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A generalization of crossing families
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Abstract

For a set P of points in the plane, a crossing family for
P is a set C of line segments, each joining two of the
points from P, such that any two line segments from
C cross. We investigate the following generalization
of crossing families: a spoke set for P is a set of lines
such that each unbounded region of the induced line
arrangement contains at least one point of P.

We show that every point set of size n has a spoke
set of size

√
n
8 . We also characterize the matchings

obtained by selecting exactly one point in each un-
bounded region and connecting every such point to
the point in the antipodal unbounded region.

1 Introduction

Let P be a finite point set in general position (i.e.,
no three points on a line). Throughout this paper,
we assume all point sets to be in general position. A
crossing family for P is a set C of line segments, each
joining two of the points from P, such that any two
line segments from C cross (i.e., intersect in their inte-
rior). Crossing families were introduced by Aronov et
al. [1], who have shown that any set of n points in gen-
eral position has a crossing family of size

√
n
12 . Since

then, there have been several results about crossing
families [3, 4], but even though it is conjectured that
any point set in general position has a crossing family
of linear size [1], the bound of Aronov et al. is still the
best known result.

A point set A avoids a point set B if no line through
two points in A intersects the convex hull of B. Note
that this means that every point in B sees the points
in A in the same rotational order. If B also avoids
A, the two sets are called mutually avoiding. The
bound in [1] on the size of the largest crossing family
is proven in two steps: first it is shown that two mu-
tually avoiding sets A and B, each of size k, induce a
crossing family of size k. Then it is shown that every
set of n points in general position contains two mu-
tually avoiding subsets of size

√
n
12 . In this paper we

will follow the same approach, but for a generalization
of crossing families.

Bose et al. [2] have introduced the following gen-
eralization of crossing families: A spoke set of size k
for P is a set S of k pairwise non-parallel lines such
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that in each unbounded region of the arrangement de-
fined by the lines in S there lies at least one point of
P. Note that it is easy to obtain a spoke set from
a crossing family by slightly rotating the supporting
lines of the line segments in the crossing family. Then
each endpoint of a line segment in the crossing family
lies in a different unbounded region. We will show
that every set of n points in general position contains
a spoke set of size

√
n
8 . To this end, we first translate

the notion of spoke sets to the dual setting in Sec-
tion 2. In Section 3 we then use the dual version to
construct large spoke sets for the union of two point
sets A and B, where A avoids B and A and B can be
separated by a line. Finally, we show that every point
set contains such point sets A and B and give bounds
on their sizes.

The motivation for the introduction of spoke sets
in [2] is the fact that with a spoke set of size k for
P, one can construct a covering of the edge set of
the complete geometric graph drawn on P with n− k
crossing-free spanning trees. The result in this paper
thus also improves the previous upper bound of n −√

n
12 for this problem. However, the original question

from [2], whether there is always a spoke set of linear
size, remains open.

Another interesting question is whether it is always
possible to find a crossing family of size linear in the
size of the largest spoke set. Theorem 6 is a first step
in this direction as it characterizes the matchings ob-
tained from spoke sets and shows that even though
they might not all be crossing families, they still sat-
isfy a number of conditions.

For space reasons, we will not be able to give all
proofs. Instead, we refer the interested reader to full
version [6].

Preliminaries

Let S be a spoke set of size k for P. Consider the
ordering of S = {`1, . . . , `k} by increasing slope. Let
U+
i be the unbounded region that lies below `1, . . . , `i

and above `i+1, . . . `k. Similarly let U−i be the un-
bounded region that lies above `1, . . . , `i and below
`i+1, . . . `k. We call the regions U+

i and U−i antipodal.

Let Q be a subset of P that has exactly one point
in each unbounded region. Note that then each line
of S is a halving line for Q. The spoke matching of
Q is the matching obtained by drawing a straight line
segment from each point p in Q to the unique point
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Figure 1: A spoke set and a spoke matching (dashed).

q in Q that lies in the antipodal unbounded region
of the spoke set. See Figure 1 for an example. Note
that in a spoke matching, each edge intersects every
line of the spoke set. In Section 4 we characterize the
geometric matchings that are spoke matchings.

2 Spoke sets under duality

In this section we will translate the properties of spoke
sets into the dual setting, that is under the point-line
duality. For this we start with some definitions.

Given an arrangement A of lines, without loss of
generality none of them horizontal or vertical, a cell-
path R is a sequence of cells such that consecutive cells
share an edge. If the edge shared by two consecutive
cells is a subset of some line ai of A, we say that R
crosses ai. The length of a cell-path is one less than
the number of cells involved. We call a cell-path line-
monotone if it crosses each line of A at most once.

If A′ is an arrangement induced by a subset of the
lines of A, then R restricted to A′ is the cell path
obtained by replacing each cell C of A in R by the
cell C ′ in A′ with C ⊆ C ′ and deleting consecutive
multiples.

Finally, for a cell-path R = (C0, C1, . . . , Ck), let
ai be the line in A that contains the edge shared
by Ci and Ci+1. We call the pair (a2j , a2j+1) AB-
alternating, if C2j+1 either lies above both a2j and
a2j+1 or below both. We call a cell path P =
(C0, C1, . . . , C2k) AB-semialternating if for every j <
k the pair (a2j , a2j+1) is AB-alternating. See Figure
2 for an example.

We now have all the vocabulary that is necessary
to describe the dual of spoke sets: given an arrange-
ment A of lines, a spoke path (R,A′) is a cell-path R
together with an arrangement A′ induced by a subset
of the lines of A, such that R restricted to A′ is line-
monotone and AB-semialternating. The length of a
spoke path (R,A′) is the length of R restricted to A′.
Note that all the definitions generalize to x-monotone
pseudoline arrangements.

Lemma 1 Let P be a point set and P∗ its dual line
arrangement. Then P contains a spoke set of size k if

C0

C1

C2

C3 C4 C5

C6

Figure 2: A line-monotone AB-semialternating cell-
path of length 6.

and only if P∗ contains a spoke path of length 2k.

For a proof we refer to the full version. It is worth
mentioning that for a spoke path (R,A′), the primal
ofA′ corresponds to a subset of P that has exactly one
point in each unbounded region. The fact that all the
points in the primal of A′ are in unbounded regions
follows from the line-monotonicity of R restricted to
A′. The AB-semialternation implies that two lines
a2j and a2j+1 correspond to endpoints of the spoke
matching in the primal.

3 Finding large spoke sets

In this section, we will construct large spoke sets by
constructing long spoke paths in the dual arrange-
ment.

Lemma 2 Let A and B be two disjoint point sets
of size k such that A avoids B and A and B can be
separated by a line. Let P = A ∪ B. Then the dual
arrangement P∗ contains a spoke path of length k+2,
if k is even, or k + 3, if k is odd.

For a full proof we again refer to the full version.
But we will briefly sketch the main steps of the con-
struction.

Step 1: Let A∗ and B∗ denote the duals of A and
B, respectively. Draw B∗ as a wiring diagram in color
red. As A avoids B and A and B can be separated
by a line, all lines of A∗ cross the lines of B∗ in the
same order, so we can draw A∗ as pseudolines that are
straight and vertical in the region where they cross
the red pseudolines and get a pseudoline arrangement
that is isomorphic to P∗. We call such a drawing
an extended diagram. See Figure 3 for an example
of an extended diagram. Let r1 be the bottommost
pseudoline at left infinity of the wiring diagram of B∗.
For some directed pseudoline g, we define the color
sequence c(g) of g by moving along g and writing for
each crossing with another pseudoline an r or a b if
the crossed pseudoline is red or blue, respectively. In
particular, c(r1) denotes the color sequence defined by
moving along r1 from left infinity to right infinity.
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Figure 3: A line arrangement and its extended dia-
gram.
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Figure 4: A right single crossing move.
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Figure 5: A right split crossing move.

Step 2: We modify the extended diagram using
a sequence of moves. We use two different types of
moves. For an illustration of the moves, see Figures
4 and 5. The right (left) single crossing move can
be used if c(r1) = . . . brbb . . . (c(r1) = . . . bbrb . . .).
We move the crossing with the red pseudoline to
the right (left), changing the color sequence of r1
to c(r1) = . . . bbrb . . . (c(r1) = . . . brbb . . .). The
right (left) split crossing move can be used if there is
more than one crossing with red pseudolines between
two blue pseudolines, i.e., if c(r1) = . . . brr . . . rrbb . . .
(c(r1) = . . . bbrr . . . rrb . . .). We split the last of these
crossings off and move it to the right (left), changing
the color sequence of r1 to c(r1) = . . . brr . . . rbrb . . .
(c(r1) = . . . brbr . . . rrb . . .). The same moves can
also be defined if c(r1) starts with rbb or r . . . rbb
(ends with bbr or bbr . . . r). We do these moves un-
til we reach a goal diagram in which r1 has the color
sequence c(r1) = brbrbr . . . brb (note that c(r1) has
length 2k − 1). As in a split crossing move we split
two consecutive r’s and no move joins two r’s, we can
conclude that among the moves we need to reach the
goal diagram, at most k − 2 are split crossing moves.
The goal diagram is of course not isomorphic to P∗
anymore.

Step 3: We draw two new directed pseudolines g1
and g2 in the goal drawing, representing cell paths
given by the cells they intersect. Let C0 be the un-
bounded cell that is under all red pseudolines and left
of all blue pseudolines. Both g1 and g2 start in C0

r1

g1
g2

C0

Figure 6: The goal diagram with the pseudolines g1
and g2.
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Figure 7: Reversing a single crossing move.
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Figure 8: Reversing a split crossing move.

and end in the antipodal cell of C0, but g1 crosses r1
first and then always stays at a small distance to it,
whereas g2 always stays at small distance to r1 and
crosses it at the very end. Then g1 and g2 have the
color sequences c(g1) = rbrbrbr . . . brb and c(g2) =
brbrbr . . . brbr, see Figure 6 for an illustration. For
any color sequence we call a subsequence x1, . . . , xj
semialternating if j is even, i.e., j = 2m, and for ev-
ery i ≤ m we have that x2i−1 = r ⇔ x2i = b. By
φ(g1) and φ(g2) we denote the length of the longest
semialternating subsequences of c(g1) and c(g2), re-
spectively. Note that by our construction of g1 and
g2 we have that φ(g1) = φ(g2) = 2k.

Step 4: We reverse the moves to get back to our
initial extended diagram. While doing so, we change
g1 and g2 only if one of them crosses r1 more than
once. In that case we just delete the part between
the newly introduced crossings and replace it with
a pseudoline segment that stays at a small distance
to r1. For an illustration see Figures 7 and 8. In
each step we only need to change either g1 or g2, but
never both. Also, φ(g1) or φ(g2) only changes when
we reverse a split crossing move, where it decreases
by 2 only for the pseudoline that was modified.

Step 5: We reach the initial extended diagram,
but with two additional directed pseudolines g1 and
g2, representing cell paths. For both of these directed
pseudolines, the longest semialternating subsequence
of the color sequence represents a line-monotone AB-
semialternating cell-path, i.e., a spoke path of length
φ(g1) or φ(g2), respectively. In the goal diagram we
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had φ(g1) + φ(g2) = 4k. While reversing the moves,
this sum has only changed by the term −2 when we
reversed a split crossing move. As we used at most
k − 2 split crossing moves, for the initial diagram we
have φ(g1) + φ(g2) ≥ 4k − (k − 2) · 2 = 2k + 4. The
result now follows from the pigeonhole principle and
the fact that by definition φ(g) is always even.

Corollary 3 If a point set P contains two subsets A
and B of size k, such that A avoids B and A and B
can be separated by a line, then P contains a spoke
set of size dk2 e+ 1.

Proof. Combine Lemma 1 and Lemma 2. �

Modifying the proof of Aronov et al. [1] for finding
mutually avoiding sets in a point set, we can prove
the following theorem:

Theorem 4 Every point set of size n contains two
point sets A and B of size b

√
n
2 + 1− 1c such that A

avoids B and A and B can be separated by a line.

A proof of this can be found in the full version.

Corollary 5 Every point set P of size n allows a
spoke set of size at least

√
n
8 .

Proof. By Theorem 4, P contains two subsets A and
B of size b

√
n
2 + 1 − 1c such that A avoids B and A

and B can be separated by a line. Thus, by Corollary
3, the point set contains a spoke set of size⌈
b
√

n
2 + 1− 1c

2

⌉
+ 1 ≥

⌈√
n

8
+

1

4
− 1

⌉
+ 1 ≥

√
n

8
.

�

It is worth mentioning that there are point sets
that have no mutually avoiding subsets of size larger
than O(

√
n) [7]. However, it is not clear whether this

still holds if we only insist that one of the subsets
avoids the other one. So while there is no hope of
finding larger crossing families by finding larger mu-
tually avoiding subsets, it might still be possible to
find larger spoke sets with this approach.

4 Spoke matchings

In this section we characterize a family of geometric
matchings that arise from spoke sets. For this we need
a few definitions:

Let e and f be two line segments and let s be the
intersection of their supporting lines. If s lies in both
e and f , we say that e and f cross. If s lies in f but
not in e, we say that e stabs f and we call the vertex
of e that is closer to s the stabbing vertex of e. If s
lies neither in e nor in f , or if the supporting lines of
e and f do not meet, we say that e and f are parallel.

A stabbing chain in a geometric matching are three
edges, e, f and g, where e stabs f and f stabs g. We
call f the middle edge of the stabbing chain.

Theorem 6 A geometric matching M is a spoke
matching if and only if it satisfies the following three
conditions:

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then
the respective stabbing vertices of e lie inside the
convex hull of f and g, and

(c) if there is a stabbing chain, then the stabbing
vertex of the middle edge lies inside the convex
hull of the other two edges.

For a proof we refer to the full version. Note that
the fact that every crossing family of size k induces
a spoke set of size k can also be derived from this
result, as it shows that every crossing family is a spoke
matching. However, the family of spoke matchings
also contains matchings that are not crossing families.
In fact, it is even possible to construct a crossing-free
spoke matching. In [5], it has been shown that there
are sets of n points in general position that do not
allow any matching satisfying conditions (a), (b) and
(c) of size larger than 9

20n. Hence we get the following
corollary:

Corollary 7 There are point sets of n points in gen-
eral position that do not admit a spoke set of size
larger than 9

20n.
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[6] P. Schnider. A generalization of crossing families.
CoRR, abs/1702.07555, 2017.

[7] P. Valtr. On mutually avoiding sets. In The math-
ematics of Paul Paul Erdős, II (R. L. Graham and
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