
Automatic Validation of
Transformation Rules for

Java Verification
against a Rewriting Semantics

Ralf Sasse

University of Illinois at Urbana-Champaign

Joint Work with:

Wolfgang Ahrendt, Chalmers University of Technology, Göteborg

Andreas Roth, Universität Karlsruhe

Validating Rules for Java Verification – p.1/20

KeY - Dynamic Logic

KeY:

Interactive Java source code prover.

Based on Java Dynamic Logic.

Dynamic Logic formula:

〈π〉 φ

Example:

〈i=(j=i)∗(i++);〉 i
.
= j ∗ j

Sequent calculus: Dynamic Logic rules.

Validating Rules for Java Verification – p.2/20

Example Rule

Rule:

Γ ` 〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 φ, ∆

Γ ` 〈l = e ∗ n; rs〉 φ, ∆

Variables are schema variables.

Special case here: program transformation rule.

Validating Rules for Java Verification – p.3/20

Rules Implemented as Taclets

Rule:

Γ ` 〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 φ, ∆

Γ ` 〈l = e ∗ n; rs〉 φ, ∆

Implementing taclet:

find(〈l = e ∗ n; rs〉 b)

replacewith(〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 b)

varcond(new typeof(e) v1, typeof(n) v2)

Validating Rules for Java Verification – p.4/20

Taclet Application

Taclet:

find(〈l = e ∗ n; rs〉 b)

replacewith(〈typeof(e) v1 = e; typeof(n) v2 = n; l = v1 ∗ v2; rs〉 b)

varcond(new typeof(e) v1, typeof(n) v2)

Taclet applicable in this formula:

〈i=(j=i)∗(i++);〉 i
.
= j ∗ j

Result of that application:

〈int eval1=(j=i); int eval2=i++; i=eval1*eval2;〉 i
.
= j ∗ j

i
.
= j ∗ j

Validating Rules for Java Verification – p.5/20

Aim

Java Dynamic Logic Calculus: 480 rules.

Out of that: 210 program transformation rules.

Other formalisations of Java:
e.g. Java semantics in rewriting logic.

Aim:
automated validation

of
transformation rules

vs.
rewriting logic Java semantics

Validating Rules for Java Verification – p.6/20

Rewriting Logic

Rewrite Theory: (Σ, E,R)

Logical and computational view.

Rule: t → t′,

Equation: t = t′, (Church-Rosser and terminating).

Rule application modulo equations.

Validating Rules for Java Verification – p.7/20

Rewriting Logic - RJava

Rewriting Logic implementation: Maude.

Java semantics given in Maude, call it RJava :
(executable) specification of Java,
interpreter for free.

Used RJava version is a prototype.

Validating Rules for Java Verification – p.8/20

(Cross-)Validating transformation taclets

General form of a program transformation rule:

Γ ` 〈Π′ rs〉 φ, ∆

Γ ` 〈Π rs〉 φ, ∆

Problem: Π, Π′ schematic, cannot execute schematic
code in RJava .

Program transformation with Π, Π′ correct if for all
instances π, π′ this holds:

< π, s >
RJava−→ s′

< π′, s >
RJava−→ s′′

s′ == s′′

Validating Rules for Java Verification – p.9/20

(Cross-)Validating transformation taclets

Program transformation with Π, Π′ correct if for all instances
π, π′ this holds:

< π, s >
RJava−→ s′

< π′, s >
RJava−→ s′′

s′ == s′′

Idea: Lift semantics to allow execution of schematic code.

< Π, s >
R

lift
Java−→ s′

< Π′, s >
R

lift
Java−→ s′′

s′ == s′′

Validating Rules for Java Verification – p.10/20

Rlift
Java – a taster

Basic problem: evaluating schematic expressions.

Java expressions:

depend on state

may have side-effects

Validating Rules for Java Verification – p.11/20

Rlift
Java – a taster

Basic problem: evaluating schematic expressions.

Java expressions:

depend on state

may have side-effects

schematic Java expressions:

depend on symbolic state

have unknown side-effects

Validating Rules for Java Verification – p.12/20

Rlift
Java – a taster

Basic problem: evaluating schematic expressions.

Java expressions:

depend on state

may have side-effects

schematic Java expressions:

depend on symbolic state

– modeled by ‘snapshots’

have unknown side-effects

– modeled by ‘extended conditional values’ in memory

Validating Rules for Java Verification – p.13/20

Snapshots

Rlift
Java uses symbolic configuration, consisting of:

memory, environment, continuation, ...

e.g. symbolic memory: [L1,V1] [L2,V2] rm

Snapshots save relevant parts of configuration:
memory, environment and current object.

Validating Rules for Java Verification – p.14/20

Extended Conditional Values

Treating schematic expressions e with unknown side effects
and result:

Side effect in general: change n locations L1, . . . , Ln to
values V1, . . . , Vn.

e executed in configuration s: location list Ll(e, s)
changed to value list Vl(e, s).

Execute e in configuration s: for all [L,V] in memory
afterwards at location L the extended conditional value:
L in Ll(e, s) ?? Vl(e, s) :: V

Introduced into memory by operator walking through it.
Finally sticks at symbolic memory rest rm.

Validating Rules for Java Verification – p.15/20

Configuration Generation

Still: types for schema variables too general for Rlift
Java .

e.g.: type lefthandside could be either of:
local variable:
add [x,L] to local environment,
static variable:
add [x,L] to static environment,
attribute of the current object:
add [x,L] to the current object’s environment.

In each case: add [L,V] to generic memory.

Check all possible combinations, can be over 100 cases
per taclet.

Automated generation of start configurations.

Validating Rules for Java Verification – p.16/20

Results

Lifted semantics for concrete Java:
Rlift

Java , can now handle schematic Java!

Program Transformation Taclets:
Automatically validated 56 of 210 transformation
taclets,
could validate more, if original RJava was complete

Daily automated use of this method validates
transformation taclets in KeY every night. Run takes
about 3 minutes.

Found 3 unsounds taclets.

Validating Rules for Java Verification – p.17/20

Example

Actual KeY program transformation rule:

Γ ` 〈x = y ; y = y + 1; rs〉 φ, ∆

Γ ` 〈x = y++; rs〉 φ, ∆

Validating Rules for Java Verification – p.18/20

Same Instantiations for Different SVs

Program transformation (wrong)

x=y++; x=y; y=y+1;

Instantiate x and y with a:
a=a++; keeps a (according to Java Lang. Spec.)
a=a; a=a+1; changes a (obviously).

Corrected program transformation:

x=y++; v=y; y=y+1; x=v;

Validating Rules for Java Verification – p.19/20

Future Work

RJava with more features: check more different
transformation taclets.

Specifically exception-handling!

Extend scope and handle more than pure
transformation taclets: e.g. branching rules.

Validating Rules for Java Verification – p.20/20

	KeY - Dynamic Logic
	Example Rule
	Rules Implemented as Taclets
	Taclet Application
	Aim
	Rewriting Logic
	Rewriting Logic - $Rjava $
	(Cross-)Validating
transformation taclets
	(Cross-)Validating
transformation taclets
	Rlift -- a taster
	Rlift -- a taster
	Rlift -- a taster
	Snapshots
	Extended Conditional Values
	Configuration Generation
	Results
	Example
	Same Instantiations for Different SVs
	Future Work

