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Abstract

We explore the utility and execution of recursive queries
as an interface for querying distributed network graph
structures. To illustrate the power of recursive queries,
we give several examples of computing structural proper-
ties of a P2P network such as reachability and resilience.
To demonstrate the feasibility of our proposal, we sketch
execution strategies for these queries using PIER, a P2P
relational query processor over Distributed Hash Tables
(DHTs). Finally, we discuss the relationship between in-
network query processing and distance-vector like rout-
ing protocols.

1 Introduction

Much of the state of the Internet, and the applications
running on top of it, is captured in graph structures, rang-
ing from physical links, routing tables, multicast trees,
hypertext structures, and peer-to-peer link graphs. Pro-
cessing of information structured as graphs is a signif-
icant part of the problem of monitoring and managing
such systems.

In this paper, we argue for the use of recursive queries
as a powerful tool for understanding and controlling
structural properties of peer-to-peer and overlay net-
works. Recursive queries allow a query result to be de-
fined in terms of itself. This is particularly useful for
querying relationships that themselves exhibit recursive
structure, such as the reachability relationship of a net-
work graph.

We consider two possible settings for realizing re-
cursive query functionality: embedded network queries
and external network queries. With embedded network
queries, we assume that each node in the network em-
beds query functionality. We then show how users can
leverage this functionality to compute a number of use-
ful examples: (1) the set of nodes reachable from a given
node, (2) the shortest path between two nodes, and (3)
the number of paths between two nodes. Furthermore,
we show how the reachability query can be efficiently
executed in a DHT network with embedded query sup-
port. In contrast, with external network queries we as-
sume that the query is executed on a separate DHT-based
query infrastructure such as PIER. As an application, we
show how this architecture can be used to perform a dis-
tributed crawl of Gnutella. This is just one example of
using a distributed query processor to monitor an exist-

ing distributed graph; another example is a distributed
hypertext crawler.

1.1 Context

A number of recent efforts have produced declarative
query engines for monitoring and extracting information
from networks [1, 6, 8, 11, 13, 14]. The common goal of
all these systems is to provide a high-level, declarative in-
terface for extracting information about network charac-
teristics, without requiring a programmers to worry about
the details of performing distributed queries efficiently.
Our work continues in this spirit. While some of the
prior research has focused on executing certain queries
efficiently “in-network”, none has focused on querying
the structure of the network graphs themselves.

Declarative queries on graphs can be achieved only
with recursive queries, which were a topic of intense re-
search in database theory circles in the 1980’s and early
’90’s. However, the utility of recursive queries in cen-
tralized databases has traditionally been dismissed by the
database systems community: a senior researcher reiter-
ated as recently as 1998 that “no practical applications
of recursive query theory have been found to date” [7].
We argue here that recursive queries have great prac-
tical value as a declarative interface to multi-hop net-
works – both their native topologies, and the graphs over-
laid upon them. This requires more than a revival of
1980’s database theory, however. Unlike traditional de-
ductive databases, network graphs are large, distributed,
dynamic, and often based on soft state. These properties
present new, practically grounded research challenges.

It is interesting to note that the computation of a re-
cursive query resembles the computation of a routing ta-
ble by a distance-vector protocol: the node initiating the
query sends a set of facts to its neighbors, which in turn
updates this set based on their local information and then
propagate the resulting set further (see Section 5). In this
way, recursive query processing can be seen as a gener-
alization of existing distance vector like protocols. This
suggests using recursive queries as a generic substrate for
developing more flexible and powerful routing protocols.

2 Datalog

We give our examples using Datalog [10] programs,
where each program consists of a set of rules and queries.
In this paper, we focus on programs with recursion, al-
though Datalog can of course be used to express non-
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recursive programs as well. Datalog is similar to Pro-
log, but hews closer to the spirit of declarative queries,
and exposes no imperative control (either explicitly or
implicitly). Following the Prolog-like conventions used
in [10], names for predicates, function symbols and
constants begin with a lower-case letter, while vari-
ables names begin with an upper-case letter. Aggregate
constructs are represented as functions with arguments
within angle brackets (<>). Data, or facts, are con-
ventionally represented by predicates with constant ar-
guments; these can be thought of as database tuples. Pre-
sented with a query, the system will attempt to find a
complete set of variable bindings to satisfy the rules, and
return the values requested in the query.

3 Embedded Network Queries
In this section, we consider a generic network architec-
ture in which each node embeds query processing func-
tionality. Next, we give some examples in which users
can leverage this functionality to compute various net-
work properties. While these examples are straightfor-
ward, they serve the purpose to demonstrate the expres-
sive power of the recursive declarative queries.

3.1 Reachability

The textbook example of recursive query is graph tran-
sitive closure, which can be used to compute network
reachability. We assume the query processor at node X
has access to X’s routing table. Let link(X,Y) denote the
link between node X and its neighbor Y. Then, the follow-
ing simple program computes the set of all nodes reach-
able from node a.

R1: reachable(X,Y) :- link(X,Y).
R2: reachable(X,Y) :- link(X,Z), reachable(Z,Y).
Query: ?- reachable(a,N).

There are many useful enhancements of this program.
One is to change the query to simultaneously compute all
reachable pairs, not just those starting at a. Another is to
compute reachable pairs that are within a given hop count
from the initial node. A third possibility is to extend the
program to check for cycles between any two nodes in
the network.

3.2 Shortest Path

Suppose now that we have a cost C associated with each
link(X,Y,C). Then, the following program computes the
shortest path from nodes a to b and its cost:

R3: shortestPath(X,Y,P,C) :- shortestLength(X,Y,C),
path(X,Y,P,C).

R4: path(X,Y,P,C) :- link(X,Z,C2),
path(Z,Y,P1,C1),
P = addLink(link(X,Z),P1),
C = C1 + C2.

R5: path(X,Y,P,C) :- link(X,Y,C),
P = addLink(link(X,Y), nil).

R6: shortestLength(X,Y,min<C>) :- path(X,Y,P,C).
Query: ?- shortestPath(a,b,P,C).

The expression P = addLink(L, P1) is satisfied if P
is the path produced by appending link L to the existing
path P1. As it stands, this query is inefficient since it enu-
merates all possible paths. However, query optimization
techniques exist to improve performance by automated
rewriting of the query [12]. We omit examples of rewrit-
ten queries here for space reasons.

As with reachability, this query can be easily modified
to request all-pairs shortest paths, the shortest of all paths
that have some particular property, etc.

3.3 Routing Resilience

Another query of interest computes the number of paths
between any two nodes, which provides a measure of the
routing resilience. Given two nodes a and b, this program
computes the number of paths between them:

R7: path(X,Y,P) :- link(X,Z),
path(Z,Y,P1),
P = addLink(link(X,Z),P1).

R8: path(X,Y,P) :- link(X,Y),
P = addLink(link(X,Y), nil).

R9: numberPaths(X,Y,count<P>) :- path(X,Y,P).
Query: ?- numberPaths(a,b,N).

This query can be extended straightforwardly to gen-
erate the number of disjoint paths between two nodes.

3.4 *Cast Trees

Another class of useful queries are those that examine
trees constructed within the network. Such trees are of-
ten used for multicast or in-cast (aggregation). A number
of such queries are possible. For example, a query could
find the height of each subtree and store the height value
at the root of the subtree. In another example, a query
could find the imbalance in the tree – the difference in
height between the lowest and highest leaf node. Yet in
another example, a query could identify all the nodes at
a given level of the tree (referred to as the “same genera-
tion” query in the Datalog literature). We omit the actual
programs for these examples in the interests of brevity.

4 External Network Queries

Recursive queries can also be distributed in a DHT to
query the structure of a different network in a parallel
fashion. In this section, we will show how PIER can
be used to perform a crawl of Gnutella using recursion.
The “raw data” gathered from the crawl can be used as
input to other recursive queries to monitor the Gnutella
network. Such queries can be used to study file-sharing
workloads, and potentially to improve the search capa-
bilities of Gnutella as well. Our examples can easily be
adapted to other distributed graphs, e.g., to build decen-
tralized web crawlers or crawl other P2P networks be-
sides Gnutella. The only requirement on these networks
is that their nodes can be queried for link information, as
with Gnutella and the Web.
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4.1 Crawling Gnutella

The following program performs a crawl of Gnutella, and
serves as a basis for more complex queries, such as in-
dexing the content served by the network. It uses two
relations, node(X) means that X is a Gnutella node, and
link(X,Y) means there is an existing Gnutella neighbor
link from node X to node Y. For simplicity, we assume
that links are directed.

R1: node(X,0) :- startset(X).
R2: link(X,Y) :- node(X,Hop),

gnutellaPing(X,Y).
R3: node(Y,Hop) :- node(X,Hop-1),

link(X,Y),
Hop < k.

Query: ?- node(N,D).

Given a set startset of initial nodes (represented as IP
addresses), this query returns the set of Gnutella nodes
within k hops of the startset, together with their distance
in hops. Rule 1 initializes the node relation. Rule 2 ex-
pands the link set using the predicate gnutellaPing(X,Y),
which is satisfied if X believes Y is a neighbor of it;
this predicate is evaluated by making a connection to the
Gnutella node X and requesting its neighbors. Rule 3
expands the node set by joining nodes to links as long
as the nodes are still within k hops of the startset. The
query returns such all (node, distance) pairs. If k is set to
infinity, this results in an exhaustive crawl of the Gnutella
network.

4.2 Distributing the Crawl

The query is executed in a distributed fashion as follows.
Each crawler node which runs the PIER query engine
is responsible for crawling a different set of nodes in the
Gnutella network. The query is first sent to all the crawler
nodes, and set to run for a predetermined duration. The
start set is partitioned (rehashed/published) among the
participating crawler nodes by assigning each Gnutella
node to the DHT node that is the “owner” of the hash of
its IP address. This starts a distributed, recursive com-
putation in which the query continuously scans for new
nodes to be crawled. As each new node is discovered, it
is similarly rehashed on its IP address to a crawler node,
which continues the crawl from there.

There are good reasons to distribute the crawl. A naive
centralized crawler may be unable to capture an accu-
rate snapshot of the Gnutella network, as the crawl would
have to run over a long period of time to avoid saturating
the incoming bandwidth to the crawler site, especially if
the query is expanded to return additional data about the
crawled nodes.

A distributed crawler avoids this problem by balanc-
ing the bandwidth consumption across links. With a
distributed set of nodes, we can also potentially exploit
geographic proximity in the crawl by assigning each
Gnutella node to be crawled by a “close” crawler node,
where “closeness” is defined in terms of network latency,
rather than partition by IP addresses.

Note that the distributed query processor naturally co-
ordinates and partitions the work across the participating
nodes. Using only data partitioning of the intermediate
tables, it manages to parallelize the crawl without any
explicit code to ensure that multiple sites do not redun-
dantly crawl the same links.

4.3 Other Queries

The link and node information gathered in the crawl pro-
gram can be published on the fly back to the DHT for fur-
ther processing. Given rules to derive the link informa-
tion, we can pose additional interesting network queries
such as the ones discussed in Section 3.

In addition to querying the graph topology itself, re-
cursive queries can be used to query summaries of par-
ticular nodes within its horizon (nodes that are reachable
within a bounded number of hops). Horizon summary
queries that we can compute include the number of files
shared by all nodes within the horizon, the number of
free-loaders within the horizon, the average number of
files stored per node, the most popular files in the hori-
zon, and so on.

5 Embedded Network Queries over DHTs
In this section, we discuss how recursive queries are pro-
cessed over a DHT using PIER, and examine the com-
munication patterns that result from publishing derived
Datalog facts into the DHT. Note that DHT publishing
is the only source of communication during query exe-
cution; no explicit messaging is used during execution.
As our example, we use the program described in Sec-
tion 3.1 that computes the set of reachable nodes from a
given node:

R1: reachable(X,Y) :- link(X,Y).
R2: reachable(X,Y) :- link(X,Z), reachable(Z,Y).

Assume we want to simultaneously compute the set
of reachable nodes from node a, and the set of reachable
nodes from node b, respectively. We will show how these
two queries can be efficiently computed together.

Figure 2 shows the query execution plan for comput-
ing reachability information beyond the first hop. The
execution is based on Datalog’s bottom-up (“forward-
chaining”) mechanism, which starts by applying the rules
in the program to all existing link facts. The Clouds in
the figure represent rehashing (publishing) tuples into the
DHT and are labeled with the keys used to rehash them.
The communication patterns during query execution are
shown in Figure 1. We omit the computation for links
involving g and f for clarity; we will later show that these
links are in fact irrelevant to the computation.

The computation of a reachability query resembles the
computation of the routing table in a distance vector pro-
tocol. The computation starts with the source computing
its initial reachable set (which consists of all neighbors
of the source) and publishing it to all its neighbors. In
turn, each neighbor updates the reachable set with its own
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Figure 1: Thick dotted lines are DHT overlay links. Thin solid
lines are communication messages during query execution.
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Figure 2: Query Execution Plan for the Reachable Program.

neighborhood set, and then forwards the resulting reach-
able set to its own neighbors.

To illustrate further, we step through the communica-
tion necessary for the computing R(b,e) for node b.

1. b rehashes L(b,c) to c.
2. c rehashes L(c,d) to d.
3. d joins L(c,d) and R(d,e) and rehashes result R(c,e)

to c.
4. c joins L(b,c) and R(c,e) and rehashes result R(b,e)

to b.

We make three observation:

Natural Communication Patterns: The communica-
tion patterns described above follow naturally those of a
distance vector routing protocol computing reachability
information in a multi-hop, decentralized fashion.

Work Sharing: Nodes a and b share a common reach-
able node d. We only need to compute reachable facts
sourced at node d once. For example, R(d,e) would be
computed once and stored at node d, and subsequently
used to compute R(a,e) and R(b,e). Such storage and
sharing of intermediate results is known in deductive
databases as work memoization.

Irrelevant Facts: In our example, links L(g,a) and
L(f,b) are not needed, but are used by this strategy to
derive irrelevant facts like R(g,d), R(f,e) etc. We will
see that communication is required to compute and store
these derived facts, so avoiding irrelevant fact generation
is important.

The first two properties “fall out” of the combina-
tion of bottom-up evaluation and DHT-based distributed
query processing. This is a surprising and rather elegant
result: the execution of a centralized query plan over a
DHT produces a communication pattern similar to the
one used in an explicit message-passing network proto-
col. We are encouraged by this example to further in-
vestigate the interplays between the deductive database
literature and multi-hop routing.

Next, we consider the problem of sending irrelevant
facts. There is an extensive literature on recursive query
optimization to avoid sending irrelevant facts [10]. One
of these techniques is magic sets rewriting [4] which em-
ploys program rewriting to avoid computing unneeded
facts. In our case, the magic-rewritten program becomes:

R3: magicNodes(Y) :- magicNodes(X),
link(X,Y).

R4: reachable(X,Y) :- magicNodes(X), link(X,Y).
R5: reachable(X,Y) :- magicNodes(X),

link(X,Z), reachable(Z,Y).
R6: magicNodes(a).
R7: magicNodes(b).
Query: ?- reachable(N,M).

The main difference after rewriting is the addition of
rules for generating magicNode facts, which restricts the
query computation to the nodes reachable from a and b.

6 Status and Preliminary Results

Currently, PIER’s native query language is neither Dat-
alog nor SQL, but a logical dataflow language for gen-
erating dataflow graphs like that in Figure 2. Recursion
has been implemented in PIER, and as a proof of concept
we have implemented the Gnutella crawler described in
Section 4 over PIER and run it with a start set consist-
ing of two ultrapeers. The crawl ran for 6 minutes. The
link and nodes data were published back to the DHT and
used to compute reachability data as described in Section
3.1. The experimental results in Figure 3 show increas-
ing throughput (more reachable nodes discovered) as we
increase the number of crawler nodes running on Planet-
Lab [2].
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7 Related Work
Query execution and optimization of recursive queries is
a rich area of research. The survey paper [10] provides
an excellent overview as well as references to other more
advanced query processing and optimization techniques.
There has also been previous work on parallel execution
strategies of recursive queries [5] over static data within a
parallel cluster that does not involve the multi-hop com-
munication substrates introduced by DHTs.

Of particular relevance to our work is the use of
Prolog for systems and network monitoring in InfoS-
pect [11] and Sophia [14]. The main distinctions between
PIER and these systems is PIER’s support for recursive
operators, and the focus on in-network query process-
ing. A secondary distinction is in the use of Prolog in-
stead of Datalog. Prolog uses a top-down or backward-
chaining evaluation strategy, as opposed to a bottom-up
or forward-chaining strategy used by Datalog. There
have been extensive comparisons between the two evalu-
ation strategies [9].

8 Conclusions and Future Work
In this paper, we motivate the use of recursive queries
for analyzing P2P overlays. We propose two approaches
of realizing the recursive functionality. In the first ap-
proach, recursive queries are used as embedded network
queries, where each node embeds query processing func-
tionality to compute various network properties. The sec-
ond approach runs distributed recursive queries over the
structure of a different network. We provide a case study
of executing a recursive query over DHTs, and show
that the communication patterns have interesting connec-
tions with multi-hop in-network query processing, and
are amenable to optimization techniques from the deduc-
tive databases literature.

Executing recursive queries in-network raises several
open questions for future work. First, we suspect that the
communication patterns observed in Section 5 will not
always fall out nicely from traditional bottom-up eval-
uation strategies over DHTs. Second, DHT locality is
obviously a key performance issue, and will determine

whether optimized declarative queries run as efficiently
as hand-coded versions. Third, the deductive database
literature leaves a number of open questions in query op-
timization, including determining optimal join orders and
base-data acquisition (“access methods”). Last, the net-
work dynamics suggest that query optimizers should not
make static decisions: network performance is hard to
predict, and non-uniformities in graph topologies lead to
changing join “selectivities” mid-query. Adaptive query
optimization techniques like Eddies [3] may have an im-
portant role in this context.
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