

 -0-

A Systematic Approach to Uncover GUI Logic Flaws for Web Security

Shuo Chen

Jose Meseguer

Ralf Sasse

 Helen Wang

Yi-Min Wang

December 13, 2006

Technical Report
MSR-TR-2006-182

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

 -1-

A Systematic Approach to Uncover GUI Logic Flaws for Web Security
Shuo Chen†, José Meseguer‡, Ralf Sasse† ‡, Helen J. Wang†, Yi-Min Wang†
† Microsoft Research

{shuochen,helenw,ymwang}@microsoft.com

‡ University of Illinois at Urbana-Champaign
{meseguer,rsasse}@cs.uiuc.edu

Abstract
To achieve end-to-end security, traditional machine-to-machine security measures are insufficient if the
integrity of the human-computer interface is compromised. GUI logic flaws are a category of software
vulnerabilities that result from logic bugs in GUI design/implementation. Visual spoofing attacks that exploit
these flaws can lure even security-conscious users to perform unintended actions. The focus of this paper is
to formulate the problem of GUI logic flaw and to develop a methodology for uncovering them in software
implementations. Specifically, based on an in-depth study of key subsets of Internet Explorer (IE) browser
source code, we have developed a formal model for the browser GUI logic and have applied formal
reasoning to uncover new spoofing scenarios, including nine for status bar spoofing and four for address bar
spoofing. The IE development team has confirmed all these scenarios and has fixed most of them in their
latest build. Through this work, we demonstrate that a crucial subset of the visual spoofing vulnerabilities
originate from GUI logic flaws, which have a well-defined mathematical meaning allowing a systematic
analysis.
Keywords: Visual Spoofing, GUI Logic Flaw, Formal Methods, HTML, End-to-End Security

1. Introduction
Today, the trustworthiness of the web relies on the use of machine-to-machine security protocols (e.g.,

SSL or TLS) to provide authentication over the Internet to ensure that the client software (i.e., the browser)
communicates with the intended server. However, such trustworthiness can be easily shattered by the last
link between the client machine and its user (Figure 1(a)). Indeed, the user-interface trust should be
considered as a part of the trusted path problem in secure communications [7][8][25].

Machine-to-machine
trusted

server

Machine-to-user
untrusted

Overall security, untrusted

Figure 1: (a) Weak Machine-User Link

Status bar is spoofed and shows:
https://www.paypal.com

(b) Status Bar Spoofing

Address bar spoofed:
https://www.paypal.com

SSL certificate spoofed:
PayPal Inc.

(c) Address Bar Spoofing

The exposure of the machine-user weakness is not limited to non-technical social engineering attacks
where naive users are fooled to click on an arbitrary hyperlink and download malicious executables without
any security awareness. Even for a technology-savvy and security-conscious user, this last link can be
spoofed visually. As shown in Figure 1(b), even if a user examines the status bar of the email client before
she clicks on a hyperlink, she will not be able to tell that the status bar is spoofed and she will navigate to an
unexpected website, not https://www.paypal.com. Furthermore, as shown in Figure 1(c), even if a user
checks the correspondence between the URL displayed in the browser address bar and the top level web page
content, she will not realize that the address bar is spoofed and the page comes from a malicious web site.
Indeed, the combination of the email status bar spoofing and the browser address bar spoofing can give a
rather “authentic” navigation experience to a faked PayPal page. Even SSL is not helpful – as shown in
Figure 1(c), the spoofed page contains a valid PayPal certificate. Obviously, this can result in many bad
consequences, such as identity theft (e.g. phishing), malware installation, and gullibility on faked news.

Visual spoofing attack is a generic term referring to any technique producing a misleading GUI to gain
trust from the user. Design/implementation flaws enabling such attacks are already a reality and have been
sporadically discovered in commodity browsers [21][22][23], including IE, Firefox, and Netscape Navigator.
This paper focuses on a class of visual spoofing attacks that exploit GUI logic flaws, which are bugs in the
GUI’s design/implementation that allow the attacker to present incorrect information in parts of the authentic

 -2-

GUI that the user trusts, such as the email client status bar and the browser address bar. Figure 1(b) and (c)
are just two instances of many such flaws that we discovered using the technique described in this paper.

A second class of visual spoofing attack is to exploit graphical similarities, which has been extensively
discussed in previous research work [6][8][24][25], and is more familiar to the research and industry
communities. These attacks exploit picture-in-picture rendering [25] (i.e., a faked browser window drawn
inside a real browser window), chromeless window (e.g., a window without the address bar or the status bar
[8][25]), pop-up window covering the address bar, and symbol similarity (e.g., “1” vs. “l”, “ vv” vs. “w” [6],
and non-English vs. English characters). We do not focus on such attacks in this paper, but briefly discuss in
Section 5 how the graphical similarity problems are being addressed by researchers and browser vendors.

Our goal is to formulate the GUI logic problem and to develop a systematic methodology for uncovering
logic flaws in GUI implementations. This is analogous to the body of work devoted to catching software
implementation flaws, such as buffer overruns, data races, and deadlocks, through the means of static
analysis or formal methods. Nevertheless, a unique challenge in finding GUI logic flaws is that these flaws
are about what the user sees – user’s vision and actions are integral parts of the spoofing attacks. Therefore,
the modeled system should include not only the GUI logic itself, but also how the user interacts with it.

In a nutshell, our methodology first requires mapping a visual invariant, such as “the URL that a user
navigates to must be the same as that indicated on the status bar when the mouse hovers over an element in a
static HTML page”, to a well-defined program invariant, which is a Boolean condition about user state and
software state. This mapping is done based on an in-depth understanding of the source code of the software.
Our goal is then to discover all possible inputs to the software which can cause the visual invariant to be
violated. In the example of finding status bar spoofing scenarios, we want to discover all HTML document
tree structures that can cause the inconsistency between the URL indicated on the status bar and the URL that
the browser is navigating to upon a click event; the resulting HTML tree structures can be used to craft
instances of status bar spoofing. To systematically derive these scenarios, we employ a formal reasoning tool
to reason about the well-defined program invariant.

The methodology is applied to discover two classes of important GUI logic flaws in IE. The first class is
the static-HTML-based status-bar spoofing. Flaws of this class are critical because static-HTML pages (i.e.,
pages without scripts) are considered safe to be rendered in email clients (e.g., Outlook1 and Outlook
Express) and to be hosted on blogging sites and social networking sites (e.g., myspace.com), and the status
bar is the only trustworthy information source for the user to see the target of a hyperlink. The second class
of flaws we studied is the IE address bar spoofing, which allows the malicious website to hide its true URL
and pretend to be a benign site. In both case studies, we use the Maude formal reasoning tool [2] to derive
these spoofing scenarios, taking as input the browser GUI logic, program invariants, and user behaviors.

We have discovered nine canonical HTML tree structures leading to status bar spoofing and four
scenarios of address bar spoofing. The IE development team has confirmed these scenarios and fixed eleven
of them in the latest build, and scheduled to fix the remaining two in the next version. In addition to finding
these flaws, we made the interesting observation that many classic programming errors, such as semantic
composition errors, atomicity errors and race conditions are also manifested in the context of the GUI
implementation. More importantly, this paper demonstrates that GUI logic flaws can be expressed in well-
defined Boolean invariants, so finding these flaws is done by inference about the violations of the invariants.

The rest of the paper is organized as follows. Section 2 gives an overview of our methodology. Sections
3 and 4 present case studies about status bar spoofing and address bar spoofing with IE. We present a number
of discussions in Section 5. Related work is given in Section 6. Section 7 concludes the paper.

2. Overview of Our Methodology
2.1 Our Analysis Approach

Figure 2 shows the major steps of our approach, based on formal analysis techniques. Existing formal
analysis techniques have already been successful in reasoning about program invariants, e.g., the
impossibility of buffer overrun in a program, guaranteed mutual exclusion in an algorithm, deadlock freedom

1 Outlook does not show the target URL on the status bar, but on a small yellow tooltip near the mouse cursor. Because IE, Outlook
and Outlook Express use the same HTML engine, most status bar spoofing scenarios can be transformed to email format to spoof
Outlook tooltip and Outlook Express status bar.

 -3-

in a concurrent system, secrecy in a cryptographic protocol, and so on. These program invariants have well-
defined mathematical meaning. Uncovering GUI logic flaws, on the other hand, requires reasoning about
what the user sees. The “invariant” in the user’s vision does not have an immediately obvious mathematical
meaning. For example, the visual invariant of the status bar is that if the user sees foo.com on the status bar
before a mouse click, then the click must navigate to the foo.com page. It is important to map such a visual
invariant to a program invariant in order to apply formal reasoning, which is shown as step (A) in Figure 2.

The mapping between a visual invariant and a program invariant relies on the logic of the GUI
implementation, e.g., a browser’s logic for mouse handling and page loading. An in-depth understanding of
the logic is crucial in deriving the program invariant. Towards this goal, we conducted an extensive study of
the source code of the IE browser to extract pseudo code to capture the logic (shown as step (B)). In
addition, we needed to explicitly specify the “system state” (shown as step (C)), including both the browser’s
internal state and possibly what the user memorizes. Steps (D) and (E) depict the formalization of the user’s
action sequence and the execution context as the inputs to the program logic. The user’s action sequence is
an important component in the GUI logic problem. For example, the user may move and click the mouse, or
open a new page. Each action can change the system state. Another input to specify is the execution context
of the system, e.g., a web page is an execution context for the mouse handling logic – the same logic and the
same user action, when executed on different web pages, can produce different results.

When the user action sequence, the execution context, the program logic, the system state and the
program invariant are formally specified on the reasoning engine, formal reasoning is performed to check if
the user action sequence applied on the system running in the execution context violates the program
invariant. Each discovered violation is output as a potential spoofing scenario, which consists of the user
action sequence, the execution context and the inference steps leading to the violation. Finally, we manually
map each potential spoofing scenario back to a real-world scenario (shown as step (F)). This involves an
effort to construct a webpage that sets up the execution context and lures the user to perform the actions.

Execution
context

Execution
context

System stateSystem state

Program Logic
(pseudo code)

User’s action
sequence

User’s action
sequence

Program
invariant

Reasoning Engine

Visual
invariant

Source code
of browser GUI

Source code
of browser GUI

vi
ol

at
io

n

Potential spoofing
scenarios (Instances
of execution contexts
that lead to spoofing)

Potential spoofing
scenarios (Instances
of execution contexts
that lead to spoofing)

Real
spoofing
scenario

Real
spoofing
scenario

Real world Formal world

The modeled system

(A)

(B)

(D)

(E)
(C)

(F)

Figure 2: Overview of Our Methodology

2.2 Background: Formal Verification of Invariants in Maude
We formalize this problem within the logical framework of rewriting logic [12]. The corresponding

reasoning engine is the Maude system [2]. In this paper, we use the term “Maude” to refer to both the Maude
system and the language understood by it2.

In Maude, the states of a system are represented by symbolic expressions, and the system transitions are
specified by rewrite rules indicating how a state is transformed into another. For example, if we want to
specify a 24-hour clock marking only the hours, we can declare a state constructor operator clock so that,
say, clock(7) and clock(21) are two different clock states. In this example there is only one rewrite
rule “ticking” the clock to the next hour. The clock system is specified as follows3:

type CLOCK . var T : Int .
operator clock : Int -> CLOCK .
rule clock(T) => clock((T + 1) rem 24) . /* This rule specifies the “ticking” */

where Int is the built-in data type of integers, a new type CLOCK of clock states is defined, and the state
constructor clock is declared as an operator that takes an Int and produces a CLOCK. The clock "tick"

2 Similarly, people use the term “Perl” interchangeably for the Perl interpreter and the Perl language.
3 In this paper, we use a syntax slightly different from Maude’s.

 -4-

transitions are specified by a rewrite rule introduced with the rule keyword, which rewrites a given clock
marking time T to one marking time ((T+1) rem 24) , that is, the remainder of (T+1) divided by 24. For
example, clock(23) will be rewritten to clock(0) .

Once a system is specified, Maude's search command can be used to verify invariants. An invariant is
a predicate that holds of an initial state and of all states reachable from it. Suppose the initial state is
clock(0) , and the invariant to verify is that the times it marks will always be greater than or equal to 0 and
strictly smaller than 24. An invariant is verified by searching for any states violating it, i.e., for states
satisfying the negation of the invariant. For our example, this can be done with the search command:

 search clock(0) => clock(T) such that ((T < 0) or (T >= 24))

This search command responds: No solution. Therefore, the invariant is verified. In case an
invariant is violated, the result will show a trace indicating the series of transitions leading to the violation.
For a toy example like the one above, informal reasoning may convince us that a given invariant holds. But
for complex situations, for example, the complex interactions between a user and a web browser, formal
verification is needed in practice. This is exactly the way Maude is used in our work. As we explain in
Sections 3.3 and 4.3, IE's status bar and address bar logics are specified by rewrite rules in Maude, and the
search command is used to search for spoofing scenarios.

3. Case Study 1: Status Bar Spoofing Based on Static HTML
Many web attacks, such as browser buffer overruns, cross-site scripting attacks, browser cross-frame

attacks and phishing attacks, require the user to navigate to a malicious URL. Therefore, it is important for
the user to know the target URL of a navigation, which is displayed on the status bar before the user clicks
the mouse. A status bar spoofing is damaging if it can be constructed using only static HTML (i.e., without
any active content such as JavaScript), because (i) email clients, e.g., Outlook and Outlook Express, render
static HTML contents only, and email is an important media to propagate malicious messages; (ii) blogging
sites and social networking sites (e.g., myspace.com) usually sanitize user-posted contents to remove scripts,
but allow static HTML contents.4

3.1 Background: Representation and Layout of an HTML Page
Background knowledge about HTML representation is a prerequisite for this case study. We give a brief

tutorial here. An HTML page is represented as a tree structure, namely a Document Object Model tree, or
DOM tree. Figure 3 shows an HTML source file, its DOM tree, and the layout of the page. The mapping
from the source file (Figure 3(A)) to the DOM tree (Figure 3(B)) is straightforward – element A enclosing
element B is represented by A being the parent of B in the DOM tree. The tree root is an <html> element,
which has a <head> subtree and a <body> subtree. The <body> subtree is rendered in the browser’s
content area. Since status bar spoof is caused by user interactions with the content area, we focus on the
<body> subtree in this case study.

 (A) HTML Source File
<html>
 <head><title>Page</title></head>
 <body>

 <button> My button </button>
 </body>
</html>

(B) DOM TREE
<html>

<head>

<title>

<body>

<a>

<button>

(C) Element Layout

<body>
<a>

<button>

status barco
nt

en
t a

re
a address bar

(D) Element

<body>
<a>

<button>

Toward the user

Figure 3: DOM Tree and Layout of an HTML Page
Figure 3(C) shows the layouts of elements from the user’s viewpoint. In general, parent elements have

larger layouts to contain children elements. Conceptually, these elements are stacked upwards (toward the
user), with <body> sitting at the bottom (see Figure 3(D)). In HTML, <a> represents an anchor, and
 represents an image.

4 A status bar spoof using a script is not a major security concern - it gets into a chicken-and-egg situation: a well-known site does not
run an arbitrary script supplied from an arbitrary source. For a script to do a spoof, the victim user needs to visit the attacker’s site to
run the script, but the whole purpose of a status bar spoof is exactly to lure the victim to visit the attacker’s site.

 -5-

3.2 Program Logic of Mouse Handling and Status Bar Behavior
Mouse handling logic plays an important role in status bar spoofs. We extracted the logic from the IE

source code. It is presented here using pseudo code, which will be formalized in Section 3.3.

3.2.1 Central Logic
The mouse device can generate several raw messages. When a user moves the mouse onto an element

and clicks on it, the sequence of raw messages consists of several MOUSEMOVE messages, an
LBUTTONDOWN (i.e., left button down) message, and then a LBUTTONUP (i.e., left button up) message.

The core functions for mouse handling are OnMouseMessage and SendMsgToElem , which dispatch
mouse messages to appropriate elements. Every element has its specific virtual functions HandleMessage ,
DoClick and ClickAction to implement the element’s behaviors.

Each raw mouse message invokes an OnMouseMessage call (pseudo code shown in Table 1). The
parameter element is the HTML element that is immediately under the mouse cursor. The parameter
message is the type of the message, which can be either MOUSEMOVE, or LBUTTONDOWN, or
LBUTTONUP. An OnMouseMessage call can potentially send three messages to HTML elements in the
DOM tree: i) if element is different from elementLastMouseOver , which is the element immediately
under the mouse in the most recent OnMouseMessage call, then a MOUSELEAVE message is sent to
elementLastMouseOver ; ii) the raw message itself (i.e., message) is sent to element ; iii) if
element is different from elementLastMouseOver , a MOUSEOVER message is sent to element .

Table 1: OnMouseMessage and SendMsgToElem
OnMouseMessage(element,message) {
 if (element != elementLastMouseOver)
 SendMsgToElem(MOUSELEAVE,
 elementLastMouseOver)

 SendMsgToElem(message, element)

 if (element != elementLastMouseOver)
 SendMsgToElem(MOUSEOVER, element)
 elementLastMouseOver = element
}

SendMsgToElem(message,element) {
 btn = element.GetAncestor (BUTTON))
 if (btn != NULL && message == LBUTTONUP)
 element = btn
 repeat
 BubbleCanceled = loopElement->HandleMessage(message)
 loopElement = loopElement->parent
 until BubbleCanceled or loopElement is the tree root

 if (message == LBUTTONUP)
 element->DoClick() //handle mouse single click
}

body

e1

e2

e3

Bubbling

In the function SendMsgToElem() , btn is the closest Button ancestor of element . If btn exists
and message is LBUTTONUP (i.e., a click), then element becomes the button btn . It essentially means
that any click on a descendant of a button is treated as a click on the button. Then, a message bubbling loop
begins – starting from element , the virtual function HandleMessage of every element along the DOM
tree path is invoked. Each HandleMessage call can cancel or continue the bubble (i.e., break out of or
continue the loop) by setting a Boolean BubbleCanceled . After the bubbling loop, a mouse click is
handled by calling the virtual function DoClick of element , when message is LBUTTONUP.

3.2.2 HTML Element Behaviors
An object class is implemented for each type of HTML element, such as Anchor , Form, Button ,

InputField , Label , Image , etc. These object classes inherit from the AbstractElement base class.
The three virtual functions of AbstractElement , namely, HandleMessage , DoClick and
ClickAction , implement default behaviors of real HTML elements. AbstractElement::DoClick
(i.e., function DoClick of AbstractElement) implements a loop to invoke ClickAction of each
element along the DOM tree path, similar to the bubbling in SendMsgToElem . HandleMessage and
ClickAction of AbstractElement are basically “placeholders” – they simply return in order to
continue the bubble.

Each HTML element class can override these virtual functions of AbstractElement to implement its
specific behaviors. A subset of virtual functions of the Anchor , Label and Image elements are shown in
Table 2. These examples demonstrate the complexity in the mouse handling logic due to the intrinsic
behavioral diversity of individual elements and the possible compositions. For example, when the mouse is
over an anchor, the target URL of this anchor will be displayed on the status bar by calling
SetStatusBar , and the bubble continues, as indicated in Anchor::HandleMessage . When an anchor
is clicked, FollowHyperlink is called to jump to the target URL, and the bubble is canceled, as indicated

 -6-

in Anchor::ClickAction . When the mouse is over a label, there is no SetStatusBar call, and the
bubble is canceled. According to the HTML specification, a label can be associated with another element in
the page, which is called “ForElement ”. Clicking on the label is equivalent to clicking on ForElement ,
as shown in Label::ClickAction . An image element can be associated with a map, which associates
different screen regions on the image with different target URLs. When the mouse is over a region, the URL
of the region is set to the status bar, as indicated in Image::HandleMessage . When the mouse clicks on
the region, a FollowHyperlink call is made, as indicated in Image::ClickAction . If an image is
not associated with a map, then the URL of the containing anchor of the image (i.e., the closest ancestor
anchor of the image on the DOM tree) determines the status bar text and the hyperlink to follow.

Table 2: Virtual Functions of Anchor, Label and Image Elements
Bool Anchor::HandleMessage(message) {
 switch (message)
 case LBUTTONDOWN
 or LBUTTONUP:
 return true; //cancel bubble
 case MOUSEOVER:
 SetStatusBar(targetURL)
 return false; //continue bubble
 Other:
 return false;
 }

Bool Anchor::ClickAction() {
 FollowHyperlink(targetURL);
 return true; // cancel bubble
}

Bool Label::HandleMessage(message) {
 switch (message)
 case MOUSEOVER
 or MOUSELEAVE:
 return true; //cancel bubble
 Other:
 return false;
}

Bool Label::ClickAction() {
 forElement = GetForElement()
 if (forElement != NULL)
 forElement->DoClick();
 return true;
}

Bool Image::HandleMessage(message) {
 if a map is associated with this image
 MapTarget = GetTargetFromMap();
 switch (message)
 case MOUSEOVER:
 SetStatusBar(MapTarget)
 return true;
 else …
}
Bool Image::ClickAction() {
 if a Map is associated with this image
 MapTarget = GetTargetFromMap();

 FollowHyperlink(MapTarget);
 else pAnchor=GetContainingAnchor();
 pAnchor->ClickAction();
 return true;
}

3.3 Formalization of the Status Bar Spoofing Problem
The visual invariant of the status bar is intuitively that the target URL of a click must be identical to the

URL displayed on the status bar when the user stops the mouse movement. The negation of this invariant
defines a spoofing scenario: First, MOUSEMOVE messages on elements O1, O2, … , On invoke a sequence
of OnMouseMessage calls. When the mouse stops moving, the user inspects the status bar and memorizes
benignURL . Then, an LBUTTONDOWN and an LBUTTONUP messages are received, resulting in a
FollowHyperlink(maliciousURL) call, where maliciousURL is different from benignURL .

OnMouseMessage
(O1,MOUSEMOVE)

OnMouseMessage
(O2,MOUSEMOVE)

OnMouseMessage
(On,MOUSEMOVE)

… OnMouseMessage
(On,LBUTTONDOWN)

OnMouseMessage
(On,LBUTTONUP)

benignURL is captured in
this status bar snapshot FollowHyperlink (maliciousURL)

Figure 4: Function Level View of the Negation of the Status Bar Visual Invariant

We now apply the methodology described in Figure 2.
1) Specifying the user action sequence and the execution context (Steps D and E in Figure 2). A

challenging question is how the spoofing possibilities can be systematically explored, given that the web
page can be arbitrarily complex and the user’s action sequence can be arbitrarily long. Canonicalization is a
common form of abstraction used in formal reasoning practice to handle a complex problem space. For this
particular problem, our goal is to map a set of user action sequences to a single canonical action sequence,
and map a set of web pages to a single canonical DOM tree. Because any instance in the original problem
space only trivially differs from its canonical form, we only need to explore the canonical state space to find
all “representative” instances.

1.1) Canonicalization of the user action sequence. In general the user action sequence consists of a
number of mouse moves, followed by a status bar inspection, followed by a mouse click (button down and
up). In a canonical action sequence, the number of mouse moves can be reduced to two. This is because,
although each MOUSEMOVE can potentially update the status bar, the status bar is a memoryless object, so
the whole sequence of status bar updates is equivalent to the last update. Thus, a canonical action sequence
from element O1 to element O2 can be represented by the rule below: (the semicolon denotes sequential
composition, and the MOUSEOVER on O1 invokes the last update of the status bar before the mouse arrives
at O2. Note that O1 and O2 can be the same element.)

 -7-

operator CanonicalActionSeqence: Element Element -> ActionList .
rule CanonicalActionSeqence(O1,O2)
 => [onMouseMessage(O1,MOUSEMOVE) ; onMouseMessage(O2,MOUSEMOVE) ; Inspection ;
 onMouseMessage(O2,LBUTTONDOWN); onMouseMessage(O2,LBUTTONUP)] .

1.2) Canonicalization of the execution context (i.e., DOM trees). In general a DOM tree may have
arbitrarily many branches, but we can restrict the number of branches of a canonical DOM tree to at most
two. This is because the canonical action sequence contains at most two MOUSEMOVEs – the third branch
of the DOM tree would be superfluous as it would not receive any mouse message. Each HTML element in
the DOM tree is represented as an object with a unique identifier, a class, a parent attribute (specifying the
DOM tree structure) and possibly other attributes. We currently model Anchor , Button , Form, Image ,
InputField and Label element classes, plus a Body element at the root. For example, the Maude term
< O | class:anchor, parent:O’ > represents anchor element O whose parent is O’. Our analysis
is restricted to canonical DOM trees of bounded size but sufficiently rich to uncover useful scenarios.
Currently we have analyzed all one- and two-branch DOM trees with at most six elements. We also specify
rules so that all canonical DOM trees satisfy the required HTML well-formedness restrictions, e.g., an anchor
cannot be embedded in another anchor, an InputField can only be a leaf node, etc.

2) Specifying system state and state transitions (Step C in Figure 2). The system state includes the
browser state statusBar and the user state memorizedURL . State transitions are triggered by the
SetStatusBar action and the user’s Inspection action as below, where AL is an arbitrary action list.

const Inspection : Action . operator SetStatusBar : URL -> Action . vars AL : ActionList . vars Url, Url’ : URL .
rule [SetStatusBar(Url) ; AL] statusBar(Url’) => [AL] statusBar(Url) .
rule [Inspection ; AL] statusBar(Url) memorizedURL(Url') => [AL] statusBar(Url) memorizedURL(Url) .

The first rule specifies the semantics of SetStatusBar(Url) : if the current action list starts with a
SetStatusBar(Url) action, and the status bar displays Url’ , then after this action is completed, it
disappears from the action list, and the status bar is updated to Url . The second rule specifies the
Inspection action: if statusBar displays Url, the memorizedURL is an arbitrary value Url’ , and
the action list starts with Inspection , then after the inspection is made, Inspection disappears from
the action list, and the URL on the status bar is copied to the user’s memory, i.e., memorizedURL .

3) Modeling the program logic (Step B in Figure 2). Modeling the functions shown in Table 1 and Table
2 is straightforward using Maude, e.g., HandleMessage and ClickAction of the Anchor element are
specified in Table 3. Other functions in the program logic are modeled in a similar manner.

Table 3: Rules to specify HandleMessage and ClickAction of Anchor
vars M: Message O: Element AL:ActionList .
rule [AnchorHandleMessage(O,M) ; AL] /*** rule 1 ***/
 => [cancelBubble ; AL]
 if M == LBUTTONUP or M == LBUTTONDOWN .

rule [AnchorHandleMessage(O,M) ; AL] /*** rule 3 ***/
 => [no-op ; AL]
if M is not LBUTTONUP, LBUTTONDOWN or MOUSEOVER .

rule [AnchorHandleMessage(O,M) ; AL] < O | targetURL: Url , …>
 => [SetStatusBar(Url) ; AL] < O | targetURL: Url , … >
 if M == MOUSEOVER . /*** rule 2 ***/

rule [AnchorClickAction(O) ; AL] < O | targetURL: Url , … >
 => [FollowHyperlink(Url) ; cancelBubble ; AL]
 < O | targetURL: Url , … > . /*** rule 4 ***/

It is easy to verify that these rules indeed faithfully specify the behaviors of an anchor shown in Table
1: Rule 1 specifies that if an action list starts with an AnchorHandleMessage(M,O) action, this action
should rewrite to a cancelBubble , if M is LBUTTONUP or LBUTTONDOWN. Rule 2 specifies that if M
is MOUSEOVER, AnchorHandleMessage(M,O) should rewrite to SetStatusBar(Url) , where
Url is the target URL of the anchor. For any other type of message M , AnchorHandleMessage(M,O)
should rewrite to no-op to continue the bubble, which is specified by rule 3. Rule 4 rewrites
AnchorClickAction(O) to the concatenation of FollowHyperlink(Url) and cancelBubble ,
where Url is the target URL of the anchor.

4) Specifying the program invariant (Step A in Figure 2). The only remaining question is how to define
the negation of the program invariant to find status bar spoofs. It is specified as the pattern searched for in the
search command:

const maliciousUrl , benignUrl , empty : URL . vars O1, O2: Element Url: URL AL: ActionList .
search CanonicalActionSequence(O1,O2) statusBar(empty) memorizedUrl(empty)
 => [FollowHyperlink(maliciousUrl) ; AL] statusBar(Url) memorizedUrl(benignUrl) .

 -8-

This gives a well-defined mathematical meaning to status bar spoofing scenarios: “the initial term
CanonicalActionSequence(O1,O2) statusBar(empty) memorizedUrl(empty) can
rewrite to the term [FollowHyperlink(maliciousUrl) ; AL] statusBar(Url)
memorizedUrl(benignUrl) ”, which indicates that the user memorizes benignURL , but
FollowHyperlink(maliciousUrl) is the next action to be performed by the browser.

3.4 Spoofing Scenarios Suggested by the Results
We found nine canonical DOM trees and user action sequences that result in status bar spoofing. All are

due to unintended compositions of HTML element features when multiple elements are considered. This
section presents only four of the scenarios in detail.

Shown in Figure 5, scenario 1 has an InputField embedded in an anchor , and the anchor is
embedded in a form . When the mouse is over the InputField , the HandleMessage of each element is
called to handle the MOUSEOVER message that bubbles up to the DOM tree root. Only the anchor’s
HandleMessage writes its target URL paypal.com to the status bar, but when the InputField is
clicked, its ClickAction method retrieves the target URL from the form element, which is foo.com. This
scenario indicates the flaw in message bubbling – the MOUSEOVER bubbles up to the anchor , but the
click message is directly passed from the InputField to the form , skipping the anchor.

<body>

<a>

<form>

<input field>

input
field

anchor

form

<form action="http://foo.com/" >

 <input type="image" src="faked.jpg">

</form>

Figure 5: DOM Tree, Element Stack and HTML Source of Scenario 1
Scenario 2 (Figure 6) is very different from scenario 1: an img (i.e., image) associated with a map ppl

is on top of a button. The target URL of ppl is set to paypal.com. When img gets a MOUSEOVER, it sets
the status bar to paypal.com and cancels the bubble. When the mouse is clicked on img , because img is a
child of button , the click is treated as a click on the button, according to the implementation of
SendMsgToElem() . The button click, of course, leads to a navigation to foo.com. This scenario indicates a
design flaw – an element (e.g., button) can hijack the click from its child, but it does not hijack the
MOUSEOVER, and thus causes the inconsistency.

<body>

<form>

<button>

img

button

form

<form action="http://foo.com/" >
 <button type=submit>

 </button>
</form>
<map name="ppl"> <area href="http://paypal.com"></map>

Figure 6: DOM Tree, Element Stack and HTML Source of Scenario 2
Scenario 3 contains a label embedded in an anchor (Figure 7(A)). When the mouse is moved toward

the label , it must first pass over the anchor, and thus sets paypal.com on the status bar. When the label is
clicked, the page is navigated to foo.com, because the label is associated with an anchor of foo.com. An
opposite scenario shown as scenario 4 in Figure 7(B) seems more surprising, which suggests an outward
mouse movement from a child to a parent. Such a movement makes it feasible to spoof the status bar using
an img sitting on top of a label . Note that, because HTML syntax only allows an img to be a leaf node,
such an outward mouse movement, which is suggested in our analysis result, is critical in the spoofing attack.

label

anchor

img

label

(A) (B)

Label’s target = foo.com
Anchor’s target = paypal.com

Img’s target = paypal.com
Anchor’s target = foo.com

Figure 7: Element Stacks and Layouts of (A) Scenario 3 and (B) Scenario 4

We also derived several scenarios with two-branch DOM trees. They demonstrate the varieties of DOM
trees and layout arrangements that can be utilized in spoofing, e.g., a spoof page places the two leafs side-by-
side, another page uses Cascading Style Sheets (CSS) [16] to set element positions, etc.

 -9-

4. Case Study 2: Address Bar Spoofing
Address bar spoofing is another category of spoofing attack. It fools users to trust the current page when

it comes from an untrusted source. The combination of a status bar spoofing and an address bar spoofing
gives an end-to-end scenario to hide the identity of the malicious site, and thus is a serious security threat. In
this section, we first introduce the background knowledge about the address bar logic, then present the
Maude-based analysis technique and real spoofing scenarios uncovered by the analysis.

4.1 Background: Address Bar Basics
An IE process can create multiple browsers. Each one is implemented as a thread. A browser, built on

the OLE framework [17], is a container (including the title bar, the address bar, the status bar, etc) hosting a
client document in the content area5. Many types of client documents can be hosted by IE, such as HTML,
Microsoft Word, Macromedia Flash and PDF. In IE, the object to represent an HTML document is called a
renderer. A renderer can host multiple frames, each displaying an HTML page downloaded from a URL. An
HTML page is stored as a markup data structure. A markup consists of the URL and the DOM tree of the
content from the URL. The top level frame, i.e., the one associated with the entire content area, is called the
primaryFrame of the renderer. Figure 8 shows a browser displaying a page from http://MySite. The renderer
has three frames – PrimaryFrame from MySite, Frame1 from PayPal.com and Frame2 from MSN.com. Each
frame is associated with a current markup and, during the navigation time, a pending markup. Upon
navigation completion, the pending markup is switched in and becomes the current markup.

Informally, the program invariant of the address bar correctness is that: (1) the content area is rendered
according to the current markup of primaryFrame, and (2) the URL on the address bar is the URL of the
current markup of primaryFrame. In the example shown in Figure 8, the address bar should display
“http://MySite”, not “http://paypal.com” or “http://msn.com”.

PrimaryFrame from MySite

Renderer

Frame2 from MSNFrame1 from PayPal

Current Markup

Pending Markuphttp://MySite

Browser

Figure 8: Browser, Renderer, Frames and Markups

4.2 Overview of the Logic of HTML Navigation
HTML navigation consists of multiple tasks – loading HTML content, switching markup, completing

navigation and rendering the page. A renderer has an event queue to schedule these tasks. The event queue is
a crucial mechanism for handling events asynchronously, so that the browser is not blocked to wait for the
completion of the entire navigation. We studied three types of navigation: (1) loading a page into the current
renderer; (2) traveling in the history of the current renderer; (3) opening a page in a new renderer. Due to
space constraints, Figure 9 only illustrates a small subset of functions involved in the navigations.

Figure 9(A) shows the event sequence of loading a page in the current renderer. It is initiated by a
FollowHyperlink , which posts a start navigation event. Function PostMan is responsible for
downloading the new HTML content to a pending markup. Event ready is posted to invoke
SetInteractive, to make the downloaded contents effective. SetInteractive first invokes
SwitchMarkup to replace the current markup with the pending markup, and then calls
NavigationComplete . If the downloaded markup belongs to the primaryFrame, function
SetAddressBar is invoked to update its address bar. An Ensure event is posted by SwitchMarkup ,
which invokes EnsureView to construct a View structure containing element layouts derived from the
current markup of the primaryFrame. The OS periodically posts an OnPaint event to paint the content area
by calling RenderView . Figure 9(B) shows the event sequence of a history travel. History_Back and

5 The latest version of IE, Firefox and Netscape browsers support the “tab browsing” mode, in which multiple documents are
collocated in a single browser window. We have not analyzed the logic of tab browsing, but are planning to do so in the near future.

 -10-

Travel look up a history log to initialize the navigation. PostMan , in this case, loads HTML contents
from a persistent storage in the hard disk, rather than from the Internet. The remaining portion of the
sequence is similar to the sequence of loading a new page.

FollowHyperlink

start
navigation

ready

PostMan

E
ve

nt
qu

eu
e

SetInteractive

NavigationComplete

SetAddressBar

SwitchMarkup

onPaint

(Posted by OS)

EnsureView

RenderView

ensure

(A) Loading a Page in
the Current Renderer

History_Back

start
navigation

ready

PostMan

E
ve

nt
qu

eu
e

SetInteractive

NavigationComplete

SetAddressBar

SwitchMarkup

Travel

LoadHistory

onPaint

(Posted by OS)

EnsureView

RenderView

ensure

(B) Traveling in the History
of the Current Renderer

CreatePendingDocObject

start-loading

LoadDocument

E
ve

nt
qu

eu
e

Load

CreateMarkup

SetAddressBar

LoadFromInfo

WindowOpen

onPaint

(Posted by OS)

PostMan
RenderView

download-
content

CreateRenderer
SetClientSite

InitDocHost SwitchMarkup

Posting an event

Calling a function

Invoking a handler

(C) Opening a Page
in a New Renderer

EnsureView

ensure

Figure 9: Logic of HTML Navigations

Figure 9(C) shows the event sequence of loading a new page into a new renderer. WindowOpen is the
starting point. It calls the function CreatePendingDocObject to create a new renderer and then call
SetClientSite . SetClientSite prepares a number of Boolean flags as the properties of the new
renderer, and calls InitDocHost to associate the renderer with the browser (i.e., the container). The new
renderer at this moment is still empty. The start-loading event invokes LoadDocument which first
calls SetAddressBar to set the address bar and then calls Load which calls LoadFromInfo .
CreateMarkup and SwitchMarkup are called from LoadFromInfo before posting a download-
content event to download the actual content for the newly created markup. Function PostMan does the
downloading as above. The remainder of the sequence is similar to both prior sequences.

4.3 Formalization of the Navigations and the Address Bar Behavior
1) Modeling the system state (Step C in Figure 2). Because an address bar spoofing is by definition the

inconsistency between the address bar and the content area of the same browser, “spoofability” is a property
of the logic of a single browser. This does not mean that only one browser is allowed in a spoofing scenario –
there can be other browsers that create a hostile execution context to trigger a logic flaw in one particular
browser. Nevertheless, we only need to model the system as one browser and prove its logical correctness (or
uncover its flaws), and treat the overall effect of other browsers as the context of this browser.

The system state of a browser includes the URL displayed in the address bar, the URL of the View in the
content area, a travel log and the primary frame. The Maude specification defines a set of Frames and a set
of Markups. For example, if Markup m1 is downloaded from URL u1 , and it is the currentMarkup of Frame
f1 , we specify f1 and u1 as:

<f1 | currentMarkup: m1, pendingMarkup: …> <m1 | URL: u1, frame: f1, …>

The system state also includes a function call queue and an event queue. The function call queue is
denoted as [call 1 ; call 2 ; … ; call n] , and the event queue is denoted as {event 1 ; event 2

; … ; event n} .

 -11-

2) Specifying the user action sequence (Step D in Figure 2). In the scenario of an address bar spoofing,
the user’s only action is to access an untrusted HTML page. The page contains a JavaScript calling
navigation functions FollowHyperlink , HistoryBack and/or WindowOpen. The behavior of the
JavaScript is modeled by a rule that conditionally appends a navigation call to the function list. As explained
in Figure 9, each navigation call generates a sequence of events. It is guaranteed that all possible
interleavings of event sequences are exhaustively searched, because Maude explores all viable rewrite orders.

3) Specifying the execution context (Step E in Figure 2). Many Boolean conditions affect the execution
path, e.g., conditions to return from a function and conditions to create a new frame. These conditions
constitute the execution context of the system. We defined rules to assign both true and false values to these
conditions. Therefore the search command explores both paths at each branch in the pseudo code. The
assignments of the Boolean conditions, combined with the function call sequence, constitute a potential
spoofing scenario. These may include false positive scenarios, and thus, as shown in Figure 2, mapping a
potential scenario back to the real-world is important. We discuss this in Section 4.4.

4) Modeling Function Calls and Events (Step B in Figure 2). There are three types of actions shown in
Figure 9: calling a function, invoking an event handler and posting an event. A function call is implemented
as a term substitution in the function call queue. For example, the function call SetInteractive is
specified by the following rule, where F is the frame of Markup M, and SetInteractive(F) can
conditionally rewrite to SwitchMarkup(M,F) (if BOOLEXP1 is false) followed by
NavigationComplete(F) (if BOOLEXP2 is true).

Table 4: Pseudo Code and Rewrite Rule of SetInteractive
Pseudo Code

MARKUP::SetInteractive() {
 if (BOOLEXP1) return;
 this->frame->SwitchMarkup(this);
 if (BOOLEXP2) NavigationComplete(frame)
}

Rewrite Rule to Specify SetInteractive
var F: Frame M: Markup FQ: FunctionQueue
rule [SetInteractive(M) ; FQ] < M | frame: F , … >
 => [(if BOOLEXP1 ≠ true then SwitchMarkup(M,F) else noop fi) ;
 (if BOOLEXP2 == true then NavigationComplete(F) else noop fi) ;
 FQ] < M | frame: F , … >

Posting of an event happens by appending the event to the event queue, for example,
FollowHyperlink is specified by removing itself from the function queue and adding a startNavigation
event to the end of the event queue.

var U:Url F:Frame FQ: FunctionQueue EQ: EventQueue
rule [FollowHyperlink(U, F) ; FQ] { EQ }
 => [FQ] { EQ ; startNavigation(U, F) } .

The third type of action is the invocation of an event handler. Any event can only be invoked when its
previous event handler returns. To model this restriction, any rule of an event handler invocation specifies
that the first event in the event queue can be dequeued and translated into a function call only when the
function queue is empty. Below is the rule to specify the handling of the ready event, which invokes the
handler SetInteractive .

 var EQ: EventQueue
 rule [empty] { ready(M) ; EQ }
 => [SetInteractive(M)] { EQ }

5) Specifying the program invariant of address bar correctness (Step A in Figure 2). A good state is a
state where the URL on the address bar matches the URL of the View and is also the URL of the content that
is painted on the screen. In addition to that, the URL is the URL of the currentMarkup of the primaryFrame.
Therefore the program invariant is defined by the following goodState predicate:

 vars U: URL F: Frame M: Markup
 rule goodState (addressBar(U) urlOfView(U) urlPaintedOnScreen(U) primaryFrame(F)
 < F | currentMarkup: M , …> < M | url: U , …>)
 => true .

It is also important to specify the initial state for the search command. In the initial state, both the event
queue and the function call queue are empty. The primaryFrame is f1 . The currentMarkup of f1 is m0. The
pendingMarkup of f1 is uninitialized. m0 is downloaded from URL0. The address bar displays URL0, the
View is derived from URL0, and the View is painted on the screen. This rule specifies initialState :

 -12-

 const f1: Frame m0: Markup url0: URL empty: EventQueue
 rule initialState
 => { empty } [empty]
 primaryFrame(f1) < f1 | currentMarkup: m0 , pendingMarkup: nil > < m0 | url: url0 , frame: f1 >
 addressBar(url0) urlOfView(url0) urlPaintedOnScreen(url0) .

4.4 Uncovered Spoofing Scenarios
We used the search command to find all execution paths in the model that start with the initial state

and finish in a bad state (i.e., not goodState). The search was performed on two navigations, i.e., two
FollowHyperlinks , two History_Backs , one FollowHyperlink with one History_Back ,
and one WindowOpen with one FollowHyperlink .

Each condition shown in Table 5 is present in at least one execution context of a potential spoofing
scenario uncovered by Maude. Some function names in the Location column were not shown in Figure 9,
because Figure 9 only shows a sketch of the logic of navigation, although the actual model we implemented
is more detailed. The search result in Table 5 provides a roadmap for a systematic investigation: (1) we
have verified that when each of these conditions is manually set to true in the corresponding location using a
debugger, the real IE executable will be forced to take an execution path leading to a stable bad state.
Therefore, our investigation should be focused on these conditions; (2) many other conditions present in the
pseudo code are not in Table 5, e.g., those in SwitchMarkup , LoadHistory and CreateRenderer ,
therefore these functions do not need further investigation.

Table 5: Conditions of Potential Spoofing Scenarios
No. Location Condition
1 FireNavigationComplete GetHTMLWinUrl() = NULL
2 FireNavigationComplete GetPFD(bstrUrl)=NULL
3 FireNavigationComplete ActivatedView = true
4 NavigationComplete DontFireEvents = true
5 NavigationComplete DocInPP = true
6 NavigationComplete ViewWOC = true
7 NavigationComplete ObjectTG = true
8 NavigationComplete CreateDFU = true
9 SetAddressBar CurrentUrl = NULL

No. Location Condition
10 SetClientSite QIClassID()= OK
11 LoadHistory HTMLDoc = NULL
12 CreateMarkup NewMarkup = NULL
13 SetInteractive pPWindowPrxy=NULL
14 SetInteractive IsPassivating = true or

IsPassivated = true
15 SetInteractive HtmCtx() = NULL
16 SetInteractive HtmCtx()->BindResult = OK
17 EnsureView IsActive() = false
18 RenderView RSFC = NULL

In the rest of this section, we will focus on conditions No. 2, 9, 11 and 18, for which we have succeeded
in constructing real spoofing scenarios. For the other conditions, we have not found successful scenarios to
make them real without the debugger. The versions in our study are IE 6 and IE 7 Beta 1 through Beta 3. For
the description convenience, we assume there is a malicious site evil.com.6

Scenarios based on condition 2 and condition 9 (silent-return conditions). The function call traces
associated with condition 2 (i.e. GetPFD(url)= NULL in FireNavigationComplete) and condition
9 (i.e. CurrentURL = NULL in SetAddressBar) indicate similar spoofing scenarios: there are silent-
return conditions along the call stack of the address bar update. If any one of these conditions is true, the
address bar will remain unchanged, but the content area will be updated. Therefore, if the script first loads
paypal.com and then loads evil.com to trigger such a condition, the user will see “paypal.com” on the address
bar whereas the content area is from evil.com.

We found that both condition 2 and condition 9 can be true when the URL of the page is of certain
special formats. In each case, the function (i.e., FireNavigationComplete or SetAddressBar)
cannot handle the special URL, but instead of asserting the failure condition, the function silently returns
when the condition is encountered. For condition 9, we observed that all versions of IE are susceptible; for
condition 2, only IE 7 Beta 1 is susceptible, in which case even the SSL certificate of PayPal is present with
the faked page, because the certificate stays with the address bar. In other versions of IE, although they have
exactly the same silent-returning statement, condition 2 cannot be triggered because the special URL has
been modified at an earlier stage during the execution before GetPFD is called. However, even for these
seemingly unaffected versions, having the silent-returning condition is still problematic – because IE must
guarantee that such a condition can never be true in order to prevent the spoofing.

6 It is a coincidence that evil.com is a real website in the Internet. This paper does not suggest the real site is malicious.

 -13-

These two examples demonstrate a new challenge in graphical interface design – atomicity is important.
In the navigation scenarios, once the pending markup is switched in, the address bar update should be
guaranteed to succeed. No “silent return” should be allowed. Even in a situation where atomicity is too
difficult to guarantee, the browser should at least raise an exception to halt its execution rather than leave it
in an inconsistent state.

Scenario based on condition 11 (a race condition). Condition 11 is associated with a function call trace
which indicates a situation where two frames co-exist in a renderer and compete to be the primary frame.
Figure 10 illustrates this scenario.

https://www.paypal.comhttps://evil.com

R
ac

e
co

nd
iti

on

ex
pl

oi
te

d
he

re

(3) Switch in the markup of evil.com to f2

(1) Start navigating to paypal.com in
the primaryFrame f1.

(2) Start history_back to evil.com. Because condition
11 is true, f2 is created as the primaryFrame.

(5) Switch in the markup of
paypal.com to f1

(4) Update the address bar (6) Update the address bar

The history log

Page 1 Page 2 Page 3t
Figure 10: Spoofing Scenario Due to a Race Condition

The malicious script first loads Page 1 from evil.com. Then it intentionally loads an error page (i.e., Page
2) in order to make conditional 11 true when LoadHistory() is called later. The race condition is
exploited at time t, where two navigations start at the same time. The following event sequence results in a
spoof: (1) the renderer starts to navigate to paypal.com. At this moment, the primary frame is f1 ; (2) the
renderer starts to travel back in the history log. Because condition 11 is true, i.e., HTMLDoc = NULL , a
new frame f2 is created as the primary frame. This behavior is according to the logic of LoadHistory() ;
(3) the markup of evil.com in the history is switched into f2 ; (4) the address bar is updated to
https://evil.com; (5) the downloading of the paypal.com page is completed, so its markup is switched into
f1 . Note that f1 is not the primary frame any more, and it will not be rendered in the content area; (6) the
address bar is updated to https://paypal.com despite the fact that f1 is no longer the primary frame. When all
these six events occur in such an order, the user sees http://paypal.com on the address bar, but the evil.com
page in the content area. The SSL certificate is also spoofed because it gets updated with the address bar.

This race condition can be exploited on IE 6, IE 7 Beta 1 and Beta 2 and succeeds with a high
probability7. It does not succeed in every trial because event (5) and event (6) may occur before event (3) and
event (4), in which case the users sees the evil.com page with http://evil.com on the address bar.

It is worth noting that race conditions are likely to exist in the logic supporting the tab-browsing mode as
well, in which multiple renderers share and compete for a single address bar. We will analyze the tab-
browsing logic in the near future.

Scenario based on condition 18 (a hostile environment). Condition 2 and condition 9 trigger the failure
of the address bar update, and condition 18 triggers the failure of the content area update. In this paper, we
only provide a high level description for this spoofing scenario, which succeeds in nearly every attempt on
all three versions of IE under study.

This scenario depends on condition 18 (i.e., RSFC = NULL in RenderView) which can be true when
a certain type of system resource is exhausted. A malicious script is able to create such an environment by
consuming a large amount of the resource and then navigating the browser from evil.com to paypal.com.
When the timing of the navigation is appropriate, the browser will succeed to update the address bar and fail
to update the content area, leaving both the evil.com content and the paypal.com URL visible to the user.

7 In our experiments, the race condition could be exploited more than half the time.

 -14-

Once again this example demonstrates the importance of atomicity in graphical interface
implementations. In addition to the correctness of the internal logic of a browser, this spoofing scenario
emphasizes the need for resilience against a hostile execution environment.

5. Discussions
In order to better put our work into perspective, this section presents higher-level discussions about

possible defense techniques, other visual spoofing flaws and various techniques for GUI logic analysis.

5.1 How to Defend Against Exploits Based on GUI Logic Flaws
The most direct defense in response to the spoofing attacks is bug patching. All scenarios that we have

discovered have been confirmed by the IE development team. In a build after IE 7 Beta 3, all the status bar
spoofing bugs and two address bar bugs have been fixed. Two other address bar bugs have been investigated,
and their fixes have been proposed.

In the circumstances where the vendor’s patches have not been made available, vulnerability-driven
filtering can provide fast and easy-to-deploy patch-equivalent protection. In particular, we have also explored
the possibility of using BrowserShield [18] to foil spoofing attacks. In BrowserShield, web pages are
intercepted at a browser extension, which injects a script-rewriting library into the pages and sends them to
the browser. The rewriting library is executed during page rendering at the browser and rewrites HTML
pages and any embedded scripts into safe equivalents. The equivalent safe pages contain logic for recursively
applying run-time checks according to policies that detect and remove known attack patterns that we
described earlier. In our proof-of-concept implementation, we authored policies for both status-bar spoofing
removal and address-bar spoofing removal. The status bar policy is to inject JavaScript code to monitor the
status bar before the mouse click, and compare it with the URL argument of the FollowHyperlink call.
One of the address bar policies is to inject JavaScript code to check if a URL is of a special format that
causes a silent failure of the address bar update.
5.2 Solving the Visual Spoofing Problem is Challenging

The objective of this paper is to bring the GUI logic problem to the attention of the research community,
rather than claiming that the visual spoofing problem as a whole can be solved in the short term. In
particular, the following two questions are not addressed by this work.

(1) How many average users are security-unconscious and completely ignore any security indicators?
User-studies have raised the concern that many average users still lack the knowledge or the attention to
examine the information provided by security indicators, such as the address bar, the status bar, SSL
certificate and security warning dialogs [6][24]. Many users readily believe whatever is displayed in the
content area. We agree that this is the current fact, and argue that a significant effort should be spent on user
education about secure browsing. But such an education would be ineffective without the trustworthiness of
the security indicators – if their information can be spoofed, even we, as computer science professionals, do
not know what to trust. The success of anti-phishing must be achieved by a joint effort between the browser
vendors and the end users. It is analogous to automobile-safety: drivers have the responsibility to buckle up,
and the automobile manufacturers need to guarantee that the seat-belts are effective.

(2) How to deal with other types of visual spoofs that are not due to GUI logic flaws? In the introduction,
we listed a few visual spoofing scenarios due to graphical similarities. These issues have little to do with
logic problems, so their treatments are very different from the approach presented in this paper, e.g., the
current version of IE disallows a script from the Internet zone to open a chromeless window (i.e., a window
having only the content area). It is also clearly specified in design that the URL displayed on the address bar
should be left-justified after each address bar update, and no pop-up window can stay “always-on-top”, etc.
SpoofStick is designed to interpret the confusing URL on the address bar [20]; Dynamic Security Skins [5]
and Passpet [26] use trusted images to defeat certain spoofing attacks. Ye and Smith proposed several ideas
to implement trusted paths for browsers by disallowing the page content elements to forge the page status
elements [25]. Virtual machine techniques have also been used to provide trusted browser GUI elements,
e.g., the Tahoma window manager provides a virtual screen abstraction to each browser instance [4].
Nevertheless, when the internal GUI logic is flawed as we shown in the paper, ensuring unforgeable GUI
elements is not a remedy. Therefore, GUI logic flaw and graphic similarity can be viewed as two different
problems under the same umbrella of visual spoofing.

 -15-

5.3 A Broad Spectrum of Tools Can Be Used for the Systematic Exploration
The essence of our approach is that we systematically explore the GUI logic. Whether the exploration is

done by symbolic formal analysis (such as theorem proving or model checking) or by exhaustive testing is
less important. As an example of exhaustive testing, we used the binary instrumentation tool Detours [10] to
test the status bar logic. The basic idea is that since we know the program invariant and how to generate
canonical user action sequences and canonical DOM trees, we can generate real canonical HTML pages and
real mouse messages to test the real IE status bar implementation. The advantage of the exhaustive testing
approach is that it does not require manual modeling of the behaviors of each HTML element, and therefore
can avoid the potential inaccuracies in the logic model. Applying this technique, we were able to find all
spoofs known from our previous modeling.

Nevertheless, there is no fundamental difference whether the exploration is done symbolically (e.g., by
Maude) or by exhaustive testing (e.g., by Detours), because both techniques are based on the same
understanding of the search space and the test-case construction. The main effort for the symbolic
exploration is to correctly specify the GUI logic with sufficient details. The exhaustive testing requires much
effort to drive the system’s internal state transitions. For example, to test the address bar logic, we would
need to exhaustively enumerate all event interleaving situations in the real renderer. It is a non-trivial task.

6. Related Work
The emphases of this work are: (1) the formulation of GUI logic correctness as a research problem, and

(2) the proposal of a systematic approach to uncover GUI logic flaws leading to visual spoofs. There is little
existing work related to our first emphasis, but a wealth of work is related to the second – formal methods
and program analysis techniques have been successful in systematically discovering software reliability and
security flaws. We summarize only a few techniques below.

The SLAM technique [1] uses theorem proving and model checking tools to statically verify whether or
not predefined “API usage rules” are obeyed in large programs. A static driver verifier is built on the SLAM
technique, and has been deployed for Windows driver implementation correctness. Model checking
techniques are also developed to find file system bugs [27] and security vulnerabilities [3] in large bodies of
legacy source code. Much research has been done in formal verification of security protocols [15]. A static
analysis technique is used for detecting higher level vulnerabilities such as SQL injections, cross-site
scripting, and HTTP splitting attacks [13]. Our work is complementary to the existing research, because we
are focused on the machine-to-user trust.

Also related are research papers about phishing attacks, e.g., PwdHash is a browser plug-in that
transparently produces a different password for each site to prevent phishing sites from obtaining usable
passwords [19]. Florencio and Herley design a technique to detect password phishing by monitoring
password-reuse between a well-known site and an unfamiliar site [9].

7. Conclusions
GUI logic flaws are a real and pressing security problem – these flaws can be exploited to lure even

security-conscious users into malicious web pages. We have formulated GUI logic correctness as a new
research problem, and have proposed a systematic approach to proactively uncover logic flaws in browser
GUI design/implementation that lead to spoofing attacks.

Specifically, based upon an in-depth study of the logic of key subsets of IE source code, we have
developed a formal model of the browser logic and have applied formal reasoning to uncover important new
spoofing scenarios. This has been done for both the status bar and the address bar. The knowledge obtained
from our approach offers an in-depth understanding of potential logic flaws in the graphical interface
implementation. The IE development team has confirmed that all thirteen flaws reported by us are indeed
exploitable, and has fixed eleven of them in the latest build. Through this work, we demonstrate the
feasibility and the benefit of applying a rigorous approach to GUI design and implementation.

Despite the fact that the analysis approach is systematic, it only provides relative completeness: relative
to the kind of spoofing scenarios being considered, the IE code subset currently modeled, and our search
spaces our analysis is complete. Therefore, an important task ahead is to obtain a precise high-level
specification of more IE modules, and to extend our current formal models and analyses to cover most IE
functionality. For example, the model should accommodate the tab browsing logic and the hosting

 -16-

mechanisms for document types other than HTML, such as PDF, Microsoft Word, Macromedia Flash, etc.
We look forward to tackling this pending challenge in the future.

GUI logic flaws affect not just IE, but potentially all current web browsers. Therefore, we strongly
believe that the methodology presented in this paper can be equally applied to systematically identify
vulnerabilities for other browsers. More broadly, non-browser applications, e.g., email clients and digital
identity management tools [14], also have similar concerns about graphical interface integrity. Therefore,
ensuring GUI logic correctness is a research problem whose solution can have significant practical impact.

Acknowledgements:
Many colleagues in Microsoft kindly provided technical help to us. We thank Bill Bolosky, Brad Daniels,
Rich Draves, Ulfar Erlingsson, Tim Harris, Cormac Herley, Emre Kiciman, Jim Larus, Madan Musuvathi,
Shaz Qadeer, Kevin Schofield, Dan Simon and Chad Verbowski from Microsoft Research; Jeremy Dallman,
Rob Franco, Mike Friedman, Dean Hachamovitch, Vikram Harinau, Li-Hsin Huang, Patrick Mann, Dan
Plaster, Christopher Vaughan, Chris Wilson, Tong Wynn, Yin Xie, Zhenbin Xu and Geng Yang from the IE
Team; Steve Adegbite, Greg Hartrell, Steve Lipner, Rebecca Norlander, Mike Reavey, David Ross, Dave
Steeves and Matt Thomlinson from the Security Business Unit. Collin Jackson from Stanford also offered
insightful discussions.

References:
[1] Thomas Ball, Sriram K. Rajamani. “The SLAM Project: Debugging System Software via Static Analysis”, ACM

Principles of Programming Languages Conference, 2002.
[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, at al. Maude: specification

and programming in rewriting logic. Theoretical Computer Science, 285(2): 2002.
[3] Hao Chen, Drew Dean, and David Wagner. “Model checking one million lines of C code”. Network and

Distributed System Security Symposium (NDSS), 2004.
[4] Richard S. Cox, Jacob G. Hansen, Steven D. Gribble, and Henry M. Levy: "A Safety-Oriented Platform for Web

Applications," IEEE Symposium on Security and Privacy, 2006
[5] Rachna Dhamija and J. D. Tygar. “The Battle Against Phishing: Dynamic Security Skins,” Symposium on

Usable Privacy and Security (SOUPS), July 2005.
[6] Rachna Dhamija, J. D. Tygar and Marti Hearst. "Why Phishing Works". Conference on Human Factors in

Computing Systems (CHI), 2006.
[7] Jeremy Epstein, John McHugh, Rita Pascale, Hilarie Orman, Glenn Benson, et al, "A prototype B3 trusted X

Window System," Computer Security Applications Conference, 1991.
[8] Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. "Web Spoofing: An Internet Con Game,"

20th National Information Systems Security Conference, 1996
[9] Dinei Florencio and Cormac Herley. “Stopping a Phishing Attack, Even when the Victims Ignore Warnings”.

Microsoft Research Technical Report, MSR-TR-2005-142
[10] Galen Hunt and Doug Brubacher. "Detours: Binary Interception of Win32 Functions," Proceedings of the 3rd

USENIX Windows NT Symposium, pp. 135-143. Seattle, WA, July 1999.
[11] Internet Explorer Window Loading Race Condition Address Bar Spoofing. http://secunia.com/advisories/ 19521/
[12] José Meseguer. “Conditional Rewriting Logic as a United Model of Concurrency”. Theoretical Computer

Science, 96(1): 73-155, 1992.
[13] Benjamin Livshits, Monica S. Lam. "Finding Security Vulnerabilities in Java Applications with Static Analysis,"

14th USENIX Security Symposium, Baltimore, 2005.
[14] Microsoft Corporation. Microsoft's Vision for an Identity Metasystem. http://msdn.microsoft.com/
[15] Catherine Meadows. Formal Verification of Cryptographic Protocols: A Survey. Lecture Notes in Computer

Science, 917, 135-150, 1995, Springer.
[16] The MSDN Library. “Changing Element Styles”. http://msdn.microsoft.com/
[17] The MSDN Library. “OLE Background,” http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore/ html/_core_ole_background.asp
[18] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. “BrowserShield:

Vulnerability-Driven Filtering of Dynamic HTML”. Operating Systems Design and Implementation, 2006.
[19] Blake Ross, Collin Jackson, Nicholas Miyake, Dan Boneh et al. “Stronger Password Authentication Using

Browser Extensions”. Usenix Security Symposium, 2005.
[20] SpoofStick Homepage. http://www.spoofstick.com/
[21] Firefox Visual Spoofing Flaws. Bugtraq list, http://www.securityfocus.com/bid. Bug IDs: 10532, 10832, 12153,

12234, 12798, 14526, 14919

 -17-

[22] Internet Explorer Visual Spoofing Flaws. Bugtraq list, http://www.securityfocus.com/bid. Bug IDs: 3469,
10023, 10943, 11561, 11590, 11851, 11855, 1254.

[23] Netscape Navigator Visual Spoofing Flaws. Bugtraq list, http://www.securityfocus.com/bid. Bug IDs: 7564,
10389

[24] Min Wu, Robert C. Miller and Simson L. Garfinkel. "Do Security Toolbars Actually Prevent Phishing Attacks?"
Conference on Human Factors in Computing Systems (CHI), 2006.

[25] E. Ye, S.W. Smith. "Trusted Paths for Browsers." 11th Usenix Security Symposium. August 2002.
(Also, E. Ye, Y.Yuan, S. W. Smith. “Web Spoofing Revisited: SSL and Beyond,” Technical Report TR2002-
417, Department of Computer Science, Dartmouth College. February 2002.)

[26] Ka-Ping Yee, Kragen Sitaker. “Passpet: Convenient Password Management and Phishing Protection,”
Symposium on Usable Privacy and Security (SOUPS), 2006.

[27] Junfeng Yang, Paul Twohey, Dawson Engler, Madanlal, Musuvathi. “Using model checking to find serious file
system errors”. USENIX Symposium on Operating Systems Design and Implementation, 2004

