied composition of theories.
In [10], they give a general method for combining disjoint theories that is based
on the Baader-Schulz combination algorithm for unification algorithms for dif-
ferent theories [3]. This can be thought of as a constraint-based analogue of the
Maude-NPA combination framework we describe in [15], which is also based on
the Baader-Schulz combination algorithm [3].

8 Conclusions and Future Work

To gain high assurance about cryptographic protocols using formal methods re-
quires reasoning modulo the algebraic properties of the underlying cryptographic
functions. In symbolic analyses this typically necessitates performing unification
modulo such algebraic properties. However, since a protocol may use a variety
of different functions —so that different protocols typically require reasoning
modulo different theories— it is unrealistic to expect that a fixed set of unifica-
tion algorithms will suffice for such analyses. That is, combination methods that
obtain unification algorithm for a composition of theories out of a family of such
algorithm for each of them, are unavoidable. Standard methods for obtaining
a unification algorithm for a combined theory E1 ∪ . . . ∪ En [3] are computa-
tionally costly due to the high degree of non-determinism in the combination
method; furthermore, they require the existence of a unification algorithm for
each individual theory Ei, which in practice may not be available in a tool’s
infrastructure. In this work we have proposed an alternative method based on
variant narrowing to obtain a (E1∪. . .∪En)-unification algorithm under simpler
requirements. Specifically, dedicated implementations of unification algorithms
for each of the theories Ei are not needed: in our example, only a dedicated AC-
unification algorithm was used: no dedicated algorithms for XOR of pk-sk were
needed. Furthermore, even though narrowing is less efficient than a dedicated
algorithm for each individual theory Ei, the costly computational overhead of a
standard combination method is avoided. The case study presented has shown
that variant narrowing, as supported by the Maude-NPA, is indeed an effective
method to deal with nontrivial combinations of equational theories; and for an-
alyzing many protocols with even a modest infrastructure of built-in unification
algorithms. The case study was chosen as a well-known protocol for illustration
purposes, but many other examples could have been given.

We should emphasize that standard combination methods such as those de-
scribed in [3], and the alternative variant narrowing method presented here are
not “rival” methods. Instead they are highly complementary methods which,
when used in tandem, allow a tool to analyze a much wider range of protocols
than those analyzable by each method in isolation. Let us use our example the-
ory XOR ∪ pk -sk ∪ AC to illustrate this important point. Variant narrowing
decomposed this combined theory into: (i) three rewrite rules for XOR and two
rewrite rules for pk-sk plus, (ii) three instances of AC: one for ⊕, another for
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, and another for & . That is, variant narrowing with the rules in (i) was
performed modulo the axioms in (ii). But the axioms in (ii) are themselves a
combined theory (in fact, also combined with all the other function symbols in
the protocol specification as free function symbols). The Maude infrastructure
used by Maude-NPA has in fact used an order-sorted version of a standard com-
bination method in the style of [3] to support unification with the combined
axioms of (ii). Therefore, the advantage of using standard combination methods
and variant narrowing in tandem is the following:

1. A given tool infrastructure can only have a finite number of predefined (fini-
tary) unification algorithms for, say, theories T1, . . . , Tk; however, it should
also be able to support any combination of such built-in theories by a stan-
dard combination method.

2. A given protocol may require performing unification modulo a combination
of theories E1 ∪ . . . ∪ En, but some of the Ei may not belong to the library
T1, . . . , Tk, so that the standard combination method cannot be used.

3. However, if E1 ∪ . . . ∪ En can be refactored as a theory decomposition
(Σ,B,R) that: (i) it has the finite variant property; and (ii) B is a com-
bination of the theories T1, . . . , Tk supported by the current library, then
a finitary (E1 ∪ . . . ∪ En)-unification algorithm can be obtained by variant
narrowing.

A very important direction for future work in formal tools supporting sym-
bolic protocol analysis modulo equational properties consists in: (i) developing
methods for expanding a tool’s built-in unification infrastructure as described
in (1) above to make it as efficient and extensible as possible; and (ii) improv-
ing and optimizing the methods for efficient variant narrowing modulo such
infrastructure. Good candidates for new theories Tj to be added to the built-
in infrastructure include commonly used theories, with high priority given to
theories that lack the finite variant properties. For example, in [15] the theory
of homomorphic encryption, which lacks the finite variant property, has been
recently added to Maude-NPA for exactly this purpose.

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. Theoretical Computer Science, 367(1-2):2–32, 2006.

2. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
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4. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for security
protocol analysis. In In Proceedings of Esorics03, LNCS 2808, pages 253–270.
Springer-Verlag, 2003.

14



5. M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing
intruder knowledge. In R. Treinen, editor, Proceedings of the 20th International
Conference on Rewriting Techniques and Applications (RTA’09), Lecture Notes in
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