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1 PUBLIC COMPUTING PLATFORMS:
INTRODUCTION AND MOTIVATION

What is a Public Computing Platform? A Public Comput-
ing Platform is a system of hardware and software which
provides a computing environment for a number of paying
customers, some of whom may be competing with each oth-
er for business. Typically these customers will be providers
of Internet services, who are themselves generating revenue
from their service (for example, by charging end users or
providing advertising) and paying the provider of the Public
Computing Platform to host their service.

The work described in this position paper rests on a num-
ber of assumptions. The first is that Public Computing Plat-
forms will become a reality. The second, more interesting,
assumption is that there will be a compelling business case
for such platforms to host many more services than there are
physical computers making up the platform. Systems that
host services with at least one processing node per appli-
cation are relatively simple to build and are in widespread
deployment today.

Designing, building, and operating Public Computing
Platforms clearly poses a number of engineering challenges.
For one thing, the platform must be highly available and re-
liable: businesses will depend on it for their revenue. It must
also provide excellent scalability: the market for services is
expected to grow, and like any other computer applications
we can expect the resource demands of individual Internet
services to grow also. The platform must therefore scale in
performance in two dimensions, both to handle a potentially
large number of services at once, and also scale over time as
the resource demands of a given set of services increase. This
introduces a new requirement of incremental deployment: it
must be possible to add capacity to the platform without in-
terrupting service.

Two further requirements set Public Computing Platforms
apart from more traditional systems: security, and resource
isolation. The platform must support many services, not all
of which can be equally trusted, and some of which may even
be competing with each other. This implies that the state
of one service must be secured from unauthorised access or

modification by another service. Additionally, a service must
not be permitted to use resources allocated to, required by,
and paid for by, another service.

A Public Computing Platform can be contrasted with what
is sometimes called an Enterprise Computing Platform. An
Enterprise Computing Platform (of which there are many
in deployment) is designed to run a single application (or
a very small number) on behalf of a single enterprise with
high capacity (throughput, etc.) and availability. Examples
of such platforms are web portals, search engines, transac-
tion processing systems, database servers, mail servers, me-
dia servers, etc. We can identify two different kinds of play-
ers involved with Enterprise platforms:

1. The Enterprise itself. There is one enterprise per plat-
form. The enterprise owns the platform and the appli-
cation. Typically the platform is entirely dedicated to
running the enterprise application. This is the case even
when the hosting function is outsourced, and the hard-
ware platform is owned and operated by a hosting entity.

2. The application users. For some transaction processing
applications (for example), the users will belong to the
enterprise itself. For others (WWW-based businesses),
the users are outside the enterprise.

In contrast, a Public Computing Platform can be expected to
be running a large number of services simultaneously. Con-
sequently, the players involved are different, and we can i-
dentify three different kinds:

1. The Application Providers. Unlike the enterprise case,
there are many application providers utilizing the same
platform; some may even be in competition with each
other. Application providers pay the platform provider
for computational and network resources they use in
providing their service.

2. The Platform Provider. The platform provider owns the
platform on which the services run. Unlike the curren-
t case of a simple hosting service, platform providers
must manage many mutually untrusting applications per
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machine, provide resource guarantees to the application
providers, bill them accordingly, and rapidly change ap-
plication resource allocations if the need arises.

3. The Application Users. These end-users are the same as
the enterprise case, except that now they are collectively
using a large number of different services rather than the
one.

The technological problem for the Platform Provider is com-
plicated by the need for Application Providers to replicate
services across the platform as a whole, for reasons of avail-
ability and fault tolerance.

A number of groups are working on platforms for Internet
services (for example, [7, 2, 9]). All share the characteris-
tic of running services over a distributed processing environ-
ment or middleware platform, which provides a uniform API
and communication subsystem.

We believe such an approach is fundamentally wrong.

2 A POLEMIC AGAINST MIDDLEWARE
There are many distributed processing environments, some-
times called distributed computing environments or middle-
ware platforms, in use today. The line between DPEs and
platforms for distributed services is also sometimes blurred.

However, most Internet services (Web, mail, directory and
file servers, for example) are written to run over an OS
(POSIX, Windows NT, etc), rather than over a distributed
processing environment. Modulo the usual gripes, they seem
to work fine. More importantly, they do not appear to suf-
fer from the absence of a middleware platform or distributed
processing environment.

Most of these services are much younger than the basic de-
sign principles behind distributed processing environments
(which have been around for at least 15 years). Why, then,
do new services not use middleware?

The negative consequences of distributed middleware

Pedlars of Internet middleware platforms propose that such
services should in fact be reimplemented not over the OS but
over a middleware layer which sits between the application
and the OS. Such an approach has a number of serious dis-
advantages, none of which are in much dispute:

First, developers of new applications must write to the new
programming interface, and use the new conceptual objects
that the platform imposes. This may be a significant learning
curve. Almost all distributed programming APIs look super-
ficially the same, but the devil is in the details.

Second, programmers have to contend with a runtime bot-
tleneck. A large body of software interposing itself between
OS and application imposes a runtime overhead. It is un-
likely to improve performance except by caching effects,
which are generally better implemented in a more intelligen-
t application-specific way (i.e. in the application), or in the

OS.

Third, programmers also now have to contend with what
might be termed a “semantic bottleneck” between the appli-
cation and the OS. As a consequence of the DPE or mid-
dleware interposing itself between the two, some OS and
hardware functionality may be hidden. Similarly, applica-
tion design and functionality is constrained a priori by the
design whims of the middleware producer. Aside from limit-
ing functionality, the additional performance constraints this
places on service implementors probably dominates the run-
time overhead.

Fourth, the semantic bottleneck also constrains the evolu-
tion of the system over time, since the OS feature set exposed
is frozen. The system can’t evolve. It can’t take advantage
of either new OS features or new ways of conceptualizing
applications.

Fifth, the middleware platform does nothing for existing
applications, which are not written to use it. Middleware
vendors have consistently failed to persuade developers of
widely deployed applications to use their kits, instead de-
ployment of middleware is generally restricted to large, one-
off intra-enterprise applications. This point alone is a pow-
erful argument against basing a Public Computing Platform
on middleware.

These are powerful arguments against the use of middle-
ware to develop a wide market in publicly accessible ser-
vices, but so far apply to communication between the ap-
plication and OS. When the middleware platform becomes
a distributed processing environment, interposing itself be-
tween distributed components of applications, things get a
lot worse. Two more factors appear:

First, by trying to standardise communication between
applications and between distributed components of single
applications, the middleware creates an additional semantic
bottleneck of communication: invariably the type system is
too restrictive, or RPC semantics inadequate. Many middle-
ware systems (Ninja for example) have recognised this and
sought to correct it by relaxing the invocation semantics and
reducing the expressivity of the type system, without real-
ising that the problem stems from believing communication
should be standardised at a higher level than the OS in the
first place.

Second, by trying to standardise interfaces and semantics
over heterogeneous platforms in the name of location trans-
parency, the middleware erases many of the positive bene-
fits of heterogeneity: different applications with different re-
quirements should be able to make use of different function-
ality.

Arguments in favour of middleware

Arguments are, of course, made in favour of using middle-
ware systems. The benefits of middleware and distributed
computing platforms are generally claimed in two areas: in-
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teroperability, and abstraction.

Interoperability between applications has its uses, but it
must be pointed out that middleware does not provide inter-
operability other than at a level of wire syntax and (at best)
naming. Much application logic is required before interoper-
ability between applications can actually achieve useful goal-
s. Either way, there is a world of difference between tools or
components that applications might employ in order to com-
municate, and an entire distributed processing environmen-
t inside which applications must be embedded in order to
communicate. Note that today’s Internet applications which
are not built over DPEs achieve interoperability through stan-
dards built by consensus following an understanding of par-
ticular application spaces, rather than mandated in advance.

The provision of abstractions suffers from the problem-
s discussed above. Which abstractions to provide? Why?
How can one be so sure one has the right set? Our view
is very much in line with that of Dawson Engler and Frans
Kaashoek with regard to operating systems abstractions[4]:
system-enforced abstractions prevent application program-
mers getting a useful picture of the runtime environment.
Developers should be free to choose the abstractions which
best suit their application.

We would add two refinements to their argument:

Firstly, any system will inevitably provide some abstrac-
tions. An abstraction is a choice as to what elements are
deemed important and are to be made explicit, and which are
deemed unimportant and can be safely ignored. Abstraction
is inherent in engineering tradeoffs, and in any mechanism
for sharing resources.

Secondly, abstractions are an important tool for under-
standing aspects of complex systems. System design would
be impossible without them. This does not mean, howev-
er, that design abstractions must then be uniquely reified in
code.

This last process appears to be what happens in middle-
ware: there is a sinister, creeping tendency for the design of
the middleware platform, which after all should simply be
an aid to writing better distributed systems, to expand to the
point where applications are almost subordinate to it, their
form being largely determined by the particular distributed
processing environment in force.

The difference between abstractions and implementations

Perhaps uniquely among distributed processing environ-
ments, the ANSA project [19] first defined a sophisticated
conceptual model of distributed computation (which later fed
into the ISO ODP reference model). The software realisa-
tion, ANSAware, was carefully described as one of many
possible mappings of ANSA concepts into engineering arti-
facts [11]1.

1Having said that, ANSAware as an implementation suffered from the
same tendencies we mention here

There is a mapping between abstract models used in think-
ing about a distributed system, and the implementation arti-
facts (software and hardware) that are built to realise the sys-
tem. It is the mapping that is important when building the
system, and this mapping may largely cover existing func-
tionality of the OS, network and hardware, without the need
for much additional implementation.

However, for some reason, traditional distributed systems,
including cluster-based services, move from design abstrac-
tions to implementation by building completely new imple-
mentation objects which correspond exactly to the design ab-
stractions. This approach comes to view the DPE as the only
ground on which to build applications. The DPE becomes
more important than the applications. The results are “take-
over-the-world” schemes, with all their impracticality.

In summary

This problem with the reification of abstractions applies
to all existing middleware platforms. It is commercially
and politically unreasonable, as well as technologically bo-
gus, to require that services running on a Public Computing
Platform, written and operated by many third-party service
providers, access the hardware through some new program-
ming interface (or, indeed, through any one programming in-
terface). It is further hubris to claim that this interface meets
the needs of applications, past, present and future.

Distributed middleware is useful, but it is never universal.
A general-purpose platform should never be based entirely
on it.

3 A REALISTIC APPROACH
We are building a prototype Public Computing Platform at
the Sprint Advanced Technology Lab. Like most such sys-
tems, our platform uses a cluster of computers in a controlled
physical environment, for reasons of scalability and reliabil-
ity.

However, our Public Computing Platform is not a mid-
dleware platform. If a particular Service Provider wishes to
use a piece of middleware (for some reason) to implemen-
t their service this should be allowed, but the environment
the platform provides to Service Providers is, simply, an op-
erating system. Our system therefore differs from others in
this space at a deep philosophical level: our API for each
processing node is chosen to be that of the system software
running on that machine. That system software, in turn, is a
commodity OS (or something very like it). The contrast is
illustrated in figure 1.

Philosophically, our platform is more closely related to
recent projects in network and O/S resource control than
to most other service platforms. Operating systems like
Nemesis[12, 14], Scout[13] and Exokernel[5] provide a very
low-level and explicit view of physical resources to the ap-
plication, which then uses libraries to implement its own ab-
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Figure 1: The contrast between a Distributed Processing En-
vironment (DPE) approach to Public Computing Platforms
(top), and our approach (bottom). The latter avoids impos-
ing an additional set of abstractions between applications and
the OS (thereby hiding information about the system), while
still providing access to platform functionality for platform-
aware applications.

stractions. The Xenoservers[15] project is one of several
that seeks to apply some of these ideas to Internet services.
An earlier, important OS development was the KeyKOS
system[8], which had as an explicit aim support for mutually
antagonistic applications and used a virtual machine monitor
approach. Other, more restricted approaches exist (for ex-
ample, resource containers [3] and QLinux [18]) which in-
stead have the benefit of working with existing mainstream
OS structures. Similarly, open signalling approaches in net-
work such as Switchlets [16] and xbind [10] leave much sig-
nalling policy to end users, restricting their own abstractions

to those for partitioning switch and network resources.

The philosophy behind these systems might be viewed as
follows. We start with a set of agreed-upon givens. In the
case of operating systems, these are the physical resources
plus hardware mechanisms which can be used to multiplex
them. In networks, these givens are switches and switch di-
viders. Then, we present to users a view which is as close to
these givens as possible, subject to the requirements of shar-
ing and security. Finally, we provide non-mandatory mech-
anisms and abstractions in the form of libraries to aid in the
implementation of application-specific functionality.

Our givens for a public computing platform are the net-
work, hardware, and OS software (and APIs) available. This
is therefore what we present to users, subject to the securi-
ty requirements of the platform and specific SLAs. Above
this, users can run their own DPEs, libraries, etc. and in ad-
dition take advantage of the fault monitoring and availability
mechanisms our infrastructure can provide, without any of it
getting in the way.

System abstractions and implementation

We briefly describe the abstractions in our platform. We must
emphasize that many of these abstractions are solely tools for
thinking about the system, and in no way imply that we are
building software objects corresponding to them. As far as
possible, we map our abstractions onto existing system facil-
ities. This has the important consequence that existing appli-
cations (Apache, for instance, or a QuakeIII server) fit into
our architecture without recompilation. Our terminology is
borrowed from ODP[1].

We call processing machines in our platform nodes. A
node runs some operating system. Applications, owned by
third-party clients of the platform run on one or more nodes,
which they may share with other applications. We use the
term capsule to refer to that portion of an application run-
ning on a particular node. A capsule will typically map to
a process or process group, together with a set of resource
containers or quotas, the exact nature of which will depend
on the capabilities of the operating system.

As well as running capsules, each node also runs a nucle-
us, which is responsible for management of the individual
node.

A nucleus can be viewed as an extension of the operating
system functionality on the node to provide remote control of
the node. The nucleus is responsible for starting, stopping,
and monitoring capsules running on the node, and also for
altering the allocation of node resources to capsules, using
whatever facilities the node OS provides in this regard.

Since the programs executing within capsules are simply
applications written for the OS in question with potentially
no knowledge of the platform, we cannot mandate a standard,
well-defined control interface between the nucleus and each
capsule. Instead, we implement a capsule-specific control
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mechanism within the nucleus by means of a domain-specific
scripting language. The scripts execute in the context of the
nucleus and in general emulate the actions that a human op-
erator would perform to install, monitor, start and stop the
service. This allows us great flexibility and evolvability in
how we interface the control operations of the nucleus to the
host OS and each class of application.

The nuclei on all the nodes on the platform are coordinat-
ed by a logically centralised management function called the
control plane. The control plane handles platform-wide is-
sues such as node failover, resource allocation, service instal-
lation and de-installation, billing and accounting, etc. While
logically centralised, in practice the control plane will be dis-
tributed and replicated for reliability, and only execute on n-
odes offering a high degree of security.

The nucleus and control plane implementations are “new”
to the platform (in the sense that they are written for the
platform), but they do not lie on any applications data path
or control path. Applications running on more than one n-
ode are free to use whatever operating system facilities (e.g.
sockets) are available to communicate internally and exter-
nally.

Note here that we are not advocating the complete absence
of APIs in public computing platforms. Such an approach
would prevent an application written with the platform in
mind from taking full advantage of the platform’s facilities,
and hence go completely against our philosophy. Rather, we
say that any API we provide for applications to use should
not syntactically interpose itself between the application and
the system. It is reasonable to introduce functionality into
the system (whether or not by extending the API), but we do
not want to place any new abstraction boundary between the
application and the OS it runs over. Consequently, we expect
applications which are written to be aware of running on the
platform to use an API which we provide to request services
and information from the nucleus.

We are also not averse to modifying the underlying op-
erating system. Such modifications can be regarded as the
extension of the nucleus into the OS kernel and runtime li-
braries, but note that once again these do not place any new
interfaces between the applications and resources.

In terms of commercial offerings, Ensim ServerXchange
[6] comes closet to our vision, providing a complete virtual
Linux OS to individual service providers. Ensim’s offering
can be seen as a particular point in the solution space we are
addressing in our project: reasonably good resource isolation
and an unmodified O/S API are provided at some cost in re-
source usage (due to the duplication of the O/S) and with no
explicit support for availability or heterogeneity of services.

4 CURRENT STATUS
We are in the process of prototyping, deploying and evaluat-
ing a public computing platform designed along these lines

at Sprint Labs. Our platform consists of 32 rack-mounted
dual-processor Pentium III machines connected to two fast
Ethernet/IP switches in a mesh. The platform also uses a
layer 4/5 switch as a gateway and firewall, and is be connect-
ed via dual Gigabit Ethernet links to the Lab, the Internet,
and our residential services testbed—200 homes in the town
of Pacifica (on the coast just south of San Francisco), each
of which has 100Mb/s network access and set-top boxes run-
ning Linux.

Our initial implementation uses QLinux [18] as the OS
for the platform since it provides the kind of resource control
facilities we need, the source code is readily available, and a
large number of services already run over Linux.

We intend to implement many services on the platform: if
the system lives up to our expectations, deployment of a new
service should require little more effort than would installing
it by hand on a machine or group of machines, and there
are many services out there we can reuse. For evaluation
purposes, we have picked three points in the space of service
implementations which we feel cover pretty well the range
of resource requirements and behaviours we would like the
platform to handle:

1. WWW servers: web servers are best-effort applications
which nevertheless have scaling requirements. In addi-
tion, Web servers typically fork worker processes and
CGI programs, and hence provide a good example of a
dynamic, multi-process capsule.

2. Streaming media servers: the network and disk band-
width requirements of streaming media servers provide
a useful contrast with the more transaction-oriented and
cache-friendly WWW server case.

3. Multi-user games: while game servers do not necessar-
ily have the bandwidth requirements of continuous me-
dia applications, delay and jitter bounds on both com-
munication and CPU usage are very tight to ensure in-
teractive response across all users. This provides an in-
structive additional challenge for the platform.

Our first-draft nucleus implementation is written in C and
uses Tcl both as a glue language to abstract from the details
of starting, stopping, installing and monitoring the health of
each capsule, and also as a way of rapidly prototyping net-
work invocations. Early experience shows that this approach
to control mechanisms on a node works well.

Current work includes re-implementing this control struc-
ture, by extending an environment like Ninja[7] with native
O/S calls and a scripting language. Note that although our
principle is to avoid any concept of a Distributed Processing
Environment as a basis for the everything on the platform,
the case of implementing the control plane is a good example
of the limited domain in which DPEs can actually be useful:
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a small set of communicating entities which evolve together
under a single, tightly controlled architectural authority.

Our initial applications will be unmodified, that is, they
will not have been written with our platform in mind. We
aim to accommodate a variety of application classes and
application-implemented reliability mechanisms. In the later
phases of the project we will experiment with adding more
knowledge about the platform to applications.

5 OPERATING SYSTEM ISSUES AND RESEARCH
DIRECTIONS

Our position on system functionality outlined in this paper
might be said to be part of a “pragmatic turn” in systems re-
search, along with systems like Exokernel and Nemesis and
away from the excessive definition of abstractions. Rather
than being a retrograde step, we feel this opens up fruitful
new areas of OS research.

In particular, it is interesting to look at what OS design-
s and facilities work well with this model of service pro-
vision. We feel that from a Quality of Service standpoint,
the requirements are similar to ones identified for multime-
dia operating systems in the early 1990s: resource guaran-
tees, and isolation between application domains to prevent
QoS crosstalk. However, appropriate policies and account-
ing mechanisms may be quite different.

Secondly, the security requirements of Public Comput-
ing Platforms are different from more traditional enterprise
systems. We expect that OS designs like Eros[17] and
KeyKOS[8] will play an increasingly important role in sup-
porting large numbers of mutually antagonistic applications.
The extensions of these systems to distributed, cluster-based
platforms is in an early stage.
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