Automatic Validation of
Transformation Rules for

~Java Verlification _
against a Rewriting Semantics

Ralf Sasse
University of lllinois at Urbana-Champaign
Joint Work with:
Wolfgang Ahrendt, Chalmers University of Technology, Goteborg

Andreas Roth, Universitat Karlsruhe

KeY - Dynamic Logic
fKeY: T

|Interactive Java source code prover.
Based on Java Dynamic Logic.
Dynamic Logic formula:

(m) @

Example:
A=) =1)*(i++);)1 =] *]j

#® Sequent calculus: Dynamic Logic rules.

o |

Validating Rules for Java Verification — p.2/20

Example Rule

- N

ule:

I' = (typeof(e) vi = e; typeof(n) vo = n; | = vy *xvo; rs) ¢, A
' - (I=exn; rs) ¢, A

Variables are schema variables.

Special case here: program transformation rule.

o |

Validating Rules for Java Verification — p.3/20

Rules Implemented as Taclets

- N

ule:

I' = (typeof(e) vi = e; typeof(n) vo = n; | = vy *xvo; rs) ¢, A
' - (I=exn; rs) ¢, A

Implementing taclet:

find((I = e *n;rs) b)
replacewith((typeof(e) vi = e; typeof(n) vo = n; | = v * vo;rs) b)
varcond(new typeof(e) v1, typeof(n) vo)

o |

Validating Rules for Java Verification — p.4/20

Taclet Application

. N

aclet:

find({I = e*n;rs) b)
replacewith((typeof(e) vi = e; typeof(n) vo = n; | = vy * vo;rs) b)
varcond(new typeof(e) v1, typeof(n) vo)

Taclet applicable in this formula:
A=Cj=1)«(i++);)i =] %]
Result of that application:

(ilnt eval 1=(j =i); int eval 2=i ++; 1 =eval 1xeval 2;)

L | =] %] J

Validating Rules for Java Verification — p.5/20

Alm
| -

Java Dynamic Logic Calculus: 480 rules.

Out of that: 210 program transformation rules.

Other formalisations of Java:
e.g. Java semantics in rewriting logic.

Aim:
automated validation
of
transformation rules
VS.
rewriting logic Java semantics

o |

Validating Rules for Java Verification — p.6/20

© o o o o

Rewriting Logic

Rewrite Theory: (3, E,R)

Logical and computational view.

Rule: t — ¢/,

Equation: ¢t = ¢/, (Church-Rosser and terminating).
Rule application modulo equations.

|

Validating Rules for Java Verification — p.7/20

Rewriting Logic - R j,u.
f.o Rewriting Logic implementation: Maude.

Java semantics given in Maude, call it R j,44:
» (executable) specification of Java,
s Interpreter for free.

#® Used R ,,, Version is a prototype.

o |

Validating Rules for Java Verification — p.8/20

(Cross-)Validating transformation taclets

o N

General form of a program transformation rule:

Tk (I 1s) ¢, A
['F(Ilrs) ¢, A

® Problem: II, IT’ schematic, cannot execute schematic
code INn R j 4.

Program transformation with II, IT" correct if for all
iInstances , 7’ this holds:

7zJowa /
<7T S >——> S

| s'==s" |

Validating Rules for Java Verification — p.9/20

(Cross-)Validating transformation taclets

- |

Program transformation with II, I’ correct if for all instances
m, 7' this holds:

cha /

<T7T,8>—

RJava //

<7 s >
S _—= S
ldea: Lift semantics to allow execution of schematic code.

R l’Lft

Java /

<lIl,s >—

- S |

Validating Rules for Java Verification — p.10/20

R _ g taster

Java

- N

Java expressions:

asic problem: evaluating schematic expressions.

depend on state
may have side-effects

o |

Validating Rules for Java Verification — p.11/20

R _ g taster

Java

- N

Java expressions:

asic problem: evaluating schematic expressions.

depend on state
may have side-effects

schematic Java expressions:
depend on symbolic state

® have unknown side-effects

o |

Validating Rules for Java Verification — p.12/20

R _ g taster

Java

fBasic problem: evaluating schematic expressions. T
Java expressions:
depend on state

may have side-effects

schematic Java expressions:

depend on symbolic state
— modeled by ‘snapshots’

have unknown side-effects
— modeled by ‘extended conditional values’ in memory

o |

Validating Rules for Java Verification — p.13/20

Snapshots
B -

r Rf}fw uses symbolic configuration, consisting of:
memory, environment, continuation, ...
e.g. symbolic memory: [L1,V1] [L2,V2] rm

Snapshots save relevant parts of configuration:
memory, environment and current object.

o |

Validating Rules for Java Verification — p.14/20

-

Treating schematic expressions e with unknown side effects

Extended Conditional VValues
-

and result:
Side effect in general: change n locations L+,..., L, to
values Vi, ..., V,,.

e executed In configuration s: location list LI (e, s)
changed to value list VI (e, s) .

Execute e in configuration s: forall [L, V] In memory
afterwards at location L the extended conditional value:
Lin Ll(es) ?? M (es) 1V

Introduced into memory by operator walking through it.
Finally sticks at symbolic memory rest r m

|

Validating Rules for Java Verification — p.15/20

Configuration Generation

lift T

» Still: types for schema variables too general for R’ .
e.g.:type lefthandside could be either of:

» local variable:
add [x, L] to local environment,

s Static variable:
add [x, L] to static environment,

s attribute of the current object:
add [x, L] to the current object’s environment.

#® Ineachcase:add[L, V] to generic memory.

#® Check all possible combinations, can be over 100 cases
per taclet.

L # Automated generation of start configurations. J

Validating Rules for Java Verification — p.16/20

Results

Lifted semantics for concrete Java:
R . can now handle schematic Javal

Java’

Program Transformation Taclets:

s Automatically validated 56 of 210 transformation
taclets,

s could validate more, if original R j,,, Was complete

Daily automated use of this method validates
transformation taclets in KeY every night. Run takes
about 3 minutes.

Found 3 unsounds taclets.

|

Validating Rules for Java Verification — p.17/20

Example

-

Actual KeY program transformation rule:

' - (x=y; y=y+1; rs) ¢, A
' = (x=y++; rs) ¢, A

o |

Validating Rules for Java Verification — p.18/20

Same Instantiations for Different SVs

. N

Program transformation (wrong)

x=y++; ~» XZV; y:y+1;

Instantiate x and y with a:
a=a++; keeps a (according to Java Lang. Spec.)

a=a; a=atl; changes a (obviously).

Corrected program transformation:

x=y++; ~» v=y; y=y+l; x=v;

o |

Validating Rules for Java Verification — p.19/20

Future Work
L -

® R .. With more features: check more different
transformation taclets.

» Specifically exception-handling!

#® Extend scope and handle more than pure
transformation taclets: e.g. branching rules.

o |

Validating Rules for Java Verification — p.20/20

	KeY - Dynamic Logic
	Example Rule
	Rules Implemented as Taclets
	Taclet Application
	Aim
	Rewriting Logic
	Rewriting Logic - $Rjava $
	(Cross-)Validating
transformation taclets
	(Cross-)Validating
transformation taclets
	Rlift -- a taster
	Rlift -- a taster
	Rlift -- a taster
	Snapshots
	Extended Conditional Values
	Configuration Generation
	Results
	Example
	Same Instantiations for Different SVs
	Future Work

