It’s time for Operating Systems to rediscover Hardware

Timothy Roscoe (Mothy)
Systems Group, Dept. of Computer Science, ETH Zurich

https://www.youtube.com/watch?v=36myc8wQhLo
What should a keynote look like?

• Feel smug about my past research

• Sell my latest startup idea

• Vent my anger and frustration

• I’m going for option 3.
Operating Systems: a niche topic?

OSDI 2021

- Machine Learning: 26%
- Other: 68%
- OS: 6%
Operating Systems: a niche topic?

OSDI 2020

- Machine Learning 16%
- OS 6%
- Other 78%
Is Linux just good enough?

- OS papers in OSDI that are not tweaks on Linux:
 - 2021: 2 (that’s two) of 31
 - 2020: 1 (that’s one) of 70

... in OS Design and Implementation?

Is the field dead?
Or at least twitching on the slab?
But first: what do I mean by an OS?
The OS runs on the hardware.

But what is it?

1. The set of
 - Kernel
 - Daemons
 - Runtime libraries

2. That body of software that:
 - Multiplexes machine’s hardware resources
 - Abstracts the hardware platform
 - Protects software principals from each other
 • Using the hardware
Let’s look at the hardware
Why some people think Linux just works

Figure 1.4
Hardware organization of a typical system. CPU: Central Processing Unit, ALU: Arithmetic/Logic Unit, PC: Program counter, USB: Universal Serial Bus.

ccNUMA machines are lovely and simple!
Result: the boring structure of an OS

Virtual Memory, Scheduling, File System, Device Drivers, IPC, Network Stack, etc.

Core Core Core Core Device Device

Memory

Just a special shared-memory multithreaded program!
Reality?
Reality?
Reality?
Reality?
What Linux actually “operates”
Doesn’t look like ccNUMA to me.

- Modern SoCs run Linux - *but*…
- My Android phone runs *Spongebob Crusty Cook-off*, but that doesn’t make it the OS.
Is this a problem?
A security dumpster fire

Map all memory please!

Malicious WiFi packet

A “cross SoC attack”.
Power management?
Other fields care about this…

- Security conferences
- Architecture conferences
- Formal methods conferences!
What about those “new OS” papers?

All 3 of them…
They make the same hardware assumptions as Linux.
Clear message:

• If you want to get published a lot at OSDI, work on:

 – Machine Learning
 – Databases
 – Distributed Systems and Consensus
 – Graph Processing
 – Security
 – Privacy

… indeed, anything but Operating Systems.
Clear message:

• If you *must* work on operating systems

 Make sure it’s Linux.

• If you want to be *really, really awkward* and work on a non-Linux OS:

 Make sure it looks like Linux, and makes the same (false) assumptions about the hardware.
Anecdotal data point

Malicious WiFi packet

Map all memory please!

Ok!

DRAM System Address Space
The slide that will get me kicked off the OSDI steering committee

1. Too many people don’t know what modern hardware looks like, and think it’s just a fancy VAX.

 This is called “ignorance”.

2. Too many people find it more comfortable to focus on
 – what Linux does well, and
 – the subset of hardware on which it does it.

 This is called “denial”.

15 July 2021
This is crazy! We should be excited!

- Plenty of interest in industry

HarmonyOS

Bespin

Etc..
Suggestion #1: Program for an SoC
They’re not expensive.
They can be a bit intimidating…
But this is great! This is what we do!

• Complexity is our business.
• We build tools to tame complexity.
• This is a real-world problem we can solve.

• Let’s build better tools to handle this!
 - It’s the basis for any verified kernel
 - You might synthesize code from specifications
 - You could do runtime verification
 - Derive secure interfaces, etc.
Mind the Gap: Reconnecting Architecture and OS Research

Jeffrey C. Mogul
jeff.mogul@hp.com
HP Labs, Palo Alto, CA
Andrew Bauman
Andrew.Bauman@microsoft.com
Microsoft Research, Redmond, WA
Timothy Roscoe
trrosece@inf.ethz.ch
ETH Zurich
Livio Soresi
livo@eeeg.toronto.edu
University of Toronto

Abstract
The goal of a computer system is to run an application workload securely, reliably, efficiently, and fast. A computer’s hardware architecture and operating system exist to support this goal, and it would be nice if they cooperated as effectively as possible. Yet there is a growing gap between architectural research and OS research, which seems to be the result of poor communication about what actually matters.

In this paper, we discuss this gap and what to do about it. We illustrate the opportunities for closing the gap using examples from some recent OS research.

1 Introduction
For too long, operating systems researchers and developers have pretty much taken whatever computer architects have dished out. With occasional exceptions (e.g., virtualization support), architecture researchers do not appear to have sought or encouraged innovations that would improve the execution environment for an OS. Even worse, many do not bother to simulate and report (We assume a loose definition of “the OS” – it’s more than just the kernel, since in many cases people have moved OS functionality into user-mode libraries.) Perhaps this is not yet ample evidence, although we suspect this is mostly for lack of a systematic study.

But computer architects, from the evidence available in the scientific literature, assume that the OS does not exist – except perhaps when it magically manages application-thread resources that hardware cannot. Architecture papers commonly use application-only benchmarks, and seldom account for the interference between application and OS execution (there are, of course, counter-examples [9]). In short, while architecture papers sometimes pay lip service to the OS, they rarely discuss the impact of architecture on OS behavior.

Meanwhile, a typical OS paper usually uses the phrase “on commodity hardware”. As a community, we assume we are stuck with whatever flaws the hardware has.

We see several infrastructural reasons why architecture researchers have been ignoring the OS. Lack of quantifying evidence for the importance of OS execution.
Consequence:
Hardware is **designed** to sandbox Linux in a corner!
Suggestion #2:
Build our own computers
What has changed since 2011?

• It's easier to get hardware built.
What has changed since 2011?

• It's easier to get hardware built.
Should we build hardware? Of course!

- We don't know what a computer looks like today.
Another simplified diagram

Board management controller (BMC)
Back to that Linux hardware assumption:

• This is definitely *not* what a server looks like.

• This should be the final nail in the coffin of this model of a computer.

• It’s a dangerous lie.
Summary
Summary

• OS research is *really needed* right now
 − Hardware is different in scary ways
 − Companies are writing new kernels
 − Lots of research in Security, Architecture, etc.

• This community is *discouraging* this work

• In Operating Systems:
 − *Denial* that there are problems beyond Linux
 − *Ignorance* about what hardware looks like to software
This is such an opportunity!

• There is so much **cool, fun, relevant** research that could be done today
 – We can really rethink OS structures for new h/w

• We’ve got **great tools** that didn’t exist before
 – Great new formal techniques to apply
 – New languages
 – Amazing new hardware

• Why waste this on 50-year-old thinking?
Acknowledgements and thanks

• The Enzian team: Reto Achermann, Gustavo Alonso, David Cock, Dario Corolija, Michael Giardino, Tobias Grosser, Alexander Hedges, Nora Hossle, Amit Kulkarni, Nikita Lazarev, Jialin Li, Fabio Maschi, Jakob Meier, Abishek Ramdas, Timothy Roscoe, Anastasiia Ruzhanskaia, Muhsen Owaida, Jasmin Schult, Daniel Schwyn, David Sidler, Adam Turowski, Zeke Wang, Patrick Ziegler and many more….

• We are very grateful for support (equipment, parts, funding, and expertise) to Xilinx, Cavium/Marvell, and VMware Research