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Abstract
To achieve end-to-end security, traditional mackimenachine security measures are insufficienthd t
integrity of the human-computer interface is conmpiseed.GUI logic flaws are a category of software
vulnerabilities that result from logic bugs in Gdésign/implementation. Visual spoofing attacks thqtloit
these flaws can lure even security-conscious useperform unintended actions. The focus of thisepas
to formulate the problem of GUI logic flaw and tevélop a methodology for uncovering them in softwar
implementations. Specifically, based on an in-degptisly of key subsets of Internet Explorer (IE)wser
source code, we have developed a formal modelHerbrowser GUI logic and have applied formal
reasoning to uncover new spoofing scenarios, inodine for status bar spoofing and four for adsirdar
spoofing. The IE development team has confirmethalie scenarios and has fixed most of them im thei
latest build. Through this work, we demonstratet tharucial subset of the visual spoofing vulnelitibs
originate from GUI logic flaws, which have a we#fthed mathematical meaning allowing a systematic
analysis.

Keywords: Visual Spoofing, GUI Logic Flaw, Formal Methods, ML, End-to-End Security

1. Introduction
Today, the trustworthiness of the web relies onube of machine-to-machine security protocols (e.g.
SSL or TLS) to provide authentication over the in&t to ensure that the client software (i.e.,dh@vser)
communicates with the intended server. Howeverh sugstworthiness can be easily shattered by tbe la
link between the client machine and its user (Fgdfa)). Indeed, the user-interface trust should be
considered as a part of ttrasted pathproblem in secure communications [7][8][25]
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Figure 1; (a) Weak Machine-User Link (b) Status Bar Spoofing (c) Address Bar Spoofing

The exposure of the machine-user weakness is maed to non-technical social engineering attacks
where naive users are fooled to click on an anlyitrgzperlink and download malicious executableshaiitt
any security awareness. Even for a technology-sany security-conscious user, this last link can be
spoofed visually. As shown in Figure 1(b), evea miser examines the status bar of the email diiefdre
she clicks on a hyperlink, she will not be ablédibthat the status bar is spoofed and she willgeie to an
unexpected website, ndittps://www.paypal.comFurthermore, as shown in Figure 1(c), even ifsaru
checks the correspondence between the URL displaytke browser address bar and the top level vegie p
content, she will not realize that the addressibapoofed and the page comes from a malicious siteb
Indeed, the combination of the email status baofpg and the browser address bar spoofing can give
rather “authentic” navigation experience to a falkayPal page. Even SSL is not helpful — as shown in
Figure 1(c), the spoofed page contains a valid Blagertificate. Obviously, this can result in mangd
consequences, such as identity theft (e.g. phishinglware installation, and gullibility on fakedws.

Visual spoofing attack is a generic term referriagany technique producing a misleading GUI to gain
trust from the user. Design/implementation flawal#img such attacks are already a reality and e
sporadically discovered in commodity browsers [22][23], including IE, Firefox, and Netscape Navima
This paper focuses on a class of visual spoofitaglks that exploiGUI logic flaws which are bugs in the
GUI's design/implementation that allow the attactepresent incorrect information in parts of thhe&ntic
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GUI that the user trusts, such as the email chéatus bar and the browser address bar. Figureah¢b)c)
are just two instances of many such flaws that iseadered using the technique described in thigpap

A second class of visual spoofing attack is to exgraphical similarities, which has been exteabiv
discussed in previous research work [6][8][24][28&hd is more familiar to the research and industry
communities. These attacks exploit picture-in-pieteendering [25] (i.e., a faked browser windowwdna
inside a real browser window), chromeless window.(e& window without the address bar or the status
[8][25]), pop-up window covering the address bad aymbol similarity (e.g.,2” vs. “I”, “wv”’ vs. “w” [6],
and non-English vs. English characters). We ddemis on such attacks in this paper, but briefgcdss in
Section 5 how the graphical similarity problems lae¢éhg addressed by researchers and browser vendors

Our goal is to formulate the GUI logic problem a@ndievelop a systematic methodology for uncovering
logic flaws in GUI implementations. This is analogoto the body of work devoted to catching software
implementation flaws, such as buffer overruns, datzes, and deadlocks, through the means of static
analysis or formal methods. Nevertheless, a unidpadienge in finding GUI logic flaws is that theffaws
are about what the user sees — user’s vision a@i@haare integral parts of the spoofing attackseréfore,
the modeled system should include not only the BYIc itself, but also how the user interacts with

In a nutshell, our methodology first requires magpa visual invariant, such as “the URL that a user
navigates to must be the same as that indicatéeostatus bar when the mouse hovers over an etéman
static HTML page”, to a well-defined program inaan, which is a Boolean condition about user shaie
software state. This mapping is done based on-depth understanding of the source code of thevaodt
Our goal is then to discover all possible inputghte software which can cause the visual invariarite
violated. In the example of finding status bar gpmpscenarios, we want to discover all HTML docurine
tree structures that can cause the inconsisterigyeba the URL indicated on the status bar and Rk that
the browser is navigating to upon a click eveng thsulting HTML tree structures can be used tdt cra
instances of status bar spoofing. To systematiclhve these scenarios, we employ a formal reagaoil
to reason about the well-defined program invariant.

The methodology is applied to discover two clasgamportant GUI logic flaws in IE. The first clags
the static-HTML-basedtatus-bar spoofingFlaws of this class are critical because stafiddd pages (i.e.,
pages without scripts) are considered safe to beered in email clients (e.g., Outldoknd Outlook
Express) and to be hosted on blogging sites anidlsaoetworking sites (e.gmyspace.cojnand the status
bar is the only trustworthy information source fe user to see the target of a hyperlink. Thermtctass
of flaws we studied is the I&Bddress bar spoofingvhich allows the malicious website to hide itsettURL
and pretend to be a benign site. In both caseestudie use the Maude formal reasoning tool [2]eve
these spoofing scenarios, taking as input the tlep®4&JI logic, program invariants, and user behavior

We have discovered nine canonical HTML tree stmgdtueading to status bar spoofing and four
scenarios of address bar spoofing. The IE develapteam has confirmed these scenarios and fixeeele
of them in the latest build, and scheduled to i@ temaining two in the next version. In additiorfinding
these flaws, we made the interesting observatiah riiany classic programming errors, such as semanti
composition errors, atomicity errors and race cooné are also manifested in the context of the GUI
implementation. More importantly, this papgmonstrates that GUI logic flaws can be expressedell-
defined Boolean invariants, so finding these flasvdone by inference about the violations of thaitants.

The rest of the paper is organized as follows.i&e@& gives an overview of our methodology. Sedion
3 and 4 present case studies about status barrspaoid address bar spoofing with IE. We presentraber
of discussions in Section 5. Related work is giveSection 6. Section 7 concludes the paper.

2. Overview of Our Methodology
2.1 Our Analysis Approach

Figure 2 shows the major steps of our approachedas formal analysis techniques. Existing formal
analysis techniques have already been successfuleasoning about program invariants, e.g., the
impossibility of buffer overrun in a program, guaieed mutual exclusion in an algorithm, deadloelediom

! Outlook does not show the target URL on the staarsbut on a small yellow tooltip near the moasesor. Because IE, Outlook
and Outlook Express use the same HTML engine, stastis bar spoofing scenarios can be transformesntil format to spoof
Outlook tooltip and Outlook Express status bar.
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in a concurrent system, secrecy in a cryptograptotocol, and so on. These program invariants maelé
defined mathematical meaning. Uncovering GUI loidgevs, on the other hand, requires reasoning about
what the user sees. The “invariant” in the useistom does not have an immediately obvious mathiealat
meaning. For example, the visual invariant of ttaeus bar is that if the user sdes.comon the status bar
before a mouse click, then the click must navigatthefoo.compage. It is important tmap such a visual
invariant to a program invarianin order to apply formal reasoning, which is shagnstep (A) in Figure 2.

The mapping between a visual invariant and a prognavariant relies on the logic of the GUI
implementation, e.g., a browser’s logic for mouaadiing and page loading. An in-depth understanding
the logic is crucial in deriving the program imari. Towards this goal, we conducted an extengivdy of
the source code of the IE browserdrtract pseudo code to capture the logshown as step (B)). In
addition, we needed to explicitgpecify the “system statéShown as step (C)), including both the browser’'s
internal state and possibly what the user memar&e=ps (D) and (E) depict the formalizatiortlod user’'s
action sequencandthe execution contexts the inputs to the program logithe user’'s action sequence
an important component in the GUI logic problemr Example, the user may move and click the mouse, o
open a new page. Each action can change the sg&iéen Another input to specify is tegecution context
of the system, e.g., a web page is an executiotexofor the mouse handling logic — the same lagid the
same user action, when executed on different wgbgaan produce different results.

When the user action sequence, the execution doritex program logic, the system state and the
program invariant are formally specified on thesmrdang engine, formal reasoning is performed takhi
the user action sequence applied on the systemingirin the execution context violates the program
invariant. Each discovered violation is output ago#ential spoofing scenario, which consists of tiser
action sequence, the execution context and thecinée steps leading to the violation. Finally, wanmmally
map each potential spoofing scenario back to awedld scenario (shown as step (F)). This involaes
effort to construct a webpage that sets up thewtiarcontext and lures the user to perform thsast

Real world | Formal world

(]

(A)

B)

D

: | : ;
v | Source code User’s action oo I_OgicThe modeled system
H of browser GUI sequence (pseudo code) (C)

Speci;fing Visual ‘\\<..
scenario invariant \;’j’.\
Figure 2: Overview of Our Methodology

2.2 Background: Formal Verification of Invariantsin Maude

We formalize this problem within the logical framesk of rewriting logic [12]. The corresponding
reasoning engine is the Maude system [2]. In thjzep, we use the term “Maude” to refer to bothMaeide
system and the language understood by it

In Maude, the states of a system are representsgirbigolic expressions, and the system transitioms a
specified byrewrite rulesindicating how a state is transformed into anotl@r. example, if we want to
specify a 24-hour clock marking only the hours,caa declare a state constructor operakock so that,
say,clock(7) andclock(21) are two different clock states. In this exampler¢his only one rewrite
rule “ticking” the clock to the next hour. The closystem is specified as follofvs

type CLOCK . varT:Int.
operator clock : Int -> CLOCK .
rule clock(T) => clock((T + 1) rem 24) . /* This rule specifies the “ticking” */

wherelnt is the built-in data type of integers, a new tggOCKof clock states is defined, and the state
constructorclock is declared as avperator  that takes aint and produces @LOCK The clock "tick"

violation

Potential spoofing
E \ N u. A _ Program scenarios (Instances
- 7 O')\ * System state invariant of execution contexts

f;(netceuxttlon | that lead to spoofi
N Reasoning Engine

4 4

L5

2 Similarly, people use the term “Perl” interchartygdor the Perl interpreter and the Perl language.
% In this paper, we use a syntax slightly differeotf Maude's.
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transitions are specified by a rewrite rule introgd with therule  keyword, which rewrites a given clock
marking timeT to one marking time(T+1) rem 24) , that is, the remainder ¢T+1) divided by 24. For
examplegclock(23)  will be rewritten toclock(0)

Once a system is specified, Mauds#arch command can be used to verifiyariants An invariant is
a predicate that holds of an initial state and lbfstates reachable from it. Suppose the initiatestis
clock(0) , and the invariant to verify is that the timemirks will always be greater than or equal to 0 and
strictly smaller than 24. An invariant is verifidey searching for any states violating it, i.e., Biates
satisfying thenegationof the invariant. For our example, this can beeadaith thesearch command:

search clock(0) => clock(T) such that ((T < 0) or (T >= 24))

This search command respondéo solution. Therefore, the invariant is verified. In case an
invariant is violated, the result will showtiace indicating the series of transitions leading te tfiolation.
For a toy example like the one above, informal eeasy may convince us that a given invariant hoRig
for complex situations, for example, the completeiiactions between a user and a web browser, formal
verification is needed in practice. This is exadtig way Maude is used in our work. As we explain i
Sections 3.3 and 4.3, IE's status bar and addegdedics are specified by rewrite rules in Maualed the
search command is used to search for spoofing scenarios.

3. Case Study 1. StatusBar Spoofing Based on Static HTML

Many web attacks, such as browser buffer overraress-site scripting attacks, browser cross-frame
attacks and phishing attacks, require the useatigate to a malicious URL. Therefore, it is imgort for
the user to know the target URL of a navigationjclvhis displayed on the status bar before the ciggks
the mouse. A status bar spoofing is damagingdéit be constructed using only static HTML (i.e thwit
any active content such as JavaScript), becausen@)l clients, e.g., Outlook and Outlook Expressider
static HTML contents only, and email is an impottaredia to propagate malicious messages; (ii) biagg
sites and social networking sites (ergyspace.cojrusually sanitize user-posted contents to remaoripts,
but allow static HTML content.

3.1 Background: Representation and Layout of an HTML Page

Background knowledge about HTML representation pgeaequisite for this case study. We give a brief
tutorial here. An HTML page is represented as a #teucture, namely Bocument Object Moddtee, or
DOM tree Figure 3 shows an HTML source file, its DOM treed the layout of the page. The mapping
from the source file (Figure 3(A)) to the DOM tr@ggure 3(B)) is straightforward — elemeftenclosing
elementB is represented b being the parent d@ in the DOM tree. The tree root is ghtml> element,
which has achead> subtree and &body> subtree. The<body> subtree is rendered in the browser’s
content area. Since status bar spoof is causedsdryinteractions with the content area, we focughen
<body> subtree in this case study.

(A) HTML Source File (B) DOM TREE (C) Element Layout (D) Element
<html> <html> — S
<head><title>Page</title></head> /\ Pt ] &S
<b0dy> bod A @ 6| Lo . T Toward the user
<a href="http://paypal.com"> <head>  <body> oBEEme VB
<img src="a.jpg"> = B(|——5 Pod» \ S || \
<la> <a> <button> o & <a> <button>
<button> My button </button> ) / g \ <body>
</body> <tite>" 5
</html> 'mg © |S=status bar 3 vy conputr

Figure 3: DOM Treeand Layout of an HTML Page

Figure 3(C) shows the layouts of elements fromuber's viewpoint. In general, parent elements have
larger layouts to contain children elements. Cohealy, these elements are stacked upwards (toverd
user), with<body> sitting at the bottom (see Figure 3(D)). In HTMka> represents an anchor, and
<img> represents an image.

4 A status bar spoof using a script is not a mageusty concern - it gets into a chicken-and-egggsion: a well-known site does not
run an arbitrary script supplied from an arbitraource. For a script to do a spoof, the victim umsyds to visit the attacker’s site to
run the script, but the whole purpose of a statusspoof is exactly to lure the victim to visit tattacker’s site.
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3.2 Program L ogic of Mouse Handling and Status Bar Behavior
Mouse handling logic plays an important role intistabar spoofs. We extracted the logic from the IE
source code. It is presented here using pseudq whiteh will be formalized in Section 3.3.

3.2.1 Central Logic

The mouse device can generate several raw mess&pes. a user moves the mouse onto an element
and clicks on it, the sequence of raw messagesistenef several MOUSEMOVE messages, an
LBUTTONDOWN (i.e., left button down) message, ahdrt a LBUTTONUP (i.e., left button up) message.

The core functions for mouse handling @eMouseMessage andSendMsgToElem, which dispatch
mouse messages to appropriate elements. Everymié&me its specific virtual functiotéandleMessage
DoClick andClickAction to implement the element’s behaviors.

Each raw mouse message invokesOmMouseMessage call (pseudo code shown in Table 1). The
parameterelement is the HTML element that is immediately under theuse cursor. The parameter
message is the type of the message, which can be eithelUBEMOVE, or LBUTTONDOWN, or
LBUTTONUP. An OnMouseMessage call can potentially send three messages to HTMents in the
DOM tree: i) ifelement is different fromelementLastMouseOver , which is the element immediately
under the mouse in the most rec@miMouseMessage call, then a MOUSELEAVE message is sent to
elementLastMouseOver ; ii) the raw message itself (i.emessage) is sent toelement ; iii) if
element is different fromelementLastMouseOver , a MOUSEOVER message is senetement .

Table 1. OnMouseMessage and SendMsgToEl em

OnMouseMessage(element,message) { SendMsgToElem(message,element) { \
if (element != elementLastMouseOver) btn = element.GetAncestor (BUTTON)) body
SendMsgToElem(MOUSELEAVE, if (otn 1= NULL && message == LBUTTONUP ) | "
elementLastMouseOver) element = btn Y
repeat el
SendMsgToElem(message, element) BubbleCanceled = loopElement->HandleMessage(message) \ ;
loopElement = loopElement->parent e2 s
if (element != elementLastMouseOver) until BubbleCanceled or loopElement is the tree root | \;
SendMsgToElem(MOUSEOVER, element) _ e3
elementLastMouseOver = element if (message == LBUTTONUP) . .
} element->DoClick() /Ihandle mouse single click )
) Bubbling

In the functionSendMsgToElem() , btn is the closesButton ancestor oklement . If btn exists
andmessage is LBUTTONUP (i.e., a click), thealement becomes the buttdstn . It essentially means
that any click on a descendant of a button isdkas a click on the button. Thennassage bubblinlpop
begins — starting fromlement , the virtual functiorHandleMessage of every element along the DOM
tree path is invoked. EaddandleMessage call can cancel or continue the bubble (i.e., lreat of or
continue the loop) by setting a BooleBabbleCanceled . After the bubbling loop, a mouse click is
handled by calling the virtual functidboClick of element , whenmessage is LBUTTONUP.

3.22 HTML Element Behaviors
An object class is implemented for each type of HT®ement, such adnchor , Form, Button
InputField , Label , Image, etc. These object classes inherit fromAlbstractElement base class.

The three virtual functions ofAbstractElement , hamely, HandleMessage , DoClick and
ClickAction , implement default behaviors of real HTML elemertbstractElement::DoClick
(i.e., functionDoClick of AbstractElement) implements a loop to invok&lickAction of each

element along the DOM tree path, similar to thelbuly in SendMsgToElem. HandleMessage  and
ClickAction of AbstractElement are basically “placeholders” — they simply retumorder to
continue the bubble.

Each HTML element class can override these viffiuattions ofAbstractElement to implement its
specific behaviors. A subset of virtual functiorigtee Anchor , Label andlimage elements are shown in
Table 2. These examples demonstrate the complexity in thesembandling logic due to the intrinsic
behavioral diversity of individual elements and pgussible compositiongor example, when the mouse is
over an anchor, the target URL of this anchor will be displayeds @he status bar by calling
SetStatusBar , and the bubble continues, as indicatednghor::HandleMessage . When an anchor
is clicked,FollowHyperlink is called to jump to the target URL, and the beliblcanceled, as indicated
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in Anchor::ClickAction . When the mouse is over a label, there iSatGtatusBar call, and the
bubble is canceled. According to the HTML speciiima, alabel can be associated with another element in
the page, which is called=brElement . Clicking on the label is equivalent to clickimn ForElement ,

as shown irLabel::ClickAction . An image element can be associated witinap which associates
different screen regions on the image with difféetanget URLs. When the mouse is over a regionJURé

of the region is set to the status bar, as indicatémage::HandleMessage . When the mouse clicks on
the region, & ollowHyperlink call is made, as indicated image::ClickAction . If an image is
not associated with map then the URL of the containing anchor of the imdge., the closest ancestor
anchor of the image on the DOM tree) determinestatels bar text and the hyperlink to follow.

Table 2: Virtual Functions of Anchor , Label and | nage Elements

Bool Anchor::HandleMessage(message) { Bool Label::HandleMessage(message) { Bool Image::HandleMessage(message) {
switch (message) switch (message) if a map is associated with this image
case LBUTTONDOWN case MOUSEOVER MapTarget = GetTargetFromMap();
or LBUTTONUP: or MOUSELEAVE: switch (message)
return true;  //cancel bubble return true; //cancel bubble case MOUSEOVER:
case MOUSEOVER: Other: SetStatusBar(MapTarget)
SetStatusBar(targetURL) return false; return true;
return false; //continue bubble } else ...
Other:
return false; Bool Label::ClickAction() { Bool Image::ClickAction() {
} forElement = GetForElement() if a Map is associated with this image
if (forElement != NULL) MapTarget = GetTargetFromMap();
Bool Anchor::ClickAction() { forElement->DoClick(); FollowHyperlink(MapTarget);
FollowHyperlink(targetURL); return true; else pAnchor=GetContainingAnchor();
return true; /I cancel bubble } pAnchor->ClickAction();
} return true;
}

3.3 Formalization of the Status Bar Spoofing Problem

The visual invariant of the status bar is intuitwthat the target URL of a click must be identitalthe
URL displayed on the status bar when the user dtopsnouse movement. The negation of this invariant
defines a spoofing scenario: First, MOUSEMOVE mgssaon elements;00,, ... , Q, invoke a sequence
of OnMouseMessage calls. When the mouse stops moving, the user aisplee status bar and memorizes
benignURL . Then, an LBUTTONDOWN and an LBUTTONUP messages ra@ceived, resulting in a
FollowHyperlink(maliciousURL) call, wheremaliciousURL s different frombenignURL .

o OnMouseMessage
OnMouseMessage .| OnMouseMessage ,| OnMouseMessage - OnMouseMessage | g
(0,,MOUSEMOVE) (0,,MOUSEMOVE) (0,,MOUSEMOVE) (0,,LBUTTONDOWN) (0,,LBUTTONUP)

benignURL is captured in
this status bar snapshot

Figure 4: Function Level View of the Negation of the Status Bar Visual I nvariant

We now apply the methodology described in Figure 2.

1) Specifying the user action sequence and theudgaccontext(Steps D and E in Figure 2). A
challenging question is how the spoofing possib#itcan be systematically explored, given thatwebé
page can be arbitrarily complex and the user'ssacequence can be arbitrarily long. Canonicabmais a
common form of abstraction used in formal reasomiragtice to handle a complex problem space. Her th
particular problem, our goal is to map a set ofr @s#ion sequences to a singknonicalaction sequence
and map a set of web pages to a simgleonical DOM treeBecause any instance in the original problem
space only trivially differs from its canonical for we only need to explore the canonical stateespafind
all “representative” instances.

1.1) Canonicalization of the user action sequennegeneral the user action sequence consists of a
number of mouse moves, followed by a status bareiction, followed by a mouse click (button down and
up). In a canonical action sequence, the numbenamise moves can be reducedvm. This is because,
although each MOUSEMOVE can potentially updatesta¢us bar, the status bar is a memoryless olsject,
the whole sequence of status bar updates is eguivial the last update. Thus, a canonical actigunesgce
from element O1 to element O2 can be representethdéyule below: (the semicolon denotes sequential
composition, and the MOUSEOVER on O1 invokes tlsé Ugpdate of the status bar before the mouse arrive
at O2. Note that O1 and O2 can be the same eléement.

FollowHyperlink (maliciousURL)
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operator CanonicalActionSegence: Element Element -> ActionList .
rule CanonicalActionSeqgence(01,02)
=>[ onMouseMessage(O1,MOUSEMOVE) ; onMouseMessage(O2,MOUSEMOVE) ; Inspection ;
onMouseMessage(O2,LBUTTONDOWN); onMouseMessage(O2,LBUTTONUP) ] .

1.2) Canonicalization of the execution context.(iROM trees) In general a DOM tree may have
arbitrarily many branches, but we can restrictrienber of branches of a canonical DOM tree to astmo
two. This is because the canonical action sequenc&ins at most two MOUSEMOVES - the third branch
of the DOM tree would be superfluous as it would reeive any mouse message. Each HTML element in
the DOM tree is represented as an object with guaidentifier, a class, a parent attribute (speuf the
DOM tree structure) and possibly other attribui&® currently modeAnchor , Button , Form, Image,
InputField andLabel element classes, plusBady element at the root. For example, the Maude term
< O | class:anchor, parent:O’ > represents anchor element O whose parent is @’a@alysis
is restricted to canonical DOM trees of bounded szt sufficiently rich to uncover useful scenarios
Currently we have analyzed all one- and two-brdd€M trees with at most six elements. We also specif
rules so that all canonical DOM trees satisfy #guired HTML well-formedness restrictions, e.g. aschor
cannot be embedded in another anchor, an Inputéaeidnly be a leaf node, etc.

2) Specifying system state and state transiti@tep C in Figure 2). The system state includes th
browser statestatusBar  and the user statmemorizedURL . State transitions are triggered by the
SetStatusBar  action and the userlaspection  action as below, wherl is an arbitrary action list.

const Inspection : Action . operator SetStatusBar : URL -> Action . vars AL : ActionList. vars Url, Url" : URL .
rule [SetStatusBar(Url) ; AL ] statusBar(Url’) => [AL] statusBar(Url) .
rule [Inspection ; AL] statusBar(Url) memorizedURL(Url') => [AL] statusBar(Url) memorizedURL(Url) .

The first rule specifies the semanticsS#tStatusBar(Url) . if the current action list starts with a
SetStatusBar(Url) action, and the status bar displayd’ , then after this action is completed, it
disappears from the action list, and the status ibanpdated toUrl . The second rule specifies the
Inspection  action: ifstatusBar  displaysUrl, thememorizedURL is an arbitrary valu&rl’ , and
the action list starts witlmspection , then after the inspection is madiespection disappears from
the action list, and the URL on the status bapjsed to the user’'s memory, i.eagmorizedURL .

3) Modeling the program logiStep B in Figure 2). Modeling the functions shawiTable 1 and Table
2 is straightforward using Maude, e.gandleMessage andClickAction of theAnchor element are
specified in Table 3. Other functions in the progdagic are modeled in a similar manner.

Table 3: Rulesto specify Handl eMessage and Cl i ckAct i on of Anchor

vars M: Message O: Element AL:ActionList .
rule [AnchorHandleMessage(O,M) ; AL] [¥** rule 1 ***/ rule [AnchorHandleMessage(O,M) ; AL]  /*** rule 3 ***/
=> [cancelBubble ; AL] =>[no-op ; AL]
if M == LBUTTONUP or M == LBUTTONDOWN . if M is not LBUTTONUP, LBUTTONDOWN or MOUSEOVER .
rule [AnchorHandleMessage(O,M) ; AL] < O | targetURL: Url, ...> rule [AnchorClickAction(O) ; AL] < O | targetURL: Url, ... >
=> [SetStatusBar(Url) ; AL] < O | targetURL: Url , ... > => [FollowHyperlink(Url) ; cancelBubble ; AL]
if M == MOUSEOVER . [¥** ryle 2 ***/ < O |targetURL: Url, ... >. [*** rule 4 ***/

It is easy to verify that these rules indeed failllgfspecify the behaviors of anchor shown in Table
1: Rule 1 specifies that if an action list starithvan AnchorHandleMessage(M,0)  action, this action
should rewrite to @ancelBubble , if Mis LBUTTONUP or LBUTTONDOWN. Rule 2 specifies thaiM
is MOUSEOVER,AnchorHandleMessage(M,O) should rewrite toSetStatusBar(Url) , Where
Url is the target URL of the anchor. For any otheetgp messag®l, AnchorHandleMessage(M,O)
should rewrite tono-op to continue the bubble, which is specified by rd8e Rule 4 rewrites
AnchorClickAction(O) to the concatenation d¢followHyperlink(Url) and cancelBubble
where Url is the target URL of the anchor.

4) Specifying the program invariaftbtep A in Figure 2). The only remaining questisrhow to define
the negation of the program invariant to find stdtar spoofs. It is specified as the pattern sedrébr in the
search command:

const maliciousUrl , benignUrl , empty : URL . vars O1, O2: Element Url: URL AL: ActionList .
search CanonicalActionSequence(01,02) statusBar(empty) memorizedUrl(empty)
=> [FollowHyperlink(maliciousUrl) ; AL] statusBar(Url) memorizedUrl(benignUrl) .



This gives a well-defined mathematical meaning tatus bar spoofing scenarios: “the initial term

CanonicalActionSequence(01,02) statusBar(empty) memorizedUrl(empty) can
rewrite to the term [FollowHyperlink(maliciousUrl) ; AL] statusBar(Url)
memorizedUrl(benignUrl) ", which indicates that the wuser memorizdsenignURL , but
FollowHyperlink(maliciousUrl) is the next action to be performed by the browser.

3.4 Spoofing Scenarios Suggested by the Results

We found nine canonical DOM trees and user actBmusnces that result in status bar spoofing. All ar
due to unintended compositions of HTML element dest when multiple elements are considered. This
section presents only four of the scenarios inideta

Shown in Figure 5, scenario 1 has laputField embedded in aanchor , and theanchor is
embedded in ®orm . When the mouse is over thgputField , theHandleMessage of each element is
called to handle the MOUSEOVER message that bublgleso the DOM tree root. Only the anchor’'s
HandleMessage writes its target URLpaypal.comto the status bar, but when thgputField is
clicked, itsClickAction method retrieves the target URL from foem element, which i$00.com This
scenario indicates the flaw in message bubblinge-MOUSEOVER bubbles up to tleachor , but the
click message is directly passed from limgutField to theform , skipping theanchor.

<body> & i
| X <form action="http://foo.com/" >
input

<form> field <a href="http://paypal.com">

l <input type="i " src="faked.jpg">
<a> anchor </anu ype="image" src="faked.jpg

<input’ field> </form>
Figure5: DOM Tree, Element Stack and HTML Source of Scenario 1

Scenario 2 (Figure 6) is very different from scémdr. animg (i.e., image) associated with a nap
is on top of a button. The target URL mfl is set topaypal.comWhenimg gets a MOUSEOVER, it sets
the status bar tpaypal.comand cancels the bubble. When the mouse is cliokdthg, becausemg is a
child of button , the click is treated as a click on the buttongoading to the implementation of
SendMsgToElem() . The button click, of course, leads to a navigatmfoo.com This scenario indicates a
design flaw — an element (e.g., button) can hijgok click from its child, but it does not hijacketh
MOUSEOVER, and thus causes the inconsistency.

<body> N <form action="http://foo.com/" >
| , <button type=submit>
<form> <img src="faked_link.jpg" USEMAP= "ppl">
<button> .m /f</button>
| </form>
: form
<img> - <map name="ppl"> <area href="http://paypal.com"></map>

Figure 6: DOM Tree, Element Stack and HTML Source of Scenario 2

Scenario 3 contains a label embedded immechor (Figure 7(A)). When the mouse is moved toward
thelabel , it must first pass over the anchor, and thusgatpal.conon the status bar. When tlabel is
clicked, the page is navigated ftwn.com because th&bel is associated with an anchorfob.com An
opposite scenario shown as scenario 4 in Figuré §éms more surprising, which suggests an outward
mouse movement from a child to a parent. Such aemewt makes it feasible to spoof the status bagusi
animg sitting on top of dabel . Note that, because HTML syntax only allowsimug to be a leaf node,
such an outward mouse movement, which is suggéstmd analysis result, is critical in the spoofiaigack.

hen @ AR ®)
label aypal.com Label’s target = foo.com img T Img'’s target = paypal.com
E ypl% [4 Anchor’s target = paypal.com M@ Anchor’s target = foo.com

«eene PE—

Figure 7: Element Stacksand Layoufs of (A) Scenario 3 and (B) Scenario 4

We also derived several scenarios with two-bran€ivtirees. They demonstrate the varieties of DOM
trees and layout arrangements that can be utiiizegoofing, e.g., a spoof page places the twe Isigle-by-
side, another page us@ascading Style Sheets (CEIH)] to set element positions, etc.
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4. Case Study 2: Address Bar Spoofing

Address bar spoofing is another category of spgddittack. It fools users to trust the current papen
it comes from an untrusted source. The combinatioa status bar spoofing and an address bar sgpofin
gives an end-to-end scenario to hide the idenfith® malicious site, and thus is a serious secthitat. In
this section, we first introduce the backgroundvdealge about the address bar logic, then present th
Maude-based analysis technique and real spoofigpsios uncovered by the analysis.

4.1 Background: Address Bar Basics

An |E process can create multideowsers Each one is implemented as a threadardwser built on
the OLE framework [17], is a container (includirngttitle bar, the address bar, the status barhest)ng a
client document in the content atellany types of client documents can be hosted&yysilich as HTML,
Microsoft Word, Macromedia Flash and PDF. In IE tbject to represent an HTML document is called a
renderer A renderercan host multiplérames each displaying an HTML page downloaded from d.L&n
HTML page is stored asmarkupdata structure. Anarkupconsists of the URL and the DOM tree of the
content from the URL. The top leviehme i.e., the one associated with the entire cordesd, is called the
primaryFrameof therenderer Figure 8 shows larowserdisplaying a page fromttp://MySite Therenderer
has thredrames— PrimaryFramefrom MySite Framelfrom PayPal.comandFrame2from MSN.com Each
frame is associated with aurrent markupand, during the navigation time, gending markup Upon
navigation completion, the pending markup is svattin and becomes the current markup.

Informally, the program invariant of the address t@rectness is that: (1)e content area is rendered
according to the current markup of primaryFranasd (2)the URL on the address bar is the URL of the
current markup of primaryFrameln the example shown in Figure 8, the address dbauld display

Current Markup

Renderer ¥ Pending Markup

&1http://MySite
[

Repfal]

Framel from PayPal -

PrimaryFrame from MySite
Frame2 from MSN

\%&

N
Figure 8: Browser, Renderer, Frames and Markups

4.2 Overview of theLogic of HTML Navigation

HTML navigation consists of multiple tasks — loagliRl TML content, switching markup, completing
navigation and rendering the pagerehdererhas an event queue to schedule these tasks. €hemeue is
a crucial mechanism for handling events asynchrsigpso that the browser is not blocked to wait tfoe
completion of the entire navigation. We studiecéntypes of navigation: (1) loading a page intodineent
renderer (2) traveling in the history of the curremnderer (3) opening a page in a neenderer Due to
space constraints, Figure 9 only illustrates a ksudiset of functions involved in the navigations.

Figure 9(A) shows the event sequence of loadingq@epn the currentenderer It is initiated by a
FollowHyperlink , Which posts astart navigation event. FunctionPostMan is responsible for
downloading the new HTML content to a pending markiEvent ready is posted to invoke
SetInteractive, to make the downloaded contents effectiGetinteractive first invokes
SwitchMarkup to replace the current markup with the pending koar and then calls
NavigationComplete . If the downloaded markup belongs to therimaryFrame function
SetAddressBar is invoked to update its address bar. Bmsure event is posted b8witchMarkup ,
which invokesEnsureView to construct &/iew structure containing element layouts derived friti@
current markup of therimaryFrame The OS periodically posts @&nPaintevent to paint the content area
by calling RenderView . Figure 9(B) shows the event sequence of a hidtamel. History_Back  and

5 The latest version of IE, Firefox and Netscapewsers support the “tab browsing” mode, in which tipié documentsare
collocated in a single browser window. We havearalyzed the logic of tab browsing, but are plagrimmdo so in the near future.
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Travel look up a history log to initialize the navigatidrostMan , in this case, loads HTML contents
from a persistent storage in the hard disk, rathan from the Internet. The remaining portion o th
sequence is similar to the sequence of loadingrapage.

(A) Loading a Page in SetAddressBar (B) Traveling in the History SetAddressBar
the Current Renderer 3 of the Current Renderer 1

LoadHistory

SwitchMarkup

‘\\ NavigationComplete
SetInteractive RenderView

SwitchMarkup
% | NavigationComplete

\

FollowHyperlink
— Setlnteractive RenderView

Travel

- , . [ Postvan ~ ,
,,,,, e ———— o] e o
g3 ! start Ry Ao S g3 ! start S oot b '
22 A i ready ;! ensure ! | onPaint ST «— | .. 1 iready : :ensure : ! onPaint i
a3 e I G2 e
-==""" (Posted by OS) === (Posted by OS)
(C) Opening a Page ‘ InitDocHost ‘ ‘ CreateMarkup H SwitchMarkup ‘
in a New Renderer y
SetClientsit ----» Posting an event
e ientsite
CreateRenderer LoadFrominfo — Calling a function
N SetAddressBar \ e > Invoking a handler
‘ CreatePendingDocObjeérL R EnsureView

LoadDocument

\
\
\
‘\ \\ .
\ \ RenderView
' | PostMan '
N \
\\

= @ : !
S 3 : loadi ' i download- | Vensure | ]
gz pstartloading i content 1 STSWE.} | onPaint

,,,,,,,,,,,,,,

] (Posted by OS)

Figure9: Logic of HTML Navigations

Figure 9(C) shows the event sequence of loadingwapage into a newenderer WindowOpen is the
starting point. It calls the functio@reatePendingDocObiject to create a newendererand then call
SetClientSite . SetClientSite prepares a number of Boolean flags as the pregedi the new
renderer and calldnitDocHost to associate theendererwith the browser (i.e., the container). The new
rendererat this moment is still empty. Tietart-loading event invoked.oadDocument which first
calls SetAddressBar to set the address bar and then cékmd which calls LoadFrominfo
CreateMarkup andSwitchMarkup are called fromLoadFrominfo  before posting alownload-
content event to download the actual content for the nessbated markup. FunctidPostMan does the
downloading as above. The remainder of the sequsrsimilar to both prior sequences.

4.3 Formalization of the Navigations and the Address Bar Behavior

1) Modeling the system stat8tep C in Figure 2)Because an address bar spoofing is by definitien t
inconsistency between the address bar and thentara of the same browser, “spoofability” is aparty
of the logic of a single browser. This does not mimat only one browser is allowed in a spoofingnseio —
there can be other browsers that create a hos#eudon context to trigger a logic flaw in one fpaular
browser. Nevertheless, we only need to model teeesyas one browser and prove its logical correst@
uncover its flaws), and treat the overall effecotifer browsers as the context of this browser.

The system state of a browser includes the URUalisnl in the address bar, the URL of tfiewin the
content area, a travel log and the primary franie Maude specification defines a seFodmesand a set
of Markups For example, iMarkupm1is downloaded from URLU1, and it is theeurrentMarkupof Frame
f1 , we specifyfl andul as:

<fl | currentMarkup: m1, pendingMarkup: ...> <ml | URL: ul, frame: f1, ...>

The system state also includes a function call guend an event queue. The function call queue is
denoted agcall | ;call 5 ;... ;call ] , and the event queue is denotedeaent ; ; event
1 ... event nt -
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2) Specifying the user action sequef8tp D in Figure 2). In the scenario of an addhbessspoofing,
the user's only action is to access an untrustedMHage. The page contains a JavaScript calling
navigation functiong~ollowHyperlink , HistoryBack  and/or WindowOpen. The behavior of the
JavaScript is modeled by a rule that conditionafipends a navigation call to the function list.ekglained
in Figure 9, each navigation call generates a gsemuef events. It is guaranteed that all possible
interleavings of event sequences are exhaustieglsched, because Maude explores all viable rewariters.

3) Specifying the execution conté®tep E in Figure 2). Many Boolean conditions affibe execution
path, e.g., conditions to return from a functiord aonditions to create a new frame. These condition
constitute the execution context of the system.dé&fined rules to assign both true and false valoid¢ksese
conditions. Therefore theearch command explores both paths at each branch ipgbado code. The
assignments of the Boolean conditions, combinedh Wit function call sequence, constitute@aential
spoofing scenario. These may include false posgt@narios, and thus, as shown in Figure 2, mapgping
potential scenario back to the real-world is impott We discuss this in Section 4.4.

4) Modeling Function Calls and Ever(iStep B in Figure 2). There are three types ofoastishown in
Figure 9: calling a function, invoking an event tlem and posting an event. A function call is inmpénted

as a term substitution in the function call queber example, the function caBetinteractive is
specified by the following rule, wherE is the frame ofMarkup M and Setinteractive(F) can
conditionally rewrite to SwitchMarkup(M,F) (if BOOLEXP1 is falsg followed by

NavigationComplete(F) (if BOOLEXP3s true).

Table 4: Pseudo Code and Rewrite Ruleof Set | nt er acti ve

Pseudo Code Rewrite Rule to Specify Set | nteracti ve
MARKUP::SetInteractive() { var F: Frame M: Markup FQ: FunctionQueue
if (BOOLEXP1) return; rule [SetInteractive(M) ; FQ] <M | frame: F, ... >
this->frame->SwitchMarkup(this); => [(if BOOLEXP1 # true then SwitchMarkup(M,F) else noop fi) ;
if (BOOLEXP2) NavigationComplete(frame) (if BOOLEXP2 == true then NavigationComplete(F) else noop fi) ;

FQ] <M | frame: F, ... >

Posting of an event happens by appending the eventthe event queue, for example,
FollowHyperlink is specified by removing itself from the functiqneue and adding startNavigation
event to the end of the event queue.

var U:Url F:Frame FQ: FunctionQueue EQ: EventQueue
rule [FollowHyperlink(U, F) ; FQ] { EQ }
=> [FQ] { EQ ; startNavigation(U, F) } .

The third type of action is the invocation of areevhandler. Any event can only be invoked when its
previous event handler returns. To model this i@&in, any rule of an event handler invocation cfes
that the first event in the event queue can be @segl and translated into a function call only wites
function queue is empty. Below is the rule to sfyettie handling of theeady event, which invokes the
handlerSetinteractive

var EQ: EventQueue
rule [empty] {ready(M) ; EQ}
=> [SetInteractive(M)] { EQ }

5) Specifying the program invariant of address barrectnesqStep A in Figure 2). A good state is a
state where the URL on the address bar matchddRheof theViewand is also the URL of the content that
is painted on the screen. In addition to that,URL is the URL of theeurrentMarkupof theprimaryFrame
Therefore the program invariant is defined by tofving goodState predicate:

vars U: URL F: Frame M: Markup
rule goodState (addressBar(U) urlOfView(U) urlPaintedOnScreen(U) primaryFrame(F)
< F|currentMarkup: M, ...> <M |url: U, ...>)
=>true .
It is also important to specify the initial stater the search command. In the initial state, bbéhdvent
gueue and the function call queue are empty.pFtmearyFrameis f1 . ThecurrentMarkupof f1 ismQ The
pendingMarkupof f1 is uninitialized.mO is downloaded froMURLO. The address bar displaydRLO, the

Viewis derived fromJRLO, and theViewis painted on the screen. This rule specifiéifalState
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const f1: Frame mO0: Markup url0: URL empty: EventQueue
rule initialState
=>{empty } [empty ]
primaryFrame(fl) < f1 | currentMarkup: mO , pendingMarkup: nil > <m0 | url: url0 , frame: f1 >
addressBar(url0) urlOfView(url0) urlPaintedOnScreen(url0) .
4.4 Uncovered Spoofing Scenarios
We used thesearch command to find all execution paths in the modat tstart with the initial state
and finish in a bad state (i.ept goodState ). The search was performed on two navigations, tixe®
FollowHyperlinks , two History _Backs , one FollowHyperlink with one History_Back ,
and onéWindowOpen with oneFollowHyperlink
Each condition shown in Table 5 is present in astleone execution context of a potential spoofing
scenario uncovered by Maude. Some function namdéseirocation column were not shown in Figure 9,
because Figure 9 only shows a sketch of the ldgiawgigation, although the actual model we impletadn
is more detailed. Theearch result in Table 5 provides a roadmap for a systensavestigation: (1) we
have verified that when each of these conditiomedsually set to true in the corresponding locatisimg a
debugger, the real IE executable will be forcedace an execution path leading to a stable bae.stat
Therefore, our investigation should be focusedhasé conditions; (2) many other conditions presettie
pseudo code are not in Table 5, e.g., thosgwiichMarkup , LoadHistory = andCreateRenderer
therefore these functions do not need further imnyason.

Table 5. Conditions of Potential Spoofing Scenarios

No. Location Condition No. Location Condition

1 FireNavigationComplete  GetHTMLWinUrl() = NULL 10 __ SetClientSite QIClassID()= OK

2 FireNavigationComplete  GetPFD(bstrUrl)=NULL 11 LoadHistory HTMLDoc = NULL

3 FireNavigationComplete  ActivatedView = true 12 CreateMarkup NewMarkup = NULL

4 NavigationComplete DontFireEvents = true 13 Setlnteract!ve pPW|nQowPrxy—NULL
P — 14 Setinteractive IsPassivating = true or

5 NavigationComplete DocInPP = true IsPassivated = true

6 NavigationComplete ViewWOC = true 15 Setinteractive HtmCtx() = NULL

7 NavigationComplete ObjectTG = true 16 Setinteractive HtmCtx()->BindResult = OK

8 NavigationComplete CreateDFU = true 17 EnsureView IsActive() = false

9 SetAddressBar CurrentUrl = NULL 18 RenderView RSFC = NULL

In the rest of this section, we will focus on cdiais No. 2, 9, 11 and 18, for which we have sudede
in constructing real spoofing scenarios. For theotonditions, we have not found successful stendo
make them real without the debugger. The versiomar study are IE 6 and IE 7 Beta 1 through BetaoB
the description convenience, we assume there @liaious siteevil.com®

Scenarios based on condition 2 and condition 9 (silent-return conditions) The function call traces
associated with condition 2 (i.€etPFD(url)=  NULL in FireNavigationComplete ) and condition
9 (i.e.CurrentURL = NULL in SetAddressBar ) indicate similar spoofing scenarios: there atensi
return conditions along the call stack of the adgliiear update. If any one of these conditionsuig, tthe
address bar will remain unchanged, but the coratezd will be updated. Therefore, if the scripttflmads
paypal.comand then loadsvil.comto trigger such a condition, the user will spaypal.cortion the address
bar whereas the content area is frewil.com

We found that both condition 2 and condition 9 t@ntrue when the URL of the page is of certain
special formats. In each case, the function (FageNavigationComplete or SetAddressBar )
cannot handle the special URL, but instead of #agethe failure condition, the function silentlgturns
when the condition is encountered. For conditiom®,observed that all versions of IE are suscemptifolr
condition 2, only IE 7 Beta 1 is susceptible, iniesthcase even the SSL certificateRayPalis present with
the faked page, because the certificate staysthéttaddress bar. In other versions of IE, althahgly have
exactly the same silent-returning statement, candi2 cannot be triggered because the special U&d h
been modified at an earlier stage during the exmtuieforeGetPFD is called. However, even for these
seemingly unaffected versions, having the silehtrréng condition is still problematic — becausentst
guarantee that such a condition can never berrogder to prevent the spoofing.

%It is a coincidence thavil.comis a real website in the Internet. This paper dm¢ssuggest the real site is malicious.
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These two examples demonstrate a new challengephigal interface designatomicity is important
In the navigation scenarios, once the pending npatikuswitched in, the address bar update should be
guaranteed to succeed. No “silent return” shouldalb@ved. Even in a situation where atomicity i® to
difficult to guarantee, the browser should at leagde an exception to halt its execution rathantleave it
in an inconsistent state.

Scenario based on condition 11 (a race condition)Condition 11 is associated with a function cadte
which indicates a situation where two frames ctexi arendererand compete to be the primary frame.
Figure 10 illustrates this scenario.

(2) Start history_back to evil.com. Because condition (1) Start navigating to paypal.com in
11 is true, f2 is created as the primaryFrame. the primaryFrame f1.
(4) Update the address bar (6) Update the address bar
https://evil.com mpszllwww.paypal.com

lPayPall

PayPRall ﬂ The page cannot be displayed
SondieneyiEowssEwT]

Race condition
exploited here

email Adaress

W} markup of
paypal.com to f1
The history log |

Page 1 Page 2 t Page 3
Figure 10: Spoofing Scenario Dueto a Race Condition

The malicious script first load3age 1from evil.com Then it intentionally loads an error page (iRage
2) in order to make conditional 11 true whieoadHistory() is called later. The race condition is
exploited at timé, where two navigations start at the same time. follewing event sequence results in a
spoof: (1) therendererstarts to navigate tpaypal.com At this moment, the primary frame fit ; (2) the
rendererstarts to travel back in the history log. Becacosedition 11 is true, i.eHITMLDoc = NULL , a
new framef2 is created as the primary frame. This behaviac®rding to the logic dfoadHistory() ;

(3) the markup ofevil.com in the history is switched intd2 ; (4) the address bar is updated to
https://evil.com (5) the downloading of thpaypal.compage is completed, so its markup is switched into
f1 . Note that f1 is not the primary frame any morsd & will not be rendered in the content area;t(&®)
address bar is updatedtttips://paypal.cormtespite the fact thét is no longer the primary frame. When all
these six events occur in such an order, the wssh#tp://paypal.conon the address bar, but tbeil.com
page in the content area. The SSL certificatesis gpoofed because it gets updated with the addaess

This race condition can be exploited on IE 6, |IBB&ta 1 and Beta 2 and succeeds with a high
probability’. It does not succeed in every trial because g@@rnd event (6) may occur before event (3) and
event (4), in which case the users seegtilecompage withhttp://evil.comon the address bar.

It is worth noting that race conditions are likédyexist in the logic supporting the tab-browsingda as
well, in which multiplerenderersshare and compete for a single address bar. Weandllyze the tab-
browsing logic in the near future.

Scenario based on condition 18 (a hostile environmentlCondition 2 and condition 9 trigger the failure
of the address bar update, and condition 18 trigtjex failure of the content area update. In thisep, we
only provide a high level description for this sfinog scenario, which succeeds in nearly every giteom
all three versions of IE under study.

This scenario depends on condition 18 (RSFC = NULL in RenderView ) which can be true when
a certain type of system resource is exhaustedalicious script is able to create such an envirartrby
consuming a large amount of the resource and theigating the browser froravil.comto paypal.com
When the timing of the navigation is appropriakes browser will succeed to update the addressrizhfaal
to update the content area, leaving bothettiecomcontent and thpaypal.comJRL visible to the user.

(3) Switch in the markup of evil.com to f2

" In our experiments, the race condition could hgl@ied more than half the time.
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Once again this example demonstrates the importapiceatomicity in graphical interface
implementations. In addition to the correctnesghef internal logic of a browser, this spoofing sém
emphasizes the need for resilience against a @@stdcution environment.

5. Discussions
In order to better put our work into perspectivieis tsection presents higher-level discussions about
possible defense techniques, other visual spodifimgs and various techniques for GUI logic analysis

5.1 How to Defend Against Exploits Based on GUI L ogic Flaws

The most direct defense in response to the spoafitagks is bug patching. All scenarios that weehav
discovered have been confirmed by the IE developteam. In a build after IE 7 Beta 3, all the ssalhar
spoofing bugs and two address bar bugs have besh ffTwo other address bar bugs have been invesdiga
and their fixes have been proposed.

In the circumstances where the vendor’'s patcheg Ima¥ been made available, vulnerability-driven
filtering can provide fast and easy-to-deploy patgivalent protection. In particular, we have agplored
the possibility of usingBrowserShield[18] to foil spoofing attacks. IBrowserShield web pages are
intercepted at a browser extension, which injectsrgpt-rewriting library into the pages and setfu=m to
the browser. The rewriting library is executed dgripage rendering at the browser and rewrites HTML
pages and any embedded scripts into safe equigalEme equivalent safe pages contain logic forredeely
applying run-time checks according to policies tdatect and remove known attack patterns that we
described earlier. In our proof-of-concept impletaéion, we authored policies for both status-baro$ipg
removal and address-bar spoofing removal. The sstadin policy is to inject JavaScript code to manite
status bar before the mouse click, and comparéfhttiwve URL argument of thEollowHyperlink call.
One of the address bar policies is to inject JanpScode to check if a URL is of a special forntlaat
causes a silent failure of the address bar update.

5.2 Solving the Visual Spoofing Problem is Challenging

The obijective of this paper is to bring the GUlitogroblem to the attention of the research comtyuni
rather than claiming that the visual spoofing peoblas a whole can be solved in the short term. In
particular, the following two questions are not mdded by this work.

(1) How many average users are security-unconsciouscantpletely ignore any security indicators?
User-studies have raised the concern that manyageeusers still lack the knowledge or the attentmn
examine the information provided by security intlica, such as the address bar, the status bar, SSL
certificate and security warning dialogs [6][24].aM users readily believe whatever is displayedha
content area. We agree that this is the curremt &ad argue that a significant effort should bergmwn user
education about secure browsing. But such an eidacabuld be ineffective without the trustworthigesf
the security indicators — if their information che spoofed, even we, as computer science profedsjato
not know what to trust. The success of anti-phighitust be achieved by a joint effort between treamvser
vendors and the end users. It is analogous to altitersafety: drivers have the responsibility teckie up,
and the automobile manufacturers need to guarama¢he seat-belts are effective.

(2) How to deal with other types of visual spoofs tir@tnot due to GUI logic flawsIP the introduction,
we listed a few visual spoofing scenarios due tpQgical similarities. These issues have little ¢ovdth
logic problems, so their treatments are very ddférfrom the approach presented in this paper, #hg.
current version of IE disallows a script from timéekrnet zone to open a chromeless window (i.e.indaw
having only the content area). It is also cleaggdfied in design that the URL displayed on thdrads bar
should be left-justified after each address baratgdand no pop-up window can stay “always-on-tejc,
SpoofSticks designed to interpret the confusing URL on dlkddress bar [20PPynamic Security Skin$]
andPasspe(26] use trusted images to defeat certain spodditacks. Ye and Smith proposed several ideas
to implement trusted paths for browsers by disahgwthe pageontentelementgo forge the pagsetatus
elementd25]. Virtual machine techniques have also beezdu®s provide trusted browser GUI elements,
e.g., theTahomawindow manager provides a virtual screen abstracto each browser instance [4].
Nevertheless, when the internal GUI logic is flavesdwe shown in the paper, ensuring unforgeable GUI
elements is not a remedy. Therefore, GUI logic flawd graphic similarity can be viewed as two ddfar
problems under the same umbrella of visual spoofing
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5.3 A Broad Spectrum of Tools Can Be Used for the Systematic Exploration

The essence of our approach is that we systemgtegdlore the GUI logic. Whether the explorati@n i
done by symbolic formal analysis (such as theoremwipg or model checking) or by exhaustive testigmg
less important. As an example of exhaustive testigused the binary instrumentation tBatours[10] to
test the status bar logic. The basic idea is timteswe know the program invariant and how to gateer
canonical user action sequences and canonical D&a48,twe can generate real canonical HTML pages and
real mouse messages to test the real IE statusnpéementation. The advantage of the exhaustivintes
approach is that it does not require manual mogealinthe behaviors of each HTML element, and thoreef
can avoid the potential inaccuracies in the logmdel. Applying this technique, we were able to faltl
spoofs known from our previous modeling.

Nevertheless, there is no fundamental differencetldr the exploration is done symbolically (e.g., b
Maude) or by exhaustive testing (e.g., by Detoub®¢ause both techniques are based on the same
understanding of the search space and the testamss&truction. The main effort for the symbolic
exploration is to correctly specify the GUI logidthvsufficient details. The exhaustive testing liegg much
effort to drive the system’s internal state trapnag. For example, to test the address bar logiecwould
need to exhaustively enumerate all event interfgpsituations in the real renderer. It is a nowidtitask.

6. Related Work

The emphases of this work are: (1) the formulatbGUI logic correctness as a research problem, and
(2) the proposal of a systematic approach to unc@# logic flaws leading to visual spoofs. Thesdittle
existing work related to our first emphasis, bwealth of work is related to the second — formathuds
and program analysis techniques have been suctessfgstematically discovering software relialyiland
security flaws. We summarize only a few technigoeiew.

The SLAM technique [1] uses theorem proving and ehatiecking tools to statically verify whether or
not predefined “API usage rules” are obeyed indgsgograms. A static driver verifier is built oret&§LAM
technique, and has been deployed for Windows drivgrlementation correctness. Model checking
techniques are also developed to find file systegs27] and security vulnerabilities [3] in largedies of
legacy source code. Much research has been ddoemal verification of security protocols [15]. Aasic
analysis technique is used for detecting higheellewlnerabilities such as SQL injections, crogs-si
scripting, and HTTP splitting attacks [13]. Our was complementary to the existing research, becaues
are focused on the machine-to-user trust.

Also related are research papers about phishiraghkatt e.g.,PwdHashis a browser plug-in that
transparently produces a different password fohesie to prevent phishing sites from obtaininghlsa
passwords [19]. Florencio and Herley design a teglnto detect password phishing by monitoring
password-reuse between a well-known site and aamihér site [9].

7. Conclusions

GUI logic flaws are a real and pressing securitybpgm — these flaws can be exploited to lure even
security-conscious users into malicious web patjés.have formulated GUI logic correctness as a new
research problem, and have proposed a systematioagh to proactively uncover logic flaws in browse
GUI design/implementation that lead to spoofingeks.

Specifically, based upon an in-depth study of thgid of key subsets of IE source code, we have
developed a formal model of the browser logic aadehapplied formal reasoning to uncover importaww n
spoofing scenarios. This has been done for botlstdtes bar and the address bar. The knowledg@etta
from our approach offers an in-depth understandihgpotential logic flaws in the graphical interface
implementation. The IE development team has coefitrthat all thirteen flaws reported by us are indee
exploitable, and has fixed eleven of them in theest build. Through this work, we demonstrate the
feasibility and the benefit of applying a rigoraproach to GUI design and implementation.

Despite the fact that the analysis approach iseeyatic, it only provideselative completenesselative
to the kind of spoofing scenarios being considetlkd, |E code subset currently modeled, and ourckear
spaces our analysis is complete. Therefore, an riapotask ahead is to obtain a precise high-level
specification of more IE modules, and to extend @urent formal models and analyses to cover niost |
functionality. For example, the model should accardaie the tab browsing logic and the hosting
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mechanisms for document types other than HTML, sagclPDF, Microsoft Word, Macromedia Flash, etc.
We look forward to tackling this pending challerigeéhe future.

GUI logic flaws affect not just IE, but potentialgll current web browsers. Therefore, we strongly
believe that the methodology presented in this paj® be equally applied to systematically identify
vulnerabilities for other browsers. More broadlpnrbrowser applications, e.g., email clients angitali
identity management tools [14], also have similanaerns about graphical interface integrity. Thenmef
ensuring GUI logic correctness is a research pnobidose solution can have significant practicalastp
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