
The Relationship Between
Separation Logic and Implicit

Dynamic Frames

Alex Summers (ETH Zurich)

 based on joint work with Matthew Parkinson (MSR-Cambridge)

Introduction

• Alex: a postdoc in Peter Müller’s Programming
Methodology group at ETH Zurich

• Area: modular verification of (usually)
concurrent, (usually) object-oriented software

• The group’s interests include developing new
formalisms which can be implemented in
automatic verification tools

• This talk is concerned with specification logics
for concurrent heap-based programs

Baking your own automatic verifier
Ingredients:

• 1 Assertion Logic

• 1 Language semantics
(weakest preconditions)

• Annotated code:

Method:

• Work backwards from
the post-condition

• Check entailment:
(ask SMT solver)

void m()

requires P

ensures Q

{

 Q3
 this.x := 2;

 Q2

 call n();

 Q1

 this.x += 1;

 Q

}

 P ⇒ Q3 ?

Main problems
• Framing

– how do we preserve
heap information across
method calls?

• Concurrency
– how do we reason about

heap values if other
threads could interfere?

• Encoding to prover
– how do we check

entailments with a first-
order SMT solver?

void m()

requires P

ensures Q

{

 Q3
 this.x := 2;

 Q2

 call n();

 Q1

 this.x += 1;

 Q

}

 P ⇒ Q3 ?

Permissions to the Rescue (mostly)

• Idea: use specifications to explicitly
allow/forbid certain heap accesses by program

• Assign a permission to each heap location, and
only allow a thread to access with permission

• Similarly, heap values can only be preserved if
permission is held on to (framing is easier)

• Distribute permissions between threads to
avoid interference (concurrency is easier)

• We need a logic (or two) with these features...

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL)

... ? ... ?

⊂ ⊃
Total Permissions

Logic (TPL)

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL)

?

⊂ ⊃

Kripke semantics
over total heaps

Total Permissions
Logic (TPL)

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL) ⊂ ⊃

Kripke semantics
over total heaps

Kripke semantics
over total heaps ≡ ≡

Total Permissions
Logic (TPL)

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL) ⊂ ⊃

Kripke semantics
over total heaps

Kripke semantics
over total heaps ≡ ≡

≡

Total Permissions
Logic (TPL)

Overview

Kripke semantics
over total heaps

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Kripke semantics
over total heaps

Separation Logic
(SL)

≡

≡ ≡

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Total Permissions
Logic (TPL)

What is separation logic?

• A specification logic with explicit connectives for
accessing heap locations and dividing the heap

• Assertion semantics is based on partial heaps

• A * B : Splitting of heap into disjoint parts

 { P } C { Q } : Frame rule

 { R * P } C { Q * R } (if vars in R unmodified)

• x.f ↦ v (“points-to predicate”)
– Permission to access location x.f

– Specifies value v currently stored at the location

• A - ̶ B : Hypothetical addition of disjoint part

Intuitionistic separation logic

• For garbage collected languages, we want to be
able to “forget” parts of our heap

– e.g., intentionally leave certain heap locations out of a
method post-condition.

• This can be reflected in the logic by ensuring that
truth is closed under heap extension

– i.e., h ⊨ A ⇒ h ⊎ h’ ⊨ A

– this way, we can choose to check a weaker assertion
than actually holds in our current heap

• This is easy to do for most of the connectives...

Intuitionistic separation logic

• For implication, it is a little tricky:
• h ⊨ A⇒B iff (h ⊨ A ⇒ h ⊨ B)

doesn’t give a semantics closed under heap extension

• For example, take the assertion (x.f ↦ 2 ⇒ false). This
would be true in the empty heap (no access to x.f). But it is
false in an extension of the empty heap, in which x.f = 2.

• Instead, one builds in checking all extensions of the state:

• h ⊨ A⇒B iff ∀h’(h ⊎ h’ ⊨ A ⇒ h ⊎ h’ ⊨ B)

– i.e., an implication A⇒B holds iff, in all extensions
of the current state, if A is true then B is true.

– More on this later...

Weakest preconditions in SL

• First-order logic weakest pre-condition world:

 wp(assume A, B) = A ⇒ B

 wp(assert A, B) = A ∧ B

• Other verification features can be “compiled”
to assume/assert statements (e.g., method calls)

• In SL, there are two analogous commands

 wp(assume* A, B) = A - ̶ B (add A)
 wp(assert* A, B) = A * B (remove A)

Overview

Kripke semantics
over total heaps

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Kripke semantics
over total heaps

Separation Logic
(SL)

≡

≡ ≡

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Total Permissions
Logic (TPL)

Implicit Dynamic Frames

• Extend first-order assertions to additionally
include “accessibility predicates”:

acc(x.f) is an assertion; we have permission to x.f

• Assertions can also include heap-dependent
expressions: e.g., x.f > 3

• Existing tool support is based on total heaps

– every thread sees a value for every heap location

– but these values are only guaranteed meaningful
if the thread also holds permission to the location

• For example

acc(x.f) * x.f == 4 * acc(x.g)

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

x.f

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

x.f

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

4

x.f

Implicit Dynamic Frames

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

4

x.f
x.g

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

• Expressions include heap dereferences

4

x.f
x.g

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g)

• Expressions include heap dereferences

• Permissions need not match “read footprint”

4

x.f
x.g

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g) * y.f == 3

• Expressions include heap dereferences

• Permissions need not match “read footprint”

4

x.f
x.g

Implicit Dynamic Frames

• For example

acc(x.f) * x.f == 4 * acc(x.g) * y.f == 3

• Expressions include heap dereferences

• Permissions might not match “read footprint”

3
y.f

x.g

4

x.f

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Inhale and Exhale

• “inhale p” and “exhale p” are used in Chalice
to encode transfers between threads/calls

• “inhale p” means:
– assume heap properties in p

– gain permissions in p

– havoc newly-readable locations

• “exhale p” means:
– assert heap properties in p

– check and give up permissions

void m()

requires p

ensures q

{

 // inhale p

 ...

 // exhale p

 call m()

 // inhale q

 ...

 // exhale q

}

Self-framing

• Inhaled assertions model new information
passed from another thread/method call etc.

• But, this information must be “framed” by
suitable permissions, to be sound to assume

• Inhaled/exhaled assertions are required to be
“self-framing”:

– essentially, they include enough permissions to
preserve the truth of their heap assertions

– e.g., acc(x.f)*x.f==4 but not x.f==4 alone

– x.f==4 is meaningful only along with permission

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL)

?

 A common semantics?

Separation Logic

• Controls access to heap
locations along with values

• Semantics defined in terms
of partial heaps

• Key connectives defined by
adding/removing heap
fragments

Chalice

• Controls permissions and
values separately

• Semantics defined via
translation, and total heaps

• Encoding defined by
modification of global maps
for heap and permissions

How can we formally
relate the two?

Total Heaps Permission Logic (TPL)

Basically, a union of the syntaxes of SL and IDF

Semantics defined over total heaps...

Expressions (can access the heap, as in IDF)

 E ::= E.f | E + E | n | x | …

Assertions (both acc and “points to” predicates)

 A,B ::= acc(x.f) | x.f ↦ v | E = E | A * B | …

Intuition: x.f ↦ v ⇔ acc(x.f) * x.f = v

A*B

Separation Logic partial heap

A
B

IDF total heap

A
B

A*B

Separation Logic partial heap IDF total heap

A
B

A
B

A*B

Separation Logic partial heap IDF total heap

A
B

A
B

 4

 3

 2

 7

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

A*B

Separation Logic partial heap IDF total heap

A
B

A
B

 4

 3

 2

 7

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

Heap agreement up to permissions

IDF total heap IDF total heap

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

IDF total heap

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

Heap agreement up to permissions

IDF total heap

 4

 3

 2

 7

 9

 3 2

 1

 4

 1

 9

IDF total heap

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

Self-framing revisited

An assertion is self-
framing if:

Self-framing revisited

IDF total heap

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

An assertion is self-
framing if:

For any heap and
permission mask
satisfying it,

assertion remains true if
we replace the heap
with any that agrees
on the permissions

Self-framing revisited

IDF total heap An assertion is self-
framing if:

For any heap and
permission mask
satisfying it,

assertion remains true if
we replace the heap
with any that agrees
on the permissions

 4

 3

 2

 7

 9

 3 2

 1

 4

 1

 9

Self-framing revisited

IDF total heap An assertion is self-
framing if:

For any heap and
permission mask
satisfying it,

assertion remains true if
we replace the heap
with any that agrees
on the permissions

 4

 3

 2

 7

 8

 4

 2 1

 6
 2

 5

Self-framing revisited

IDF total heap

 4

 3

 2

 7

 4

 3
 2

 7

 0
 0

An assertion is self-
framing if:

For any heap and
permission mask
satisfying it,

assertion remains true if
we replace the heap
with any that agrees
on the permissions

Self-framing revisited

Separation Logic partial heap An assertion is self-
framing if:

For any heap and
permission mask
satisfying it,

assertion remains true if
we replace the heap
with any that agrees
on the permissions

 4

 3

 2

 7

In Separation Logic, there
would be partial heap which
canonically represents all the
total ones in our semantics

P ̶ Q

Separation Logic partial heap IDF total heap

Separation Logic partial heap IDF total heap

P

P ̶ Q

Separation Logic partial heap IDF total heap

P

P ̶ Q

Separation Logic partial heap IDF total heap

P

Q

P ̶ Q

Separation Logic partial heap IDF total heap

P

Q

P ̶ Q

Separation Logic partial heap IDF total heap

P ?

Q

P

P ̶ Q

Separation Logic

 The semantics of implication
and magic wand connectives
are defined in terms of
partial heap extensions.

h ⊨ A⇒B iff

∀h’(h ⊎ h’ ⊨ A ⇒ h ⊎ h’ ⊨ B)

 What should this mean for
our total heaps model?

IDF total heap

P ?

How to model heap extension?

Idea 1:

 Just add extra permissions
to the original state

Problem:

 We attach significance to
the values that were
previously stored in the
heap, at the new locations

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

IDF total heap

P ?

How to model heap extension?

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

Problem:

 In IDF, P may involve heap-
dependent expressions

IDF total heap

P ?

How to model heap extension?

For example,

acc(x.f) * (x.f ≠ null ⇒ acc(x.f.g))

The intention is that the
meaning of x.f is fixed by the
permission “elsewhere”

But, when we judge the
implication, if we consider
assigning arbitrary values to
x.f, then we lose the meaning

Idea 2:

 Assign new (arbitrary)
values to unreadable heap
locations, and then add
new permissions

Problem:

 In IDF, P may involve heap-
dependent expressions

IDF total heap

How to model heap extension?

Minimal Permission Extensions

• Idea: only consider “extending” the state by
the smallest amount possible

We modify the SL semantics:

h ⊨ A⇒B iff
∀h’(h ⊎ h’ ⊨ A ⇒ h ⊎ h’ ⊨ B)

Minimal Permission Extensions

• Idea: only consider “extending” the state by
the smallest amount possible

We modify the SL semantics to be:

h ⊨ A⇒B iff
∀h’(h ⊎ h’ ⊨ A ∧ ∀h’’(h’’⊂ h’ ⇒ h ⊎ h’ ⊨ A)
 ⇒ h ⊎ h’ ⊨ B)

We only consider adding the minimal extensions

For (intuitionistic) SL, this makes no difference

But this adapts well to our total heaps model...

/

Faithfully represents separation logic

Definition: the restriction of a total heap H to
permissions P, is a partial heap H↾P defined by:

 (H↾P)(x,f) = H(x,f) provided P(x,f) > 0,

 (H↾P)(x,f) is undefined otherwise.

Theorem

 If A is a separation logic assertion, then:

H,P ⊧ A in TPL ⇔ H↾P ⊧ A in SL

Overview

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL)

Kripke semantics
over total heaps

Kripke semantics
over total heaps ≡ ≡

?

Total Permissions
Logic (TPL)

Chalice Weakest Pre-conditions

Encoded using two global map variables

• H : represents the values in the heap

• P : represents the permissions to access heap

For example,

 wpch(inhale(acc(E.f)), A)

 = wpch(P[E,f] += 1, A)

 wpch(inhale(a*b), A)

 = wpch(inhale(a);inhale(b), A)

Translating TPL to many sorted FOL

Expressions

 ⌊⌊x⌋⌋ = x ⌊⌊ E.f ⌋⌋ = H [⌊⌊E⌋⌋ , f]

Formulae

 ⌊⌊acc(E.f)⌋⌋ = P [⌊⌊E⌋⌋,f] == 1

 ⌊⌊A*B⌋⌋ =

 ∃P1,P2. ⌊⌊A⌋⌋ [P1/P] ∧ ⌊⌊B⌋⌋[P2/P]

 ∧ P1 * P2 = P

 P1 * P2 = P
 ⇔ ∀i. P1[i] + P2[i] = P[i] ∧ P[i] ≤ 1

Key points of the proof

All existentials of array type introduced by ⌊⌊ ⌋⌋
are witnessed in Chalice VCs.

Self-framing is checked in Chalice by a syntactic
(left-to-right) criterion, which is stronger than
the semantic notion.

Note: asymmetry (left-to-right checking) of self-
framing is essential for Chalice VC for inhale.

Faithfully representing Chalice

Theorem

 wpch (exhale p, ⌊⌊ A ⌋⌋)

 ⇔ ⌊⌊wpsl(assert* p, A)⌋⌋

 If p is (syntactically) self-framing, then

 wpch(inhale p, ⌊⌊ A ⌋⌋)

 ⇔ ⌊⌊wpsl(assume* p, A)⌋⌋

Summary

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Implicit Dynamic
Frames (IDF)

Separation Logic
(SL) ⊂ ⊃

Kripke semantics
over total heaps

Kripke semantics
over total heaps ≡ ≡

≡

Total Permissions
Logic (TPL)

Summary

• We defined the first direct semantics for IDF

• We defined a total heaps semantics for SL

• We have formally connected the two logics

– We can encode SL assertions as IDF assertions

• We have defined a novel semantics for SL
implication and magic wand connectives

• We have proven equivalence between
weakest pre-conditions in SL and IDF

Advantages for Separation Logic

• We can use our work to provide a new way of
verifying separation logic specifications

• Apply our encoding to convert specification to
IDF, then feed it to e.g., Chalice

• Allows the verification of separation logic directly
with an SMT solver

• Requires (ongoing) extension to handle abstract
predicates

• New semantics with minimal extensions may be
more easily implementable in automatic tools.

Advantages for Implicit Dynamic Frames

• The existence of a formal semantics helps with
evaluating potential extensions to the logic

• Also facilitates soundness proofs for the
methodology and (ultimately) the tools

• We’ve defined a compatible semantics for
many previously-unsupported connectives

• Useful connectives such as the magic wand
and logical disjunction could be added to tools

Future/Ongoing work

• Improving the encoding of abstract predicates
(and heap functions) in Chalice

• Formalisation of the extended logic, and
soundness proof based on this semantics

• Extending Chalice with more connectives –
aided by our new formal semantics

• Mapping separation logic examples to implicit
dynamic frames, for automatic verification

Thank you for listening..

Kripke semantics
over total heaps

Kripke semantics
over partial heaps

Weakest pre-
condition definitions

Chalice : verification
condition generation

Kripke semantics
over total heaps

Implicit Dynamic
Frames (IDF)

Total Permissions
Logic (TPL)

Separation Logic
(SL)

≡

≡ ≡

⊂ ⊃

