Proof Obligations for Correctness of
Modifies Clauses

Ralf Sasse

October 23, 2004

Studienarbeit

Universitdt Karlsruhe (TH)
Fakultat fir Informatik
Institut fir Logik, Komplexitat und Deduktionssysteme

Verantwortlicher Betreuer: Prof. Dr. Peter H. Schmitt
Betreuer: Dr. Bernhard Beckert

Danksagung

An dieser Stelle mochte ich mich bei meinen Betreuern Prof. Peter H. Schmitt und
Dr. Bernhard Beckert bedanken, die mich bei der Erstellung dieser Studienarbeit
sehr unterstiitzt haben.

Bedanken mochte ich mich auch bei Andreas Roth, der immer gerne bereit war,
meine Fragen zu beantworten und mir einen besseren Einblick in das KeY-Projekt
ermoglichte.

Hiermit versichere ich, die vorliegende Arbeit selbstandig verfalt und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt zu haben.

Ralf Sasse
Karlsruhe, October 23, 2004

CONTENTS

ii
Contents
1 Introduction
1.1 KeY Projecto
1.2 Goalofthiswork
1.3 Structureo
2 Dynamic Logic DL,
2.1 Syntax e
2.2 Semantics e
3 Modifies Clauses in DL;
3.1 Modifies Clauses in general
3.2 Modifies Clauses formally
3.3 Special Cases
4 Correctness of a Method with respect to Modifies Clauses
5 Proof Obligations for Modifies Clauses
5.1 Proof Obligation Creation
5.2 Proof Obligation Correctness
5.3 Change in the Proof Obligation for better machine usability
5.4 Variation of the Formula Build-up
6 Related Work
6.1 Spotoand Poll
6.2 Catano and Huisman,
6.3 General
7 Implementation
8 Summary

8.1 Future Work s

10
10
13
21
23

24
24
24
24

26

27

1 Introduction

1.1 KeY Project

This Studienarbeit was done within the scope of the KeY project [ABBG™00].
The KeY project aims at integrating formal methods into the industrial software
engineering process. A commercial CASE tool is used as starting point and tools
for formal specification and verification are integrated into it. The final goal behind
this is that programmers who have little or no experience in the use of formal
methods can also profit from the advantages of formal methods. Therefore it is
necessary to conceal the process of verification from the user as far as possible,
i.e. to automate the verification.

Right now there is a working prototype of the KeY tool which uses TogetherCC
from Borland as the CASE tool. The KeY tool aims at doing verification for
object-oriented software programmed in JAVA. A first release will happen in the
very near future.

1.2 Goal of this work

The logic which is used for verification in the KeY-project is the JAVA CARD Dy-
namic Logic [Beck01]. This logic is based on dynamic logic introduced by [Hare84].
A ”modifies clause” is a list of program locations given with a method specification
and it states which variables or class attributes may have been changed after the
execution of the method. All variables or class attributes which are not part of
the modifies clause have to be the same after the method execution as before for
the method to be correct with respect to the modifies clause.

The goal of this ”Studienarbeit” was to add the possibility to verify that a given
modifies clause for a method is indeed a correct one using dynamic logic. This
is important because modifies clauses allow speed-ups in the interactive theorem
proving as can be seen in the paper [BeSc03] by Beckert and Schmitt. Also in the
”Studienarbeit” of Bastian Katz [Katz03] we need the assumption that the modi-
fies clause is correct and then using the method given by that work, i.e. replacing
method calls by a rule, generated from the method specification with modifies
clause, is correct as detailed there.

My approach uses the availability of the KeY tool to do the actual proof which
happens mainly automated. Thus only a proof obligation has to be created and
can then be discharged by the system.

1.3 Structure

Chapter 2 gives a short overview over the dynamic logic which is used for the
rest of this work. Chapter 3 defines modifies clauses in the environment given

2 1 INTRODUCTION

by Chapter 2. In Chapter 4 the ”correctness” of a modifies clause is defined.
Chapter 5 is the main part of this work where the proof obligation which has
to be created to show the correctness as defined in Chapter 4 is developed and
the correctness of the approach is shown. Then Chapter 6 points out what has
been done by other approaches and what problems they encountered and why I
could overcome them here. Then in Chapter 7 a few details and problems of the
implementation are discussed. Chapter 8 finishes the work and summarizes what
has been done and what would be nice to add.

2 Dynamic Logic DL,

The logic which is used in all works related to the KeY tool is first order dynamic
predicate logic for JAvA CARD, called DL;. It is mainly defined in [Beck01] and
the main points of its syntax and semantics will be presented here.

2.1 Syntax

Context and Signature Syntax and semantics is always defined with respect to
the context which includes the class definitions of a program. From the context we
can derive large parts of the signature, like for example functions which represent
the fields from the class definition.

Variables In DL ; there are two sorts of variables: on the one hand there are
program variables and on the other hand logical variables. Only logical variables
are variables in the original meaning but they are not allowed to appear free in DL
and they cannot be assigned to in programs. Logical variables will be presented as
x,vy, z. Program variables are only variables in the sense of the JAVA programming
language. In the logic they are considered to be non-rigid 0-ary functions. They
can be changed by the program like fields of objects (unary functions) and may
self-evidently not be quantified. They are presented as x, y, z.

Functions Attributes and array elements are considered functions exactly like
the program variables. For an attribute attr of an object which is referenced by
a term t we also write t.attr instead of attr(t). Functions can be rigid, meaning
they cannot be changed by the execution of the program. All functions defined by
the JAVA semantics (like e.g. addition +) shall be treated like rigid functions in
DLy.

Terms The terms of DL are built over the logic variables and functions as usual.
These include program variables as non-rigid O-ary functions and constants as rigid
0-ary functions.

Programs All executable JAVA CARD programs are allowed as programs except
the class declarations.

Formulas Formulas for a given signature consist of terms, predicates and logic
junctors as usual. They are extended to dynamic logic by the definition that for
every formula ¢ and for every program p the following are formulas too: (p)¢ and
[p] . With the usual semantics for dynamic logics holding true here.

4 2 DYNAMIC LOGIC DL,

Example 2.1. With formulas ¢ and ¢ and a program p

¢ — [plv
is an example of a Hoare Triple in JAVA CARD Dynamic Logic.

Sequents A sequent has the form [y, ...,[, F ry, ..., 7, with formulas /; and r;. Its
semantics is the same as that of [{ A ... Al, > 71 V... V71,

2.2 Semantics

The semantics by which the formulas of DL ; are interpreted are Kripke structures
K = (8, p) where S is a set of states and p is a transition relation for the interpre-
tation of programs.

The states s € S are predicate logic structures M over the corresponding signature
>.. We limit the choice of S by requesting that

1. all states have the same universe. Therefore we speak of the universe of a
DL ;-Kripke-structure.

2. S includes all structures of the predicate logic for the given signature and
the universe of .

These two requirements lead to a uniquely defined set & for every choice of a
signature and a universe.

For the transition relation depending on the program the following holds in general:
for the set P of all valid JAVA CARD programs the transition relation p is:

p:P — 25%5 JAvA CARD programs are deterministic and therefore for p € P p(p)
is a partial function p(p) : S — &. We consider concrete JAVA CARD programs
and limit the choice of p like this: when interpreting the states of S as program
states or states of the Java Virtual Machine p(p)(s) is the state which is reached
by execution of the program p in state s (or if p does not terminate then s does
not have an image under p(p)). By that the choice of p is uniquely determined
under the precondition that the semantics of JAVA CARD is unique.

3 Modifies Clauses in DL

This section is close to [Katz03|’s explanations on modifies clauses with only minor
additions as needed for this work.

3.1 Modifies Clauses in general

A modifies clause is basically a list of arguments or fields from a given program or
method call or global memory locations. In our dynamic logic DL; we write the
modifies clauses down the same way as we write down preconditions and postcon-
ditions of methods. Such a modifies clause belongs to a method specification. In
our implementation that is given in the comments preceding the method using a
”@modifies ...” line where the ”...” are the actual elements of the modifies clause
which are given comma separated.

It is implicit that all variables and attributes which are not listed in the modifies
clause may not be changed by the execution of the method. Only those which are
part of the modifies clause may be altered but they do not have to be changed.

3.2 Modifies Clauses formally
Now to make all this more precise we formally define:

Definition 3.1. [Modifies clauses of sets]

Let K = (S, p) be a DL;-Kripke-structure for a given signature . A set M of
ground terms, i.e. terms without logical variables, is called modifies clause for a
pair of states (s1,s2) € S X S if and only if for all functions f € ¥ with arity n;
and all ny-tupel oy, ..., 0, the following holds:

fSI (01: X Onf) 75 f52 (01: X Onf)

only if there is a t € M of the form ¢ = f(ty, ..., t,,) ' with ¢;* = o; for (1 <14 < ny).
Then we write
(81,82)): M.

With this definition you have to note that the parameters t; are evaluated in the
prestate s;. A term t = f(t1,...,t,) in a modifies clause does not state that maybe
t°1 #£ t°2 but it states this:

FOE, o 85) A F2(8 o 1)

This may not look intuitive but one has to note that it is not possible to provide
all ground terms which might change especially as one can’t know which are going

1 We will write t.attr in addition to attr(t) for attributes of objects, and also t* .attr® for
attr®(t*), to stay with the usual way of writing for JAVA.

6 3 MODIFIES CLAUSES IN DL;

to be evaluated to be the same objects. The determination that the prestate is
relevant may look arbitrary but it has clear advantages: Starting with the next
definition we will consider state pairs which are in a relation p(p). There will
be references for object attributes which change during the execution of the pro-
gram 2. On the other hand it is not unusual that an object first gets changed in
its’” attributes but then all references to it are overwritten. Even though we will
not be able to describe programs in the sense of this definition in all cases.

A case which is exceedingly bad is the declaration of local variables in a program
p without limit on the scope of p, i.e. programs of the form p = ...int x; ... in
contrast to p = {... int x; ...} (both are correct JAVA CARD programs). From now
on we will only consider programs which do not have local variable declarations
with unlimited scope.

Definition 3.2. [Modifies clauses of programs]
Let £ = (S, p) be a DL;-Kripke-structure to a given signature . A set M of
ground terms is called modifies clause of a program p if

(s1,82) = M
for all (s1,s2) € p(p).

Therefore the modifies clause of a program p lists which program variables and
object attributes may maximally be changed by the execution of p. It does not
require them to change. Most useful are modifies clauses which are as small as
possible for a program but on the other hand there might be programs which would
require a modifies clause of infinite size. We are not calculating modifies clauses
for given programs. We only check whether the given modifies clauses are correct,
so we do not face the problem of an infinite modifies clause as we only have a finite
input. 3

Example 3.3. Let C be a class with the two nonstatic attributes attl, att2 of
type integer. With a, b program variables of type C and p = {a = b; a.attl =
4;}. Then {a, b.att1} is a modifies clause of p.

Notice that in this example {a, a.att1} is not a modifies clause of p because if we
assume p is started in state s where a® # b® then a does not point to the object
whose attribute attl changes.

2 Attributes of objects created during p are a special case but DL ;’s semantics allows us a way
to formulate that too.
3 see following chapter about correctness

3.3 Special Cases 7

3.3 Special Cases

Arrays require a little extra thought, as they do not have attributes, accessed with
the ”.” operator, but elements, indexed by z with the ”[z]” operator. It is thus
necessary to make sure one checks all elements. It would be nice to have a construct
with which one would indicate that all array elements may be changed. See what
happens if one would confuse the array being changeable with all elements being
allowed to change:

Example 3.4. Let C be a class with an attribute arr which is an array of int
of size two. With m() = arr[0] = 1;, we consider {this.arr[0]} as the correct
modifies clause and {this.arr} is not a correct modifies clause because this.arr[0]
is missing because giving the array itself in a modifies clause means the array object
can change and not that all elements may change.

84 CORRECTNESS OF A METHOD WITH RESPECT TO MODIFIES CLAUSES

4 Correctness of a Method with respect to Modifies Clauses

A method call, with respect to a modifies clause, is correct if everything that is
changed after the method call is part of the modifies clause. On the other hand
it is not necessary that everything in the modifies clause really gets changed. In
the case that something is not changed, it is not needed to be part of the modi-
fies clause but if it is part of the modifies clause that does not affect whether the
method call is correct w.r.t. the modifies clause or not. The modifies clause is
not minimal then but that is not a point of concern for this work. For checking
the ”correctness of a modifies clause”, meaning the correctness of a program or
method w.r.t. a modifies clause, having a larger modifies clause does not make it
any harder, it just generates a small extra term in the proof obligation formula.
But for using the modifies clause it is a different thing as for example with the
method in [Katz03] a larger modifies clause creates a much larger lemma which
has to be proven later.

Example 4.1. Let C be a class with two nonstatic attributes attl, att2 of type
integer and a void method m(), with m() = {this.att1 = 5;}. Then {this.att1}
is a correct modifies clause of m() as well as {this.attl, this.att2}.

Adding to a correct modifies clause certainly keeps the modifies clause correct but
it slightly complicates the proof obligation. It is best to have a modifies clause
that is as narrow as possible.

Definition 4.2. [Correct modifies clause of a method|
A method is correct w.r.t. a modifies clause, in a given framework of classes in
which the method is invoked, iff everything which is changed after the execution
of the method is a member of the modifies clause for all start states.

Let K = (S, p) be a DL -Kripke-structure to a given signature . A set M of
ground terms is a ”correct modifies clause of a method m(...)”, meaning m(...)
is correct w.r.t. the modifies clause, if

(51,80) F M

for all (s1,s2) € p(m(...)).

The correctness is non-modular, meaning it depends on the given framework
whether or not the modifies clause of a method is correct. This is not surpris-
ing as the pre-/post-condition part of a specification is also non-modular. Inside
that framework though the correctness of a method w.r.t. a modifies clause is

independent of the actual starting state of the method as all initial states are
considered.

Example 4.3. Let C be a class with two nonstatic attributes attl, att2 of type
integer and a void method m(). With m() = {this.att1 = 5;} as in Example 4.1.
If this.att1l = 5 holds in the initial state one could consider the empty clause as a
modifies clause but that is not a correct modifies clause as defined above because
the modifies clause has to be independent of the start state and in any start state
with this.attl # 5 the empty clause is not a correct modifies clause.

Why is the correctness non-modular and correctness depends on the given frame-
work? That is easy to see with an example which is a little larger:

Example 4.4. Let C be a class with two nonstatic attributes attl, att2 of type
integer and a void method m(). Let D be a class with two static attributes att3,
att4 of type integer and a static void method n(). With n() = { att3 = 5; }
and m() = { D.n() }. Now the modifies clause of m() is { D.att3 } but it
obviously depends on n() and so with another framework in which n() is changed
the modifies clause would have to be different.

10 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

5 Proof Obligations for Modifies Clauses

5.1 Proof Obligation Creation

Verifying modifies clauses is no easy task and therefore it will be of advantage to
make use of KeY’s proving system to the extent possible. Therefore we need a
way to create a proof obligation for modifies clauses as input to the KeY theorem
prover.

I will use the short-hand notation z # y instead of !(z = y) from DL in the rest
of this work for easier readability.

For a given method m(...) and modifies set M we find all types, i.e. classes, ap-
pearing therein and being reachable from any of those types (also transitive over
multiple types) and call those classy, ..., class, where classinder = {1,...,n} is
the index set. The type of the class which contains method m(...) belongs to that
list of types.

Now for each class;, i € {1,...,n}, where class; is of non-array type, find all at-
tributes of the class and enumerate them as class;.attribute,, ..., class;.attribute,,,
with the index set called ind(i) = {1, ...,n;} in all cases. For an array type no at-
tributes need to be found as all elements, class;[)\], are indexed by an integer A.
We give a formula in DL; which states that only elements of the modifies clause
may have been changed if the formula is valid. This formula will be created by
smaller sub-formulas which are given first:

Definition 5.1. For a non-static attribute, of class;:
e o' is a variable of type class;
® 0, is a term which is defined by

— 04k is of type class;
— 0jq-attribute, € M

— 0jq-attribute, is the k-th appearance of a term of type class; with
0;qk-0ttribute, € M

e 1 has the type of class;.attribute,

Then:
Pia =
[OI 7é Oja1 N\ o' 7é Oja2 N ... N\ o 7é Oian(ia)

— Vz(z = o .attribute, — [m(...)] o .attribute, = z)]

5.1 Proof Obligation Creation 11

As we require that the complete formula F' (which this is a small part of, see
below for F') is valid for a modifies clause to be correct and all the connectives
are conjunctions this partial formula has to hold. It says for the given ¢ and a
that, whenever the interpretation of o’ is different from all objects e where the
type of e is class; and, with [a term which is interpreted as e, l.attribute, is part
of the modifies clause, the part after the implication has to hold true, otherwise
the formula is true anyway. The part after the implication states that whatever
value z the attribute o'.attribute, takes it has to be the same after the execution
of m(...).

Definition 5.2. Now for a static attribute, of class;:

e The formula {class;.attribute, ¢ M} is a syntactic construct, it either eval-
uates to true or false and that evaluation is put into the actual formula.

e z has the type of class;.attribute,
Then:
Pia =
[{class;.attribute, ¢ M}
— Vz(z = class;.attribute, — [m(. ..)] class;.attribute, = z)]
If the formula {class;.attribute, ¢ M} evaluates to true the right-hand side of the
implication has to hold because this element is not in the modifies clause, if it is

false, i.e. it is in the modifies clause, nothing has to be shown as the left-hand side
of the implication is wrong and thus the whole formula is true.

In the following I will use the construct Vo<y<pA : @ instead of VA : 0 < AA X <
n — ® for better readability.

Definition 5.3. Now for a class; which is of some array type:

let length(i) be the size of the array class;

thus length(i) — 1 indexes the last element of that array

e o' is a variable of type class;

0;r and z;; are defined by:

— 04 is of type class;

— 0| B] € M for some S, it is the k-th appearance of an array-dereferenced
term of type class; in M

12 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

— 2z, = B for oi[B] € M
e z has the type of class;[3]

e)\ is an integer
Then:
Pi = vog)\g(length(i)fl))\
[(A=21) = 0 # 0q)
A(X = zig) = 0 # 00)
A...
/\((/\ = zlnz) — 0 # Oini)
= Vz(z = [\ = m(..)]\ = 2)]
There is no need here to separate static and non-static cases as an array element can
never be static on the one hand. On the other hand if an instance of class; happens
to be static (because it is itself a static attribute of some other class for example)
that does not matter as in the formula there will be an appropriate o’ # o;; and
on the logic side a static element which is referenced via a dynamic object will be
translated to its static reference and thus will match the o;;. For example having a
class MyClass with a static attribute arr and it being called somewhere as o.arr

where o is some term of type MyClass the o.arr gets translated to MyClass.arr
and thus we need no distinction between static and non-static in the array case.

Definition 5.4. With ind(i) being the index set of attributes for a non-array
class; we define for each non-array class; the formula t/;:

Y = /\ Pia
a€ind(i)
This is the formula for all attributes of a class class;.

Definition 5.5. For an array class; the formula psi; is defined by:

Vi = @i

This suffices as there is no explicit attribute listing, but all elements are already
handled in the different build-up of ¢; for arrays.

Definition 5.6. Finally the whole formula F', with classindex being the set of
class indices, is defined by:

F = /\ Vo' : class;
i€classindex

where o' is a variable. This means that for all classes class; the formula 1); has to
hold for all objects o' : class;.

5.2 Proof Obligation Correctness 13

5.2 Proof Obligation Correctness

Now my main theorem is:

Theorem 5.7. For a given method m(...) and modifies set M, the method is
correct w.r.t. M iff the formula F, with the notation as introduced above, is valid:

/.
F= /\iEClassindemvo . ClCLSS‘Z’ ¢z

Proof:

”=": We know that the modifies clause is correct and will use a proof by contra-
diction.

Let’s assume that the formula is not valid, then there is a state for which it is
false. From now on we only concentrate on this state and thus we can assume that
the formula is false. By the construction of the formula that means that at least
one 1); is false which in turn means at least one g;, is false if class; is a non-array
type or ; is false if it is an array type. That is because the formula is built up
by the conjunction of all the ¢;,’s iterated over the classes and attributes and the
@;’s iterated over the array types and for the formula to be false it is enough if one
of these is false.

Without loss of generality this happens for class;. If class; is a non-array type
then it happens for attribute; (simply reorder the numbering accordingly). If
class; is an array type we have to inspect the whole ¢; formula.

Now with case distinction we have to look at the possible cases: class; being a
non-array type then class;.attribute; could be a non-static attribute or a static
attribute or class; is an array type.

Case 1: non-static attribute of a non-array type.
Vo' : classi[0’ # 0111 A 0" # o112 A .. A0 # 011011

— Vx(z = o .attribute; — [m(...)] o .attribute; =)]
is false. Now there has to be at least one term of type class; for which this is false,

let’s call this term obj. Putting obj into the formula we get:

[Ob] ?é o111 N\ Ob_] 7é 0112 N\ ... A\ Ob_] 7é O11n(11)

— Vz(r = obj.attribute; — [m(. . .)] obj.attribute; = x)]

is false. From this we can conclude that obj.attribute; is not part of the modifies
clause as otherwise the antecedent of the implication would be false (because if it
would be part of M then a term o0bj # obj would be in the antecedent yielding
false) and with that the formula true which it is not by assumption. With this

14 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

we have that the antecedent is true and can look at the right-hand side of the
implication:

Vz(x = obj.attribute; — [m(. ..)]obj.attribute; = x)

is false. There certainly is a x with the value of obj.attribute,, call it val, then for
this we have the following (while for all other values of x the implication is true
as the left-hand side is false):

(val = obj.attribute; — [m(...)]obj.attribute; = val)

which has to be false. In case this is false obj.attribute; would have to be in the
modifies clause M which it is not as we have seen and this means the modifies
clause is wrong in contradiction to our precondition of the modifies clause being
correct. That means that the assumption is wrong, which was that the formula is
wrong, and thus the formula is true.

Case 2: static attribute of a non-array type.
©ia = [{class;.attribute; ¢ M}

— Vz(x = class;.attribute; — [m(. . .)] class;.attribute; =)]

is false. For that class;.attribute; must not be part of M as otherwise the an-
tecedent is wrong and the implication is true. That gives us:

Vz(x = class.attribute; — m(. . .)]class;.attribute; = x)

is false which means it is false for some z, where the z has to have the value of
class;.attribute; which we call val.

(val = classy.attribute; — [m(. . .)]class;.attribute; = val)

is false. That is only possible if class;.attribute; may change, i.e. is in the modifies
clause M, which it is not as seen above and so we have a contradiction and that
means the assumption was wrong and thus the formula is true.

Case 3: array type.
Yo' : class,

[Vo<a<iength(1)—1)A

(A= 211) = 0 # on1)
AN = 2z12) = 0 # 019)

5.2 Proof Obligation Correctness 15

A...
AN = 21n,) = 0 # 01n,)
= Vo(a = o[\ = (..)]0\ = 2)]

is false. For this to be false there only has to be one index « for which the formula
doesn’t hold:
Yo' : class;

211) — OI 7£ 011)

[[((e

/\((CM 212) — OI ?é 012)

...
AN(a = z1n,) = 0 # 01n)
= Va(e = dlo] = [n(...)]o'la] =)]

is false. WLOG « equals the 21, from 2; through zy; (simply reorder them). Using
that we can boil the formula down to:

Yo' : class;

[0 # o011 N0 # 019 A ... N0 # oy,
— Vz(z = o[a] = [m(...)]d[a] =z)]

is false. Now there has to be at least one term of type class; for which this is false,
let’s call this term obj. Putting obj into the formula we get:

[Ob] 7é o011 A\ Ob] 7é oo N ... A\ Obj ;é Olk)

— Vz(z = objla] = [m(...)]obj[a] = z)]

which is false. From this we can conclude that obj[a] is not part of the modifies
clause (and also for no term t with ¢ = obj we have t[a] € M) as otherwise the
antecedent of the implication would be false (because if it would be part of M
then a term obj # obj would be in the antecedent yielding false (or a term t = obj
would be there yielding false), especially if there were no terms on the left-hand
side of the outer implication it could not be in the modifies clause!) and with
that the formula true which it is not by assumption. With this we have that the
antecedent is true and can look at the right-hand side of the implication:

Vz(z = objla] — [m(...)]obj[a] = z)

16 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

is false. There certainly is a z with the value of obj[a], call it val, then for this
we have the following (while for all other values of = the implication is true as the
left-hand side is false):

(val = objla] — [m(...)]objla] = val)

which has to be false. In case this is false obj[a] would have to be in the modifies
clause M which it is not as we have seen and this means the modifies clause is
wrong in contradiction to our precondition of the modifies clause being correct.
That means that the assumption is wrong, which was that the formula is wrong,
and thus the formula is true.

As all 3 cases are proven this direction of the proof is complete.

7<": We know that the formula is valid.

Assume that the modifies clause is not correct, i.e. there is something that got
changed and is not in M for some initial state on which we work from now on.
WLOG that happens for class;. If class; is not of an array type it happens for
attribute;. So we have one of the following cases:

case 1: for an object obj of non-array type class; for which attribute; is a non-
static attribute obj.attribute; got changed and is not in M.

case 2: class;.attribute; is a static attribute of a non-array type which got changed
and which is not in M.

case 3: for an object obj of array type class; for an « the array element obj[a] is
changed and is not in M.

Now let’s take a closer look at each of the cases from above:
Case 1: obj.attribute; has been changed but is not a member of M means that
the following formula is false:

Vz(x = obj.attribute; — [m(...)]obj.attribute; = x)
That is false because there is at least one value of x such that the left-hand side
holds and from above it is required that the attribute gets changed by the method
m(...) and so it cannot be the same after the method execution.
Now the following subformula is part of the large formula for which we know it is
true by precondition and as it is a conjunctive part this has to be true too:

Yo' : classi (0" # 0111 A 0" # 0112 A ... A0 # 0110(11)

— YV (x = o .attribute; — [m(. ..)] o .attribute; = x)

5.2 Proof Obligation Correctness 17

As this holds for all objects and terms of type class; it has to hold for the special
case of obj where the formula looks like this:

(0bj # 0111 A obj # 0112 A ... A 0obj # 011n(1)

— Vx(z = obj.attribute; — [m(...)] obj.attribute, = x)

By our assumption obj.attribute; ¢ M and therefore there is no o11; such that
o11; = obj and therefore the conjunction in the left-hand side of the implication
holds true and the right-hand side has be true too to make the whole formula true
which gives us:

Vz(x = obj.attribute; — [m(...)]obj.attribute; = x)

is true. That is in direct contradiction to the fact that we have seen this same
formula to be false above and by that contradiction the assumption is false which
means that the modifies clause M is indeed correct.

Case 2: class;.attribute; has been changed but is not a member of M means
that the following formula is false:

Vz(r = class;.attribute; — [m(. . .)] class;.attribute; = z)

That is false because there is at least one value of x such that the left-hand side
holds and from above it is required that the attribute gets changed by the method
m(...) and so it cannot be the same after the method execution.

Now the following subformula is part of the large formula for which we know it is
true by precondition and as it is a conjunctive part this has to be true too:

[{classy.attribute; ¢ M}

— Vz(z = classy.attribute; — [m(. . .)] class;.attribute; = z)]

By our assumption class;.attribute; ¢ M so the left-hand side of the implication
is true and as the whole implication has to be true the right-hand side needs to be
true, too, which is:

Vo (x = classy.attribute; — [m(. . .)] class;.attribute; = x)

needs to be true. That is a contradiction to above where we found out that this
formula is false. This allows us to conclude that the assumption was wrong and
thus the modifies clause M is indeed correct.

18 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

Case 3: In this case for an « the array element obj[«] has changed and is not in
M. That means the following formula is false:

[((v = 211) — obj # on1)

A((a = 212) — obj # 012)
A...
AN(a = z1p,) — 0bj # 01p,)
— Vz(z = obja] — [m(...)]obja] = z)]

That is false because the left-hand side of the outer implication is true as obj[a] ¢
M means there is no term oq; with 0obj = 0y; and therefore all the inequalities hold.
As these are the right-hand sides of the upper inner implications those all hold
true and their conjunction is true. For the right-hand side of the outer implication
there is at least one value of x such that the left-hand side of the lower inner
implication holds and from above it is required that the element gets changed by
the method m(...) and so it cannot be the same after the method execution and
thus the right-hand side of the lower inner implication is false which makes the
lower inner implication false which in turn makes the outer implication and by
that the formula false.

Now the following subformula is part of the large formula for which we know that
it is true by precondition and as it is a conjunctive part this has to be true too:

vOg)\g(length(l)fl))\

[((A = 211) = 0obj # 011)
A((A = 2z12) = 0bj # 012)
A...
A((A = 2z1p,) — 0bj # 01n,)
— Va(r =obj[\] = [m(...) Jobj[A] =z)]

One part of this is, with the same index « as above:
[((v = 211) — obj # 011)

A((a = 212) — 0bj # 012)
A...
/\((Of = Zlnl) — Ob] 7é Olnl)
— Vz(z = objla] — [m(...)]objla] = z)]

5.2 Proof Obligation Correctness 19

which has to hold true in contradiction to the first formula in this case which is the
same and is false. Therefore the assumption was wrong and the modifies clause
M is thus correct.

As all 3 cases are proven this direction of the proof is complete too.
That concludes the proof of the main theorem. O

Writing the formula in detail as a whole gives a better feeling of what it looks
like. I have done this here in the simple special case with only non-static non-
array attributes:

Yo' : class;

(
[0" #0111 A" # 0119 A oo. N F 011y,
— Vz(z = o .attribute; — [m(...)] o .attribute; = x)]
Ao # 0191 N0 # 0199 A ... N0 # 012013,
— Vx(z = o .attributes — [m(...)] o .attribute; =)]

A...

/\[0, 7é O1n1 N\ o 7é O1ny2 A\ oo A o 7é Olnin(iny)

— Vz(z = o .attribute,, — [m(...)] o .attribute,, = z)]

)

AV0O' : class,

(
[0 # 0911 N0 # 0212 A .. NO' # 0911,
(21)

— Vz(z = o .attribute; — [m(...)] o attribute; = z)]

/\[OI 75 0221 A O, ?é 02922 NN OI 75 022n(22)
— Vz(z = o .attributes — [m(. ..)] o .attribute; =)]

A...

N[0 # 02051 N 0" # 09p2 A oo N O F 09,

20 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

— Vz(z = o .attribute,, — [m(...)] o .attribute,, =)]

)

AVO' : classy(...)

Above using the requirements given in the detailed build-up of the formula is
necessary for it to be meaningful.

Example 5.8. Let C be a class with two nonstatic attributes attl, att2 of type
integer and a void method m(). With m() = {this.att1 = 5}. Then {this.att1}
is a modifies clause of m() as we have seen in example 4.1. The proof obligation
generated by the above rule would be:

Yo' : C

(
[0 # this
= Vz(z = o.attl — m(...)]0.attl =)]
A[true

= Vz(z = o.att2 — m(...)]0.att2 = z)]

)

Looking at this formula we see that if the above formula can be proven valid all
objects of type C will have the following property: if m() is called either on the
object O itself or another object of type C the attribute O.att2 will be the same
because of the second implication which guarantees that the value of O.att2 stays
the same after the method execution. Now the first implication guarantees that
O.attl doesn’t change unless O = this, that is the method is called on O and then
O.attl may change as it is part of the modifies clause.

Obviously it is very easy to proof this formula true meaning the given modifies
clause is correct which was already obvious from looking at the modifies clause
and the method specification.

5.3 Change in the Proof Obligation for better machine usability 21

5.3 Change in the Proof Obligation for better machine usability
For easier handling in the KeY prover this formula is in part replaced by an
equivalent one after the following rule from [TBSc01] :
Vz(z = o .attribute; — [m(...)] o .attribute; = x)
is equivalent to

Jz(x = o .attribute; A [m(...)] o attribute; = x)

This only works because there can not be multiple different x which make x =
o' .attribute; true on the one hand and there certainly is one x which makes that
true on the other hand.

With that replacement in place the smallest part of the build-up as described above
looks like this in the non-static attribute case:

Pia = [OI 7é Oja1 N\ o 7é Oja2 N\ ... N\ o' 7é Oian i)
— Jz(z = o .attribute, A [m(. . .)] o .attribute, = x)]

with the other definitions of ¢;, and ¢; changed accordingly and the rest of the
formulas is not changed (at least not in their short-hand writing but if these parts
are substituted into them, which happens repeatedly, then the changes take effect
there too obviously).

Overall the whole formula now looks like this (again only for the non-static at-
tribute case):
Yo' : class;

(
[0 #0111 N0 # o112 A ... N0 # Olingy,
— dz(x = o .attribute; A[m(...)] o attribute; =)]
A0 # 0191 N0 # 019 A ... N0 # 01201,
— Jz(z = o .attributes A [m(...)] o .attribute; = x)]

A...

/\[0, 7é O1n1 N\ o 7é O1ng2 A\ oo A o 7é Olnin(iny)

— Jx(x = o .attribute,, A[m(...)]d attribute,, = z)]

22 5 PROOF OBLIGATIONS FOR MODIFIES CLAUSES

AY0' : classy(...)
A...

AVO' : class,(...)

with the same o0;;;, as described for the first formula.

Example 5.9. This is the changed formula for better machine usability for Ex-
ample 5.8. Now the proof obligation is:

Vo' : C
(
[0 # this
— Az(z = o.attl Am(...)]0.attl =)]
Altrue
— dz(z = o.att2 Am(...)] 0 .att2 = x)]

)

Example 5.10. Let’s take a look at a somewhat larger example: we have three
classes A, B and C. Class A has three attributes, two integer attributes a and b
and an attribute of type C' called c¢. Class B has two integer attributes p and ¢
and a static integer attribute r. Class C' has no attributes. Class A has a void
method m() which takes no arguments with m() = a=a+ 1;B.r = 5; and the
modifies set M = {this.a,this.b, B.r}. Then the proof obligation is:

Vo' : A
(
[0 # this — Ax(z = o'.a Am(...)]0.a =1)]
Ao' # this — Jz(x = 0'.b A[m(...)]0.b=1x)]
Altrue — Jz(z = 0'.c Am(...)]d".c =1x)]

)

5.4 Variation of the Formula Build-up 23

AVo' : B
(

[true — 3z(z =o'.p Am(...)]d.p=1x)]
A[true — Fz(z = 0'.¢ Am(...)]d.q = x)]
Alfalse — Fz(x = B.r Am(...)] B.r = 1))
)

AYO : C true

So in general when the formula F' is valid the modifies clause given is correct.
If the modifies clause is correct on the other hand the formula is valid. Thus
for an incorrect modifies clause the formula can’t be proven valid and from the
remaining part of it in the KeY system one can usually see where problems, i.e.
missing elements, are.

5.4 Variation of the Formula Build-up

A different way to construct the formula F' looks also interesting. It is informally
given by example below with a short discussion on its advantages and disadvan-
tages. This refers to Example 5.9 and this is the alternate formula whose form is
defined by:

Vo' : C

Jz13z9 (21 = 0 .atty A zo = 0 .atty
m(...)][(o" # this — o .attl = 1) A (true — o'.atty = x5)])

This construction has the advantage that the method m(...) has to be expanded
only once which could speed up the proof process in KeY but in case there is a
loop in m(...) finding a loop-invariant which allows proving all the requirements
could get much harder than being able to unwind the loop separately for each
requirement. This could be a starting point for future work on this topic.

24 6 RELATED WORK

6 Related Work

6.1 Spoto and Poll

The term modifies clause, as we use it here, is also known as ”assignable clause”
in JML notation. There is a paper by Spoto and Poll [SpPo03] about static
analysis for the assignable clauses. The algorithm checks JML assignable clauses
but they have only given a pseudo-algorithmic definition for their method and
no implementation was done. Their algorithm uses abstract interpretation over
a trace semantics for a simple object-oriented language to check the assignable
clause by static analysis and they require some extra information by the user or
specifier about what the things that are changed may be changed to.

This might have been useful if an implementation were available and a transfer
from OCL input to JML could be done in a way so that most of the necessary
extra information is generated automatically. But as there is no implementation
we cannot make use of this approach.

6.2 Catano and Huisman

There is another paper about assignable clauses in JML by Catano and Huis-
man [CaHu03]. They describe a static checker which is neither sound nor com-
plete but in practice can be used in quite a few instances they claim. Therefore it
could be used for a quick check to see whether there are obvious things missing in
the modifies clause but later on a real check would have to be done again. Thus
that would not win us anything with the problem at hand as we want to have a
guarantee that the modifies clause is correct and not only get told that we need
to add something after the first try.

The checker is neither sound nor complete because it only does a static analysis of
the program on a syntactic level and cannot account for aliasing because of that.

6.3 General

Both of the above approaches are not enough for us to ensure that in KeY the
modifies clauses can be checked and guaranteed to be correct (in the sense we
defined above). This is because of the problems described above.

The trouble appears in general as soon as aliasing happens because the static
checking used cannot cope with aliasing whereas we do not have any problems with
that because of using dynamic logic where the method in the diamond modality is
symbolically executed and not only statically analysed. Thus we are easily beating
the other approaches at the expense of needing the KeY tool which is available for

6.3 (General 25

free. We are beating them in the sense that we have a working implementation
while they do not have one for different reasons.

26 7 IMPLEMENTATION

7 Implementation

The proof obligation generation as described in the previos chapters has already
been implemented as part of the KeY project and works with all JAVvA CARD
constructs but does not allow things like a[*] in the modifies clause to reference
all array elements which would be a nice extension.

In the GUI of the case tool (when using KeY) there is the functionality to ” Check-
Modifies” which generates the proof obligation (as seen in chapter 5) in a KeY-
prover window where it can be dismissed and by that we see whether the modifies
clause is correct. If one can not close the proof, i.e. not show that the modifies
clause is correct one can usually see from the remaining parts what might need to
be added to the modifies clause to make it correct.

The performance for small case studies is very good as there the formulas stay
pretty small and are easy to proof. Most of the proofs can even be completely

done in automatic mode.

Real-world case studies have not yet been looked into.

27

8 Summary

This work presents a new way of checking modifies clauses for their correctness and
is the first correct approach to this topic with a working implementation. You have
seen in what environment my work is developed, what modifies clauses exactly are
and what it means for them to be correct in detail. You have then seen that I check
the modifies clauses with the help of the KeY tool by creating a proof obligation.
You have seen a proof for the correctness of the proof obligation creation and some
examples. Then I have shown in more detail what other approaches have done and
what their shortcomings were and a short chapter on the implementation.

Once again I need to stress that the use of the KeY tool has made it possible that
the simple proof obligation generation can be used and the created proof obligation
can be discharged with little user interaction for a correct modifies clause.

8.1 Future Work

As seen in the implementation section on the array example one could take a look
at different ways to write down larger groups of elements that are allowed to be
modified to further facilitate the use of this checker.

One could also look into what happens with the variation of the formula from
Chapter 5.4.

28

REFERENCES

References

[ABBG*00] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin

[Beck01]

[BeSc03]

[CaHu03]

[Hare84]

[Katz03]

[SpPo03]

[TBSc01]

Giese, Elmar Habermalz, Reiner Hahnle, Wolfram Menzel und Pe-
ter H. Schmitt. The KeY Approach: Integrating Object Ori-
ented Design and Formal Verification. In Gerhard Brewka und
Luis Moniz Pereira (Hrsg.), Proc. 8th European Workshop on Log-
ics in AI (JELIA), LNCS. Springer-Verlag, Oktober 2000. URL:
ftp://ftp.cs.chalmers.se/pub/users/reiner/jelia.ps.gz.

Bernhard Beckert. A Dynamic Logic for the Formal Verification of Java
Card Programs. In I. Attali und T. Jensen (Hrsg.), Java on Smart
Cards: Programming and Security. Revised Papers, Java Card 2000,
International Workshop, Cannes, France, LNCS 2041. Springer, 2001,
S. 6-24.

Bernhard Beckert und Peter H. Schmitt. Program Verification Using
Change Information. In Proceedings, Software Engineering and Formal
Methods (SEFM), Brisbane, Australia. IEEE Press, 2003, S. 91-99.

N. Catano und M. Huisman. Chase: A Static Checker for JML’s
Assignable Clause. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi
und Supratik Mukhopadhyay (Hrsg.), VMCAI: Verification, Model
Checking and Abstract Interpretation, Band 2575 der Lecture Notes in
Computer Science, New York, NY, USA, January 9-11 2003. Springer,
S. 26-40.

David Harel. Dynamic Logic. In D. Gabbay und F. Guenthner (Hrsg.),
Handbook of Philosophical Logic, Volume II: FExtensions of Classical
Logic, Kapitel 11.10, S. 497-604. Dordrecht, 1984.

B. Katz. Studienarbeit Universitat Karlsruhe ” Eine Modifies-Klausel in
KeY”, 2003. URL: http://il2www.ira.uka.de/~key/publicat.htm.

F. Spoto und E. Poll. Static Analysis for JML’s assignable Clauses. In
G. Ghelli (Hrsg.), Proc. of FOOL-10, the 10th ACM SIGPLAN In-
ternational Workshop on Foundations of Object-Oriented Languages,
New Orleans, Louisiana, USA, January 2003. ACM Press. Available
at www.sci.univr.it/~spoto/papers.html.

Bernhard Beckert Thomas Baar und Peter H. Schmitt. An Extension
of Dynamic Logic for Modelling OCL’s @pre Operator. In Proceedings,
Fourth Andrei Ershov International Conference, Perspectives of System
Informatics., 2001.

