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Abstract

A number of new cryptographic protocols are being designed to
secure applications such as video-conferencing and electronic vot-
ing. Many of them rely upon cryptographic functions with complex
algebraic properties that must be accounted for in order to be cor-
rectly analyzed by automated tools. Maude-NPA is a cryptographic
protocol analysis tool based on narrowing and typed equational uni-
fication which takes into account these algebraic properties. It has
already been used to analyze protocols involving bounded associa-
tivity, modular exponentiation, and exclusive-or. All of the above
can be handled by the same general variant-based equational uni-
fication technique. However, there are important properties, in par-
ticular homomorphic encryption, that cannot be handled by variant-
based unification in the same way. In these cases the best avail-
able approach is to implement specialized unification algorithms
and combine them within a modular framework. In this paper we
describe how we apply this approach within Maude-NPA, with re-
spect to encryption homomorphic over a free operator. We also de-
scribe the use of Maude-NPA to analyze several protocols using
such an encryption operation. To the best of our knowledge, this
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is the first implementation of homomorphic encryption of any sort
in a tool for verifying the security of a protocol in the presence of
active attackers.

Categories and Subject Descriptors  C.2.2 [ Computer-communication

Networks]: Network Protocols; D.2.4 [Software Engineering]:
Software/Program Verification; D.3.2 [Programming Languages):
Language Classifications; D.4.6 [Operating Systems]: Security
and Protection; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs

General Terms Protocol verification, unification, homomorphism

1. Introduction

With the increased use of computer networks and online transac-
tions, more and more complex cryptographic protocols using en-
cryption techniques with sophisticated arithmetic properties are be-
ing designed to secure applications such as video-conferencing and
electronic voting. Many of these protocols are known to be secure
if the arithmetic properties are not exploited, but can be broken if
they are. Examples include the recursive authentication protocol
proposed by Bull [11], broken by Ryan and Schneider [40] by ex-
ploiting the properties of the exclusive-or operation, and a group
key protocol based on group Diffie-Hellman [5], broken by Pereira
and Quisquater [39] using associative-commutative properties of
modular exponentiation. Traditional Dolev-Yao modeling of proto-
cols in which the underlying cryptographic functions are treated as
a black box is thus often untrustworthy; the box must be pried open
enough to account for the algebraic properties of the cryptographic
functions.

Model checking has been an effective tool in cryptographic pro-
tocol analysis, and a number of model checkers have been built
[4, 9, 20, 32, 35]. Cryptographic protocol analysis model check-
ers discover attacks by generating and analyzing the search space
of possible states arising from the execution of a given protocol,
taking into consideration the functions of the principals as well



as the capabilities of the intruder(s)'. In this paper, we propose
a symbolic approach to infinite-state, unbounded-sessions model
checking based on combining unification algorithms to handle var-
ious properties of operations involved in a cryptographic protocol.
Roughly speaking, a protocol is modeled as a state transition sys-
tem, with a possible execution of the protocol being a sequence of
state transitions; in any given state, any of the actors/principals is
allowed to perform any of the operations on data in its possession.

There has been a growing body of research in extending these
model checkers to reason about different types of equational the-
ories [7, 9, 10, 13, 18, 44]. However, there has been one class of
theories that has proven to be rather difficult to incorporate into
protocol analysis tools. These are theories involving homomorphic
operators, that is operators (usually representing encryption func-
tions) that distribute over some other operator, which is usually
associative-commutative or an Abelian group operator. Homormor-
phic encryption of this sort has many potential applications, includ-
ing blinded signatures that can be used in electronic cash, private
database retrieval, and electronic voting.

This paper describes the first steps in our research program with
respect to homomorphic encryption: the adaptation of an algorithm
for unification modulo an equational theory arising from encryption
homomorphic over a free operator for use in Maude-NPA, and
the use of the tool for analyzing protocols that satisfy this theory.
Maude-NPA [21, 22] is designed to take into account the algebraic
properties of cryptographic protocols. It makes use of equational
unification to meet its goals. The approach of Maude-NPA up to
this point has been to make use of folding variant narrowing [23]
to perform equational unification. Suppose that the operators used
in the protocol obey an equational theory Ep. To do this, we
divide the equational theory E'p describing the algebraic properties
obeyed by the cryptosystem into A U Az, where A is a set of
rewrite rules and Ax is a set of axioms such that A has the finite
variant property modulo Az [17, 23]. In that case, it is possible
to apply a version of narrowing modulo Az called folding variant
narrowing to compute E'p unifiers. The advantage of using folding
variant narrowing is that it is possible to have a general-purpose
procedure that applies to many different theories. The only place
we need special-purpose unification algorithms are the algorithms
for Az. We note that, when we find efficient algorithms for specific
theories or combinations of theories, these theories can be moved
into Az if they satisfy the appropriate conditions, thus allowing us
to increase the efficiency of our approach as fast special-purpose
algorithms become available. In the most extreme case A could be
empty.

In the past we have restricted ourselves to the case in which
Az is the free theory or associativity-commutativity (AC). In these
cases we have been able to rely on unification algorithms already
built into Maude [16]. However, it is well known that finite vari-
ance does not hold for homomorphic encryption, whether Az is
the free theory or AC [17]. In this case homomorphic encryption
unification must be implemented in Az. We use the unification al-
gorithm of Anantharaman et al. [2] for this. In [2] it is applied to
a procedure known as cap unification, which combines unification
and deducibility, but it can also be used by itself, as we do here.

Contributions

The main contribution of this paper is that it demonstrates how a
special-purpose unification algorithm for homomorphic encryption
over a free operator is implemented and integrated with Maude-
NPA. To the best of our knowledge, this represents the first im-
plementation and integration of a special-purpose unification algo-

' We note that the terms “intruder” and “attacker” are used interchangeably
in the literature

rithm within a cryptographic protocol analysis tool, and the first
implementation of any complete algorithm for reasoning about ho-
momorphic encryption of any sort within a tool that can reason
about protocol security in the presence of an active attacker. The
only other implementation of homomorphic encryption, even over
a free operator, available in a tool is in the intruder deduction tool
YAPA [8], and can only prove security against passive attacks when
used by itself. (See Section 2.2 for more details.)
In more detail, our implementation consists of:

1. An implementation in Full Maude of the algorithm described
in [2] for homomorphic encryption. Full Maude [16] is an
extension of Maude written in Maude that takes advantage of
its reflective capabilities.

2. The derivation of an order-sorted unification algorithm for ho-
momorphic encryption (see Section 6).

3. Application of the Maude-NPA infrastructure for combination
of  unification  algorithms a la  Baader and
Schultz [6] (see Section 3.2) to the integration of the algorithm
with the Maude-NPA search engine.

4. Testing the integration of all these new features into Maude-
NPA by analyzing four protocols using homomorphic encryp-
tion (see Section 7).

5. Documenting how these four protocols behave in the Maude-
NPA, which is relevant to demonstrate the feasibility of the
whole approach (see Section 7).

Plan of the paper

The rest of the paper is organized as follows. In Section 2, we give
a survey of the various means by which algebraic properties are ad-
dressed in automated cryptographic protocol analysis. In Section 3
we describe how equational unification is implemented in Maude-
NPA. In Section 4 we provide motivating examples we will use
throughout the remainder of this paper. In Section 5 we describe
how Maude-NPA uses equational unification for backwards search,
illustrating our explanation with examples from Section 4. In Sec-
tion 6 we describe the unification algorithm we use for the homo-
morphic theory and its integration into Maude-NPA. In Section 7
we describe the analysis of the protocols introduced in Section 4.
In Section 8 we conclude the paper and discuss future work.

2. Handling Algebraic Properties of
Crypto-Algorithms

One challenge in computing the various state transitions is deal-
ing with the algebraic properties of the cryptographic algorithms
themselves. These range from the fact that decryption with a key
cancels out encryption with the same key, expressible by the equa-
tion dec(enc(m, k), k) = m, through the Abelian group properties
of algorithms based on exponentiation and/or elliptic curves, all
the way to the property of homomorphism over an Abelian group
possessed by many of the algorithms used for privacy-preserving
computation. There are three classes of procedures that have been
developed for dealing with algebraic properties: (i) augmented in-
truder inference rules, (ii) deducibility algorithms, and (iii) equa-
tional unification.

2.1 Augmented Inference rules

When specifying a cryptographic protocol, one normally specifies
a set of inference rules that describe the operations that an intruder
can perform. Thus, one would specify an inference rule that says
that, if an intruder knows a message and a key, then he can construct
the encryption of the message with the key. These inference rules
can also be augmented to describe the consequences of equational



properties. For example, the encryption-decryption equation given
above could be represented by the following inference rule:

enc(m,k) €, kel
mel

where Z stands for the set of terms known to the intruder.
The problem is that this method is often incomplete. Consider
the following protocol:

1. A-B:M 2. B— A:dec(M,key(B))

The inference rule fails to predict what happens when M =
enc(X, key(B)). In this case, A would wind up sending a cleart-
ext message X, but this is because of the action of A’s decryption
operation, not because of the application of an inference rule by the
intruder. Thus, the inference rules are not complete.

Although there are subclasses of protocols for which given sets
of inference rules are sound (see for example [33, 37]), this must
be carefully worked out for each case. However, if successful, aug-
mented inference rules have the advantage that they can be used
with tools that do not support the equational theory that the in-
ference rules represent. Indeed, Kiisters and Truderung show in
[30, 31] how their inference systems for Diffie-Hellman exponen-
tiation and exclusive-or can be used for a restricted class of proto-
cols using Blanchet’s ProVerif tool, which by itself only supports
associative-commutative properties in a limited way.

We note that there is at least one example of applying aug-
mented inference rules to homomorphic encryption. In [29], Kre-
mer and Ryan define a set of intruder inference rules which they
use, together with the ProVerif protocol analysis tool, to analyze
protocols using cipher block chaining, which has a prefix homo-
morphism property. This approach is subject to the same incom-
pleteness that we discussed above. However, it may be possible
that completeness can be proved for the specific protocols analyzed
in that paper.

2.2 Deducibility algorithms

These are algorithms for determining whether an intruder can de-
duce a term from a set of terms already in its possession, given that
terms obey a given equational theory. In this case, one starts with a
set 1" of terms known to the intruder, a term ¢ the intruder is trying
to learn, a set of inference rules describing operations the intruder
can perform, and an equational theory E. The deducibility algo-
rithm is a procedure for determining whether or not the intruder
can derive a term from s from 7" such that s =g ¢. A number of
algorithms have been developed for different classes of equational
theories, including associative-commutative and homomorphic op-
erators [1]. A survey of deducibility with respect to equational the-
ories may be found in [12].

In particular, algorithms for a class of theories known as sub-
term convergent (convergent theories for which the right-hand side
is a either an irreducible ground term or subterm of the left-hand
side) have been developed in [15] and for a larger class of conver-
gent theories that include encryption homomorphic over a free op-
erator [8] and have been developed and implemented in the tools
KISS and YAPA, respectively. These tools when used by them-
selves can only prove security against a passive intruder, who only
spies upon message traffic but does not further interact with the
protocol. However they can also be interfaced with other tools that
use deducibility to reason about security against an active attacker
who reads, alters, redirects, and deletes traffic as well as creating
its own messages. The intruder with caps approach of [3] also uses
deducibility algorithms for classes of equational theories that ex-
tend the subterm convergent class. The tools OFMC [7], and CL-
Atse [44] all make use of deducibility and provide some support

for equational theories, in the case of OFMC and CL-Atse those
governing Diffie-Hellman and exclusive-or.

A limitation of using deducibility is that it requires a complete
description of the terms an intruder knows at a given state. This is
fine for tools that generate states in a forward fashion, but it does
not work as well for tools such as Maude-NPA, which generate
states on the fly in a backwards manner and thus only are aware of
some of the terms the intruder knows at any point in time.

2.3 Equational Unification

Unification of two terms s and ¢t modulo an equational theory F
is the process of finding substitutions o to the variables in s and
t making them equal modulo E. We call a substitution o to the
variables in s and ¢ an E-unifier of s and ¢, or a unifier modulo E,
if and only if o(t) =g o(s), with =g the provable E-relation. We
say that a set © of F-unifiers is a complete set of E-unifiers of s and
t if for any unifier 7, there is a ¢ € © such that 7 =g po for some
substitution p away from the variables of s and ¢. Thus, a complete
set of E-unifiers characterizes all the unifiers of two terms.

An advantage of E-unification over deducibility is that it can
be applied even on incomplete information, since this incomplete
information can be represented by variables. Thus, it applies not
only to both forward and backwards search, but to constraint-based
searches that can proceed from any direction (e.g. Comon-Lundh
and Shmatikov’s application of unification to constraint-based anal-
ysis in protocols that use exclusive-or [18], and Chevalier et al.’s
use of constraints to verify presence of subterms when equational
theories are present [13]). In particular, Chevalier and Rusinowitch
[14] have developed a decision procedure for constraint-based pro-
tocol analysis over unions of disjoint intruder theories that is based
on Baader and Schultz’s [6] and Schmidt-Schauss’ [42] algorithms
for combining unification algorithms over disjoint theories and has
similar complexity.

Early work on cryptographic protocol analysis modulo equa-
tional theories relied on existing techniques such as narrowing,
which requires that the equational theory be expressed as a set of
convergent rewrite rules. Narrowing a term consists of identifying a
non-variable subterm of it that can be syntactically unified with the
left-hand side of a rewrite rule and replacing it with the correspond-
ing substitution instance of the right-hand side. This process pro-
ceeds until no further narrowing steps can be applied. Narrowing-
based unification of two terms s and ¢ is the narrowing of eq(s, t)
together with the rewrite rules expressing the given equations plus
the additional rewrite rule eq(x, ) — true. If one backtracks upon
failure and upon each successful unification, one obtains a finite
complete set of unifiers if the narrowing procedure terminates.

The original NRL Protocol Analyzer [35], upon which Maude-
NPA is based, relied on a type of narrowing known as basic narrow-
ing [26]. However, although theories such as the cancellation of en-
cryption and decryption can be handled by basic narrowing alone,
it does not apply to theories that involve associative-commutative
properties. Thus, although Maude-NPA can and does make use of
narrowing, it implements it in a very different way.

3. Unification in Maude-NPA

Maude-NPA employs a number of unification strategies, described
below.

3.1 Folding Variant Narrowing

One way of dealing with theories containing associativity-commut-
ativity (AC) is to split the theory E into two disjoint pieces, £ =
A U AC, so that A is confluent, terminating and coherent modulo
AC. However, narrowing modulo AC doesn’t terminate for many
theories of interest to cryptographic protocol analysis, including



exclusive-or and Abelian groups. Comon and Delaune [17] have
identified a property known as the finite variant property which is
checkable under appropriate conditions [23]. Although for many
theories £ = A U AC narrowing modulo AC does not termi-
nate, The folding variant narrowing strategy [23] computes a finite
complete set of E-unifiers whenever E has the finite variant prop-
erty. Folding variant narrowing (currently implemented for strongly
right-irreducible theories [41]) has proved to be the backbone of
Maude-NPA. Although it is not as efficient as algorithms designed
specifically for a given theory, it is more widely applicable, and it
is easy to combine different equational theories [41].

3.2 Typed Modular Unification in Maude-NPA

Although the ease of implementation folding variant narrowing
makes it very useful for exploration and experimentation, and in-
teresting cryptographic theories satisfy the finite variant property,
ultimately we also want to be able to make use of more efficient
special-purpose algorithms. Moreover, there is a class of equational
theories that appears prominently in cryptographic protocols ap-
plied to privacy-preserving computation: operators that are homo-
morphic with respect to another, e.g., ¢(X *Y) = ¢(X) * ¢(Y).
Theories like these can be shown to lack the finite variant prop-
erty whether or not * is a free operator or obeys the axioms for
an Abelian group.” In these cases folding variant narrowing does
not provide a finitary E-unification algorithm, and we must seek a
different method.

As a result, special-purpose algorithms are also being devel-
oped, especially for homomorphic theories. But in order to do this
it is necessary to do more than just develop and implement algo-
rithms. They must also be integrated with analysis tools like the
Maude-NPA, and we must satisfy ourselves that it is possible to
use the tool to specify and analyze protocols that rely upon these
properties.

Integrating equational unification into protocol analysis is chal-
lenging for several reasons. First of all, in principle we need to have
a different E'p-unification algorithm for each protocol P; second,
experience with the Maude-NPA tool has shown the great advan-
tages (typically leading to a much smaller search space) of ryped
unification, where variables have types (or sorts) and types can be
arranged in subtype hierarchies; for example, to properly specify a
protocol we may wish to distinguish different subtypes —e.g., for
nonces, keys, or principal names— of a general type for messages;
third, we often need to combine several such unification algorithms,
for example when composing together various subprotocols or tak-
ing into account the associative-commutative-identity (ACU) ax-
ioms of the state constructors (see Section 5). This is made even
more challenging by the fact that, in order to allow the option of
verifying different kinds of implementations (e.g. the case in which
a key is indistinguishable from a nonce), typing is mostly left to the
discretion of the user.

Given the wide range of protocols and protocol combinations
that need to be analyzed, a modular approach to the development
of Ep-unification algorithms is very much needed. Such a modular
approach and its necessary infrastructure are now under develop-
ment. Besides using the known techniques for combining unifica-
tion algorithms for disjoint theories a la Baader and Schultz [6],
Maude-NPA employs a more general methodology and associated
tool infrastructure (in the Maude-NPA) in which unification algo-
rithms can be combined and developed at three different levels and
in a not necessarily disjoint way: (i) a basic library of commonly oc-
curring theories and their combinations —currently including any
combination of typed commutative, associative commutative, as-

2 Comon and Delaune only prove the result for the exclusive-or case in [17],
but their proof can easily be extended to the other cases.

sociative commutative and identity, or free function symbols— is
efficiently supported by the Maude tool at the C++ level; (ii) unifi-
cation algorithms for special-purpose cryptographic theories can be
developed in a declarative way in Maude itself using its metalevel
facilities as done here for the homomorphic encryption theory Ep,;
and (iii) it is often possible to decompose an equational theory Ep
as a disjoint union Ep = A U Az, (where A and Az may share
some function symbols), and where a dedicated Ax-unification al-
gorithm exists. If A is viewed as a set of rewrite rules that is con-
vergent, coherent and has the finite variant property modulo Az,
folding variant narrowing modulo Ax with the rules A provides a
finitary E'p-unification algorithm [23]. Finally, in the modular ap-
proach proposed in this paper it is also possible to automatically
derive a typed (called order-sorted) F'p-unification algorithm from
an untyped one for which an implementation is already available.
This derivation follows the methodology proposed in [25] and ap-
plies a general method by which, under mild conditions on the
order-sorted theory E, an order-sorted E-unification algorithm can
be automatically obtained by: (i) associating to E its unsorted ver-
sion F; (ii) computing a complete set of (unsorted) E-unifiers for
the given E-unification problem; and (iii) typing and filtering out
the unsorted E-unifiers to obtain a complete set of order-sorted E-
unifiers using the generic sort propagation algorithm described in
[25]. This algorithm is part of the Maude-NPA infrastructure that is
applied to the homomorphic encryption algorithm described in this
paper.

Finally, we combine Ep-unification,with a typed version of
ACU -unification. The latter is needed because Maude-NPA states
are multisets of terms, which are associative-commutative and have
the empty multiset as tthe identity. This combination is supported
by Maude-NPA by means of an order-sorted variant of the standard
combination method for disjoint theories a la Baader and Schultz
[6], so that in the end typed E, U ACU -unification is achieved. A
more complete description of how this is done is given in [41].

4. Protocol Examples

In this section we include several protocols that we will use as moti-
vating examples that are subject to attacks which we demonstrate in
Maude-NPA. Because homomorphic encryption is usually used to-
gether with an operator with additional algebraic properties, there
are not very many examples of protocols that rely on homomor-
phic encryption over an operator with no further algebraic proper-
ties that are relevant to the protocol. Thus in some cases we have
devised our own. In doing this, we have attempted to cover var-
ious situations that could arise when dealing with homomorphic
encryption. The first protocol is a secure two-party computation
protocol that illustrates the application of homomorphic encryp-
tion to multi-party computation. The second is a version of the
Needham-Schroeder-Lowe protocol using encryption in Electronic
Code Book (ECB) mode, due to Cortier et al. [19], which allows us
to test our implementation on an independently developed proto-
col. The third is an ECB version of shared key Needham-Schoeder,
which allows us to check how homomorphic encryption would be-
have under nested encryption. The final protocol uses a homomor-
phic “hash function”, and was designed as an example of a protocol
that could not be analyzed by the application of standard intruder
inference rules. The last three test protocols are not intended to be
realistic, since the unsafeness of using ECB mode when message
integrity is required is well known, but they serve to test the limits
of our implementation.

4.1 Multi-Party Computation with Semi-Trusted Third
Party

This is a protocol in which two principals, A (for Alice) and B (for
Bob)want to compute a function f of their private data X and Y



without revealing anything about X and Y other than f(X,Y).
They use a trusted server to compute f(X,Y’), but they don’t
want to reveal X and Y to the server either. They make use of a
public key encryption algorithm hpke which is homomorphic with
respect to f, i.e., it satisfies the equation hpke(f(X,Y),Z) =
f(hpke(X, Z), hpke(Y, Z)). We assume that A and B share the
same public (and corresponding private) key pkey(A, B) for the
homomorphic public key encryption algorithm hpke, so that both
can decrypt data encrypted by pkey(A, B). The server s also
possesses a public (and private) key for a conventional public key
encryption algorithm; the encryption of message M by server’s
key is denoted by pke(M, S). All principals have digital signature
keys; the digital signature of message M by principal P is denoted
by sign(M, P). Finally, concatenation is denoted by ;.

1. A — B : sign(B; Na;
pke(hpke(DA ) pk‘@y(A, B))7 5)7 A)
A starts by encrypting her data first under the homomorphic
public key, then under the server’s public key. She then attaches
anonce and B’s name, signs it, and sends it to B.

2. B— A: sign(Na; Np;
pke(hpke(Dg, pkey(A, B)),S), B)
B sends a similar message to A, including both his and A’s
nonce.

3. A— S:sign(A; B; Na; Np;
pke(hpke(Da, pkey(A, B)), S);
pke(hpke(Dvakey(Av B))7 S)? A)
A sends a signed message containing both nonces and both
encrypted data sets to S.

4. S — A, B : sign(A; B; Na; Np;
f(hpke(DA, pke?/(Av B))7
hpke(Dp, pkey(A, B))),S)
The server applies f to both encrypted data sets and sends the
result to A and B.

This protocol is potentially vulnerable to an attack in which A
can be led to believe that f has been applied to B’s data when
actually it has not. However, we can use the homomorphic property
of the encryption to implement a check that prevents the attack.
This attack is as follows.

1. A — I(B) : sign(B; Na;
pke(hpke(Da, pkey(A, B)), S), A)
A initiates the protocol with B, but A’s message is intercepted
by I. We denote I impersonating B by I(B).

2. I — B:sign(B;Na; E,I)
I uses A’s message to create a message for B. The message F/

could or could not be A’s encrypted data. This is irrelevant to
the attack.

3. B— A:sign(Na; Np;
pke(hpke(Dg, pkey(I, B)),S), B)
B believes that he is talking to I and sends the corresponding
reply message. I forwards it to A.

4. A — S : sign(A; B; Na; Np;
phe(hpke(D A, pey(A, B)), S);
pke(hpke(DBapkey(I7 B))’ S), A)
A now forwards both encrypted data sets to the server S, who

removes the outer layer of encryption, applies f, and sends the
results back to A and B.

5.8 = A, B : sign(A; B; Na; NB;

f(hpke(Da, pkey(A, B)),
hpke(Dvakey(Iv B))? S)

If A now attempts to decrypt the result of S’s computation
with her private key corresponding to pkey(A, B), she will
get nonsense, because one of the data sets was encrypted with
pkey(I, B).

Depending upon whether or not A can recognize that she has
received nonsense, this can be used to prevent this attack. We
thus specify two versions of this protocol : one in which A ver-
ifies that she has received hpke(f(X,Y), pkey(A, B)) for some
X and Y, and one in which she does not. We do this by spec-
ifying the format of the final message that A receives. If no
check is made, A will accept anything the server sends her. In
this version the final message she receives in her strand is writ-
ten as sign(A; B;n(A,r); N;X1,s) where X1 is a free vari-
able. In the version in which she checks the format, we write
hpke(f(X,Y), pkey(A, B)) instead of XI. Note that the homo-
morphic property of the encryption is specified in both versions,
but is only used in the second version, to unify the message the
server sent (in which f is applied to the encrypted data) with the
message Alice received (in which the encryption function is ap-
plied to the result of computing f). Note also that this check, or the
lack of it, is not easy to specify in the informal, journal level style,
but is straightforward to specify in Maude-NPA, in which the mes-
sage the server sends and the message Alice accepts are specified
separately.

4.2 Homomorphic Needham-Schroeder-Lowe

In [19] Cortier et al. give the following example of the Needham-
Schroeder-Lowe protocol using public key encryption imple-
mented in Electronic Code Book Mode, so that data is

1. A — B:pke(Na; A, B)
2. B— A:pke(Na;Np; B, A)
3. A— B :pke(Ng,B)

There are a number of ways in which either A or B can be
tricked into believing that they have successfully completed a run
of the protocol with another, when in fact this has not happened.
Here is one of the simplest:

1. Ia — B : pke(Ny; A, B)

2. B— I4:pke(N;;Ng; B, A)
This message is intercepted by the intruder, who, thanks to the
homomorphic property, is able to extract

pke(Np, A). He uses this to initiate the protocol with A, posing
as B:

3. Ip *)A:pke(NB;B,A)
4. A — Ip : pke(Na; Np; A, B)

The intruder is now able to extract pke(Ng, B) and use it to
complete its impersonation of A to B.

5. 14 — B : pke(Ng, B).

4.3 Homomorphic Needham-Schroeder Shared Key

This is a version of the Needham-Schroeder shared key protocol, in
which a principal A requests a session key for communicating with
B from a server S. The server sends A the key, encrypted under a
master key shared between A and S. The message containing that
key also contains the same key encrypted under a master key shared
between B and S. A then forwards the encrypted key to B, after
which A and B perform a handshake.

Normally the Needham-Schroeder shared key protocol is spec-
ified using only a single encryption algorithm, but here we spec-
ify three: me used for the outer encryption, e used for the inner



encryption, and se used for the handshake. Only e is homomor-
phic over concatenation, i.e., it satisfies the equation e(X; Y, Z) =
e(X,Z2);e(Y,Z):

1.A— S:A;B;Na
A sends server S a request for a key to share with B.

2.8 — A:me(Na;B; Kap;e(Kap; A, Kps), Kas)
S encrypts a session key K ap and A’s name with K pg using
the homomorphic e operator. It then encrypts that, along with
Kap, B, and N4, with the key K 4 it shares with A using the
me operator, and sends the result to A.

3. A= B:e(Kap;A,Kps)
A removes the outer layer of encryption and sends the inner
encrypted message to B.

4. B— A:se(Np,Kap)

5. A— B:se(s(NB),Kap)
A and B agree that they share a key.

This protocol is vulnerable to an attack using two regular ses-
sions in parallel, where the intruder gets e(Kcp, Kpg) from one
regular execution between C and B and e(A, Kps) from one reg-
ular execution between A and B.

1.C—S:C;B;N¢
C sends server .S a request for a key to share with B.
2.8 — C:me(Nc;B; Kop;e(Kep; C,Kps), Kcs)

S encrypts a session key K¢ g and C’s name with K gg using
the homomorphic operator e. It then encrypts that, along with
Kci, B, and N¢, with the key K¢ g that it shares with C' using
the me operator, and sends the result to C'.

3.C > I(B) : e(Kep; C, Kps)

C removes the outer layer of encryption and sends the inner
encrypted message to B. However, this is intercepted by the

intruder 1.
4. I(A) — B: S(KCB; A, KBS)
Now the intruder [  exploits the fact that

e(Kep;C,Kps) = e(Kcs,Kps);e(C,Kps,) to obtain
e(Kcp,Kps). If A previously requested a key to talk to B,
then the intruder could also have obtained e(A, Kpg) in the
same way. He uses this to construct e(Kcp, Kps); e(A, Kps)
e(KcB; A, Kps), which he then sends to B.

5. B — I(A) : se(NB, KCB)

6. [(B) —C: se(NB,KCB)
B responds according to the protocol, and I forwards his mes-
sageto C.

7.C = B: Se(S(NB),KCB)

C responds according to the protocol. Now B will attribute any
message from C' to A.

4.4 Homomorphic Hash Protocol

In this protocol, A and B use a shared key to agree on a secret
nonce Nj. They use keyed hash functions to guarantee integrity of
their messages, but let us suppose that they use a hash function h
with a fatal flaw. Function A is homomorphic over concatenation,
i.e., it satisfies the equation h(X;Y, Z) = h(X, Z); h(Y, Z).

1.A— B:A;Ny
A starts by sending B her name and a nonce.

2.B— A: NB; e(h(NB; N/B;NA,KAB),KAB);
e(Ng;Na, Kag)
B responds with a nonce and two encrypted messages. Note
that N is only sent encrypted; it is intended to be a shared
secret between A and B.

3. A — B e(h(NB,KAB); h(NA,KAB),KAB);
e(leéhKAB)
A verifies to B that she received his message.

Now it turns out that an intruder can trick B into believing that
he has completed a successful run of the protocol with A even
though A is not present. This is because B can be fooled into ac-
cepting the message he sent in the second step of the protocol as the
message he receives in the third step. We note that since h is homo-
morphic over concatenation, we have h(Np; Np; Na, Kag) =
hNp,Kap);h(Ng; Na, Kag). Thus we have the following at-
tack.

1. I(A) » B: A; N
1 starts by sending B A’s name and a nonce.
2. B— I(A) : NB; e(h(NB; N]/g; ]\7]7 KAB), KAB);
e(Np; N1, Kap)
B responds to A according to the protocol. This is intercepted
by I.
3. ](A) — B: e(h(NB; leg; ]\717 KAB), KAB);
e(N]%; N[, KAB)

I repeats B’s message back to him, only leaving out the N at

the beginning. If B has no way of telling the concatenation of

two nonces from a nonce, he can mistake Ng; Ny for a nonce

Nj. Thus he will mistake e(Np; N1, Kag) for e(Ny, Kag),

and, because of the homomorphic properties of the hash func-

tion, he will mistake e(h(Np; N; N1, Kag), Kag) fore(h(Np,

Kap);h(N)y, Kap), Kap).

5. Search in Maude-NPA

In this section we give a high-level summary of the general ap-
proach advocated in this paper for formally analyzing protocols
modulo their algebraic properties, with particular attention to the
way this approach is implemented in Maude-NPA. For further in-
formation, please see [21, 22].

Given a protocol P, states are modeled as elements of an ini-
tial algebra Tk, ;. , Where Lp is the signature defining the sorts
and function symbols (for the cryptographic functions and for all
the state constructor symbols) and E'p is a set of equations spec-
ifying the algebraic properties of the cryptographic functions and
the state constructors. Therefore, a state is an Ep-equivalence class
[t] € Ts, /e, With t a ground Xp-term. However, since the num-
ber of states T, /g, is in general infinite, rather than exploring
concrete protocol states [t] € Tx,,/, We explore symbolic state
patterns [t(x1,...,Tn)] € T,/ 5, (X) on the free (Xp, Ep)-
algebra over a set of typed variables X. In this way, a state pattern

[t(z1, ...,z )] represents not a single concrete state but a possibly
infinite set of such states, namely all the instances of the pattern
[t(z1,...,x,)] where the variables z1, . . ., z, have been instanti-

ated by concrete ground terms.

In Maude-NPA [21, 22], a state in the protocol execution is
a term ¢ of sort state, t € Tx, /g, (X)state, which is a mul-
tiset. Each element in the multiset can be a strand or the in-
truder knowledge at that state. A strand [24] represents the se-
quence of messages sent and received by a principal execut-
ing the protocol and is indicated by a sequence of messages
[msgy ,msgs ,msg; , ..., msg,_,,msg; | such that msg; €
Ts,/Ep (X)Msg, msg~ represents an input message, and msg ™



represents an output message. Strands are used to represent both
the actions of honest principals (with a strand specified for each
protocol role) and the actions of an intruder (with a strand specified
for each intruder operation). In Maude-NPA, strands evolve over
time; the symbol | is used to divide past and future: [msgi, . . .,
msgj{1 | msgji, msgjﬂl, ..., msgy| where msg{, ..., msg;_,
are the past messages, and msgj.[, msgjiﬂ, . msg,f are the fu-
ture messages (7n$gji is the immediate future message). The in-
truder knowledge is represented as a multiset of facts. There are
two kinds of intruder facts: positive knowledge facts (the intruder
knows m, i.e., meZ), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m§éI),
where m is a message expression.

We illustrate the approach using the homomorphic Needham-
Schroeder shared key protocol from Section 4.3. The strands as-
sociated to the five protocol steps above are given next. There are
three strands, one for each principal in the protocol. Constants and
function symbols are represented by small letters, and variables by
capital letters, with the exception of variables of sort Fresh which
are special variables that can’t be unified with each other once they
appear in a state. and are used for nonce generation. These are de-
noted by small letters and declared within the delimiter :: :: at the
beginning of a strand. Sent messages are prefixed with a 4, and re-
ceived messages with a —. Note that sent messages from one strand
do not always exactly with their corresponding receive messages.
For example, the first message A — S : A; B; N4 is represented
by a message in Alice’s strand sending (A4; B;n(A,r))" and an-
other message in the Server’s strand receiving (A4; B; N)~. When
a principal cannot observe the contents of a concrete part of a re-
ceived message (e.g., because a key is necessary to look inside), a
generic variable is used for such part of the message in the strand
(as with variable IV of sort Nonce above). We encourage the reader
to compare the protocol in strand notation to the presentation of
the protocol in Section 4.3. Note that we first name the principal,
then show the special variable(s) used for nonce generation (framed
within ::), see below, and then the actual strand.

(A) ::r ::
[+ ; B; n(A,r)),
-(me(n(A,r) ; B ; SK ; X , mkey(S, A))),
+(X), -(se(M, SK)), +(se(succ(M), SK)) 1]
(B) :: xr’ ::
-(e(SK ; A, mkey(S,B))), +(se(n(B,r’), SK)),
-(se(succ(n(B,r’)), SK)) ]
(S) :: xr’’ ::
[ -(4;B; N,
+(me(N ; B ; skey(S,r’’) ;
e(skey(S,r’’) ; A, mkey(S,B)),
mkey (S,4))) 1

—

Intruder strands are also included for each function. For ex-
ample, concatenation by the intruder is described by the strand
(307, (V) ", (X;Y) ],

The protocol analysis methodology of Maude-NPA is then
based on the idea of backward reachability analysis, where we be-
gin with one or more state patterns corresponding to attack states,
and want to prove or disprove that they are unreachable from the
set of initial protocol states. In order to perform such a reachability
analysis we must describe how states change as a consequence of
principals performing protocol steps and of the intruder actions.
This can be done by describing such state changes by means of a
set Rp of rewrite rules, so that the rewrite theory (Xp, Ep, Rp)
characterizes the behavior of protocol P modulo the equations Ep;
see [21, 22] for the concrete rewrite rules.

The way to analyze backwards reachability is then relatively
easy, namely to run the protocol “in reverse.” This can be achieved
by using the set of rules R;l, where v — wisin R;l iffu — v

is in Rp. Reachability analysis can be performed symbolically, not
on concrete states but on symbolic state patterns [t(z1,...,2Zn)]
by means of narrowing [26, 36], where at each step of rewriting in-
stead of matching a subterm t’ of a concrete state ¢ with a left-hand
side v we unify v and the state pattern ¢(z1,...,xz,). However,
since our state patterns are not just syntactic terms t(z1, ..., Zn)
but rather Ep-equivalence classes [t(z1, ..., 2Zn)] we cannot just
perform syntactic unification but instead should perform semantic
unification modulo E'p. In other words, we should perform not just
syntactic narrowing for our backwards reachability analysis with
R;l, but narrowing modulo Ep [27, 36]. Note that this is a differ-
ent application of narrowing than the previous use for unification
in Section 3.

FEp-unification precisely models all the different ways in which
an intruder could exploit the algebraic properties E'p of P to break
the protocol; therefore, if an initial state can be shown unreachable
by backwards reachability analysis modulo E» from an attack state
pattern, this ensures that, even if the intruder uses the algebraic
properties E'p, the attack cannot be mounted. This means that
efficient support for E'p-unification is a crucial feature of symbolic
reachability analysis of protocols modulo their algebraic properties
Ep.

6. Unification modulo F},

In this section we outline an algorithm for unification modulo the
homomorphic encryption theory F;, defined by the single oriented
equation e(X;Y, Z) — e(X, Z); e(Y, Z) in a signature containing
symbols e, _;_, and uninterpreted function symbols. Here we only
give a high-level description of the algorithm—some of the details
are omitted and can be found in [2]. Since E} can be viewed as
a one-sided distributivity rule, the inference system given here can
be compared to the one in [43]. We believe the algorithm we use
is simpler and easier to implement, as it does not involve any cycle
checking.

Over the empty theory, two terms with different top-level func-
tion symbols do not unify; but, modulo E}, a concatenation may
unify with an encryption. We extend the standard algorithm for syn-
tactic unification by introducing additional inference rules called
Shaping, Parsing and Failure.

Given the following E}-unification problem: X;Y = e(Z, k),
the only way this can be solved is if X and Y are both encryptions
with key k, so we instantiate X with e(X’, k) and instantiate Y’
with e(Y”, k). This idea is generalized into an inference rule called
Shaping. Once the Shaping rule has been applied, everything is
encrypted with key k, and then we need to remove key k and deduce
that Z = X’;Y’. This can be generalized into an inference rule
called Parsing.

For example, consider the E, unification problem X; e(Y, k2) =
e(e(Z, k1), k2). Here Z has been encrypted by k1 followed by k-.
The pieces of the concatenation must also be encrypted by the same
sequence of keys. So two applications of the Shaping rule will in-
stantiate X by e(e(X', k1), k2), and Y by e(Y”, k1). The result is
e(e(X' k1), k) e(e(Y' k1), k2) = e(e(Z, k1), k). One appli-
cation of Parsing removes key ko everywhere, resulting in e(X’,
k1);e(Y' k1) = e(Z,k1). A second application removes k1, re-
sultingin Z = X';Y".

To summarize, when a concatenation s is equal to an encryp-
tion ¢, each element of s must be a term encrypted with the same
sequence of keys as t is encrypted with. The purpose of the Shap-
ing rule is to guarantee that everything is encrypted by the same
sequence of keys. Once everything has been encrypted by the same
sequence of keys, the Parsing rule can be applied to remove the
outermost key from each key sequence. Several applications of
Parsing will remove all the keys.



At certain times, it can be detected that Shaping cannot make
those key sequences to be the same. There are two rules to han-
dle these cases and detect failure. For example, suppose we have
X;c = e(Z,k) or X;e(c,k2) = e(e(Z,k1),k2), where c is
a constant. In both of these cases, the constant ¢ cannot be in-
stantiated, so it is impossible to make the sequence of keys the
same everywhere, so we fail. This is generalized as the first Fail-
ure rule. A second example of failure is X;Y = e(X,k) or
e(X,k2);Y = e(e(X, k1), k2). Again here we cannot make the
key sequence to be the same, because any instantiation of X on the
left-hand side of the equation will also require the instantiation of
X on the right hand side of the equation, so we fail. This is gener-
alized as the second Failure rule.

The E}-Unification procedure is defined by a don’t-care non-
deterministic application of the inference rules. The terms in the
equations are rewritten so they are kept in £,-normal form, thus
putting concatenations over encryptions.

In a set of equality constraints, a variable x is said to be
solved iff x appears only once and as one side of an equa-
tion. A solved form for Ej-Unification is a set of Ej-equalities
{z1 = t1,--+,xn = tn}, where each z; is a solved variable.
The unification algorithm produces a solved form if the unification
problem is solvable modulo E}; else it returns Fail.

The inference rules in this section have been proved sound,
complete, and terminating in [2] meaning that all solved forms
created by the algorithm are correct solutions of the unification
problem and that for every solution of the unification problem
there is a more They also have been implemented in Full Maude
and integrated into Maude-NPA, using the methods described in
Section 3.2.

7. Finding attacks modulo £}, U ACU using
Maude-NPA

7.1 Multiparty Computation Protocol

We define an attack state for Alice in which the Alice strand
completes, but there is no corresponding Bob strand using the same
data. We do this by including Alices’s strand in the final goal and
putting in Bob’s strand as a “never pattern” [22]. A never pattern is
a pattern denoting a state with partial strand information or positive
intruder knowledge that can never happen within the path from
an initial state to the given attack pattern. These never patterns
are checked by matching modulo E, U ACU, i.e., if any state
in a backwards reachability path matches modulo E, U ACU
with a never pattern, then the path is discarded. Note that we do
not include Bob’s final received message, since it can always be
blocked by the intruder. The attack pattern is as follows, written in
Maude-NPA syntax [22]:

trr, ¥’ oo
[ nil, +(sign( b ; n(a,r) ;
pke (hpke (data(a,r’) ,pkey(a,b)),s),
a)),
-(sign( n(a,r) ; N ; E ,b)),
+(sign( a ; b ; n(a,r) ; N ;
pke(hpke (data(a,r’),pkey(a,b)),s) ; X,

a)),
-(sign (a ; b ; n(a,r) 3 N ; Z, s)) | nil ]
Il empty || nil || nil
|| never(*x* Never Pattern for authentication
trrl, r2

[ nil | -(sign( b ; n(a,r) ;
pke (hpke(data(a,r’), pkey(a,b)),s),
a)),
+(sign( n(a,r) ; N ; E ,b)),
nil ]
& SS:StrandSet || IK:IntruderKnowledge )

This pattern produces the attack we describe in Section 4.1 in
ten steps, most of which involve the intruder removing the nonce
from A’s original message and inserting it into his own message. In
our original specification of the protocol, in which encrypted mes-
sages were not typed, the tool failed to terminate, generating states
in which the encrypted message field was replaced by an ever larger
number of concatenated messages. Although Maude-NPA has in-
ductive methods for avoiding such infinite sequences, they do not
always work, which, given the undecidability of unbounded session
protocol analysis, is not surprising. Instead, when we specified sorts
for the different types of encrypted messages, the tool terminated
in twelve steps (i.e., the search space was finite after twelve back-
wards narrowing steps, while the attack was found at step number
ten). When we specified Alice’s format check, Maude-NPA termi-
nated at the fourth step without finding an attack, for the sorted
version of the protocol, verifying it secure.

We also specified a corresponding attack pattern for B, in which
a B strand completes without a corresponding A strand. In this
case, Maude-NPA terminated in four steps without finding an at-
tack, with and without the final check.

We note that the use of the homomorphic equational theory
makes it very straightforward to specify the final check. To do
something similar in the free theory we would have to either add
extra deductions by A and B, or simply assume that A and B could
recognize data of the form f(hpke(X,Y")) without specifying the
reason why. Either way adds to the complexity of the analysis and
detracts from the intuitive understanding of the protocol.

7.2 Homomorphic Needham-Schroeder-Lowe

For the Needham-Schroeder-Lowe protocol, we defined four attack
states. In the two authentication patterns, Bob (resp. Alice) com-
pletes, apparently with the other party, but Alice (resp. Bob) does
not complete with the same data. These are similar to the state de-
fined in Section 7.1, so are omitted. In the other two , Bob (resp.
Alice) completes, apparently with the other party, but the intruder
learns Bob’s (resp. Alice’s) nonce. The secrecy pattern for Bob is
as follows:

T oo
[ nil, -(pk(a ; NA, b)), +(pk(NA ; n(b,r) ; b,a)),
-(pk(n(b,r), b)) | nil ]
[l n(b,r) inI, empty || nil || nil || nil

and the pattern for Alice is similar. For the Bob authentication pat-
tern, Maude-NPA terminated after ten steps and found three attacks
(including the one described in Section 4.2). For the Bob secrecy
pattern specified above, Maude-NPA terminated after thirteen steps
and found three attacks. For the Alice secrecy and authentication
patterns, respectively, Maude-NPA terminated after ten steps and
found two attacks, and terminated after eight steps and found four
attacks.

7.3 Homomorphic Needham-Schroeder

One of the purposes of this protocol was to give a “stress test” to
Maude-NPA and thus at the beginning we used only one encryp-
tion algorithm for the entire protocol, which was homomorphic
with respect to concatenation. We used an attack state in which
Bob completes an instance of the protocol as a responder, appar-
ently with Alice as initiator but Alice does not complete the corre-
sponding instance of the protocol with B. This caused an enormous
state explosion, and the tool did not complete or find an attack. We
tried again using three cryptosystems, only one homormorphic. We
again suffered from a state space explosion, but we noticed that
the tool was spending much of its effort in searching for the term
e(A,mkey(b, s)). In order to eliminate this, we changed the speci-



fication to say that the intruder knows this term initially, thus elim-
inating the search for it. Since the production of e(A, mkey(b, s))
was the only place in which Alice’s initiation of an instance of the
protocol with B was needed, we could now specify a much weaker
security property, in which Alice never initiates any instance of the
protocol with Bob at all. This requires us to rule out not only any
complete Alice strand initiated with Bob, but any aborted strands
as well. In the Maude-NPA model any strand that is enabled for
a send will send, so strands can only abort when they are enabled
for a receive. There are two places where Alice’s strand is enabled
for a receive: after she has sent the initiation message, and after she
has forwarded the session key to Bob. This gives us three never pat-
terns: one for Alice’s full strand, and two for the two partial strands.
Our attack pattern is thus as follows:

iroroo:
[ nil, -(e(SKEY ; a , mkey(b,s))),+(se(n(b,r), SKEY )),
-(se(succ(n(b,r)), SKEY)) | nil ]

Il empty || nil || nil
|| never( *** Never Pattern for authentication
(::r> :: [nil | +(a ; b ; n(a’,1)),

-(Z), +(X), -(Y), +(W), nil ]

& S:StrandSet || K:IntruderKnowledge )

**xx Never Pattern for authentication
(::r ?:: [nil | +(a ; b ; n(a,r’)), -(Z), +(X), nil ]
& S:StrandSet || K:IntruderKnowledge )
**x* Never Pattern for authentication
:: [nil | +(a ; b ; n(a,r’)), nil ]
& S:StrandSet || K:IntruderKnowledge ) )

Maude-NPA found the attack in seven steps. However, Maude-
NPA does not terminate immediately upon finding an attack, but
continues to search until it has exhausted the search space. In this
case, although it did find the attack, the complete search still did
not terminate. Interestingly, we were not able to find evidence
that Maude-NPA was generating any infinite paths in its search.
Rather, the use of homomorphic encryption gave the intruder so
many opportunities for generating different types of states that it
overwhelmed the tool. Thus, this protocol did turn out to provide
an excellent opportunity for stress testing, and likely will be useful
for benchmarking in future work.

7.4 Homomorphic Hash Protocol

This protocol uses a keyed hash algorithm that is homomorphic
over concatenation. This protocol was designed in order to demon-
strate how Maude-NPA can reason about situations in which stan-
dard augmented intruder inference rules would not be applicable.
In this protocol the homomorphic hash is hidden under a non-
homomorphic encryption, so applying augmented inference rules
—as explained in Section 2— that say, for example, that the in-
truder learns h(X, K); h(Y; K) if he knows h(X;Y, K) would
not apply. However, the intruder can still use this property to fool
honest principals, even if he can’t apply it to learn anything new
himself.

For this protocol we showed that a very weak security property
fails to hold: Bob can execute an instance of the protocol as respon-
der without any initiator strand executing, even a partial one. Only
initiator strands are of the form
crrl , r2 :: [ nil | +X) , 1 , so we specify the
attack state as follows:

i r, 1’
[ nil, -(a ; NA),
+(@(,r) ; ed( n(b,r) ; n(b,r’) ; NA, mkey(a,b)),
mkey (a,b))
; e(n(b,r’) ; NA, mkey(a,b))),
-( e( h(n(b,r), mkey(a,b)) ;
h(NA’, mkey(a,b)), mkey(A,B))

; e(NA’, mkey(a,b))) | nil ]
Il empty || nil || nil
|| never( *** Never Pattern for authentication
(::x22, 272 [ nil | +X), -CY), +(W), nil ]
& S:StrandSet || K:IntruderKnowledge )
**xx Never Pattern for authentication
(:: v, [ nil | +(X), nill
& S:StrandSet || K:IntruderKnowledge))

This produces the attack described in Section 4.4. In this case
the tool found the attack in four steps without our needing to
add never patterns. However, after finding the attack, the tool
demonstrated the same type of state explosion as the homomor-
phic Needham-Schroeder protocol. This happened as the result of
several paths in which the intruder engaged in the protocol as a
legitimate user of the system. The intruder thus was able to decrypt
the hash and use its homomorphic property to break the hashed
message into its components, resulting in a large number of states
in which these parts were mixed and matched in different ways.

7.5 Discussion

As we can see, there was considerable variation in Maude-NPA’s
performance. It behaved well on the multi-party computation pro-
tocol, and on Cortier et al.’s ECB Needham-Schroeder-Lowe proto-
col. However, it suffered from combinatorial state explosion prob-
lems on the two other ECB protocols, even though their complexity
was about the same as the multi-party computation protocol.

This, however, should not be a surprise. In general, extremely
insecure protocols should be expected to give rise to a larger state
space than more carefully designed ones, no matter what search
strategy is used. There will be few possible paths through a sound
protocol, while an unsound one will generate multiple paths. Thus
even in the simplest ECB case, ECB Needham-Schroeder-Lowe,
the tool found multiple attacks for each attack pattern.

However, even though the examples we encountered here were
somewhat pathological, it can still be useful to have methods for
dealing with them. Similar problems can arise when reasoning
about protocols that employ long strings of concatenated messages,
since the intruder can try different ways of combining different
components. One possible approach to dealing with this is to em-
ploy some of the techniques that the NRL Protocol analyzer (NPA)
[35] used to reduce state space size. One was the use of grammars,
which are used both by the NPA and Maude-NPA to prove that cer-
tain terms could not be learned by the intruder unless they were
cases of a list of excepted terms. When the NPA encountered such
a term, it would unify the term with the exceptions, creating a new
state for each exception [34]. Maude-NPA merely checks whether
or not the condition holds [22]. This results in a cleaner model, but
could contribute to increasing the size of the search space, since
the tool deals with more general terms when more specific ones
are available. Another feature that the NPA offered was the ability
to generate lemmas about the unreachability of patterns of states
encountered in a search. The identification of such patterns was
manual and extremely tedious. But in Maude-NPA we have auto-
mated many procedures that were done manually in the NPA, and
so these patterns may be a good topic to investigate. A third is the
ability to not search for terms that can be easily be shown to be find-
able by the intruder, as we did for the Needham-Schroeder shared
key example. This again could be specified manually in NPA, but
again we can explore automated techniques to recognize, for ex-
ample, terms that could be generated in an honest execution of the
protocol with which the attacker does not interact.

8. Conclusions and Future Work

In this paper we described the first steps in dealing with unification-
based cryptographic protocol analysis using homomorphic encryp-



tion. We developed a Maude implementation of a unification algo-
rithm for homormorphic encryption over a free operator, and in-
tegrated it into Maude-NPA using a modular framework. Finally,
we demonstrated the modular approach by applying Maude-NPA
to examples and analyzed the results.

We are continuing to develop a library of dedicated unification
algorithms for various cryptographic theories. Indeed, progress in
this area has already been made; an efficient unification algorithm
for unification modulo exclusive-or has been developed and imple-
mented in Maude, and is currently being integrated with Maude-
NPA. It is also being extended to an Abelian group unification algo-
rithm. We plan to compare these with the folding variant narrowing
approach already available in Maude-NPA.

Of particular interest, of course, is the extension of our approach
to unification modulo more sophisticated homomorphic encryp-
tion theories, specifically encryption homomorphic over an Abelian
group, which will allow us to apply our work to a number of real-
istic applications. Unfortunately the most straightforward way of
achieving this in our model, via folding variant narrowing over en-
cryption homomorphic over an AC operator, is not available to us,
because unification modulo encryption homomorphic over an AC
theory is known to be undecidable [38]. However, unification mod-
ulo encryption homomorphic over an Abelian group is decidable,
giving us several ways to proceed. We could either determine if we
could restrict ourselves to decidable subcases via judicious use of
sorts, or we could incorporate existing unification algorithms ap-
plicable to encryption homomorphic over Abelian groups, e.g. the
algorithm of Kapur et al. [28] into Maude-NPA. We are investigat-
ing these options.
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