
Implementing Declarative Overlays

Boon Thau Loo∗

UC Berkeley

Petros Maniatis
Intel Research Berkeley

Tyson Condie∗

UC Berkeley

Timothy Roscoe
Intel Research Berkeley

Joseph M. Hellerstein
Intel Research Berkeley

UC Berkeley

Ion Stoica
UC Berkeley

ABSTRACT
Overlay networks are used today in a variety of distributed
systems ranging from file-sharing and storage systems to
communication infrastructures. However, designing, build-
ing and adapting these overlays to the intended application
and the target environment is a difficult and time consuming
process.

To ease the development and the deployment of such over-
lay networks we have implemented P2, a system that uses a
declarative logic language to express overlay networks in a
highly compact and reusable form. P2 can express a Narada-
style mesh network in 16 rules, and the Chord structured
overlay in only 47 rules. P2 directly parses and executes such
specifications using a dataflow architecture to construct and
maintain overlay networks. We describe the P2 approach,
how our implementation works, and show by experiment its
promising trade-off point between specification complexity
and performance.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—distributed applications; D.4.7 [Operating Sys-
tems]: Organization and Design—Distributed systems; C.2.2
[Computer Communication Networks]: Network Pro-
tocols—protocol architecture, routing protocols

General Terms
Design, Experimentation, Languages

Keywords
Declarative overlays, dataflow engines, executable pseudocode

∗Boon Thau Loo and Tyson Condie are supported in part by
the National Science Foundation under Grants No. 0205647,
0209108, and 0225660, and by a gift from Microsoft Corpo-
ration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

1. INTRODUCTION
Large-scale distributed systems inherently use one or more

application-level overlay networks as part of their operation.
In some cases, the overlay is prominent: for example, file-
sharing networks maintain neighbor tables to route queries.
In other systems the overlay or overlays may not be as ex-
plicit: for example, Microsoft Exchange email servers within
an enterprise maintain an overlay network among themselves
using a link-state algorithm over TCP for routing mail and
status messages.

This paper describes P2, a facility (deployable as a service
or library) for the declarative construction, maintenance,
and sharing of overlay networks. Applications submit to P2
a concise logical description of an overlay network, and P2
executes this to maintain routing data structures, perform
resource discovery, and optionally provide forwarding for the
overlay.

P2 is intended to greatly simplify the process of selecting,
implementing, deploying and evolving an overlay network
design. It is novel in (a) using a declarative logic language
for specifying overlays, and (b) employing a dataflow frame-
work at runtime for maintaining overlays instead of the more
conventional finite state machine approach. P2 automat-
ically compiles the declarative specification of the overlay
into a dataflow program, and can compile multiple overlay
specifications into a single dataflow.

We believe that these innovations together promise two
advantages: ease of specification, and sharing/reuse of code.
P2 overlay descriptions can be extremely concise. For exam-
ple, Chord [34] can be specified in 47 simple logic rules, ver-
sus thousands of lines of code for the MIT Chord reference
implementation and more than 320 statements in MACE-
DON [30], which is a much less complete implementation
than ours. Also, the high-level, declarative nature of P2
specifications means that they decompose cleanly into log-
ically reusable units: for example, a Symphony DHT [23]
might share many of the definitions in the Chord specifica-
tion.

This facilitates not only code reuse among systems, but
also the comparison, extension, and hybridization of overlay
designs within a single system. Moreover, describing over-
lays declaratively (effectively as queries) enables the natural
integration of distributed information-gathering tasks like
resource discovery and network status monitoring.

Unlike some other proposals for overlay toolkits, P2 does
not aim for performance results as good as optimized C,
C++, or Java implementations. Instead, our first aim is
to demonstrate that declarative overlay descriptions can be



implemented by P2 with acceptable performance, and that
there are benefits to the declarative specification that go
beyond the raw performance of a single overlay design. We
believe that this is useful for rapidly prototyping new ideas,
and eventually for deploying production systems as well.

This is not to say that P2 code is slow. P2’s memory
footprint running a full Chord implementation is relatively
small (about 800 kB of working set) and its CPU usage
is comparable to C++ implementations. However, the P2
specifications we discuss in this paper support a new design
point on the trade-off between a high degree of specification
compactness and the fine-grained timer tuning and adaptiv-
ity optimizations that pepper the code of mature, efficient
but painstaking overlay implementations.

Ultimately, our argument for P2 is similar to the argu-
ment for SQL and relational database management systems
some 35 years ago. The initial goals of our implementation
are also akin to those of the early relational database sys-
tems: to explore the feasibility of the declarative approach
in practice at a coarse grain, without trying to capture all
possible optimizations in the first generation of the system.

1.1 Contributions and Overview
This paper makes the following contributions. First, we

show how a diverse set of overlays can be expressed concisely
in a declarative specification language. Second, we show
how such specifications can usefully be executed as overlay
maintenance protocols – sharing communication, state, and
computation – by our implementation, the P2 distributed
dataflow engine. Finally, we demonstrate experimentally
that such overlays have acceptable performance compared
to hand-coded implementations.

The rest of this paper is structured as follows. In Sec-
tion 2 we outline the main features of our approach: using
a declarative logic language to specify an overlay, and com-
piling it to an executable graph of dataflow elements. We
contrast this approach to the typical techniques from the
literature. In Section 3 we discuss our implementation of
P2 and the specific challenges we encountered, and then in
Section 4 we examine in detail a relatively complex overlay
(Chord [34]) as implemented over P2. Section 5 evaluates
the performance of this network, and shows it to be accept-
able despite the simplicity of the specification. Section 6
situates our work in the context of other language-based ap-
proaches and related research in data processing systems.
We conclude in Section 7.

2. APPROACH
In this section we provide a broad overview of the P2 ap-

proach to overlay specification and runtime execution. In
the past, overlay networks have typically been characterized
in one of two ways. The protocol-centric approach favored by
MACEDON [30] traces its roots to event languages [13, 35]
that specify overlay execution via automata for event and
message handling. This style emphasizes the dynamics of
the overlay and its maintenance, but makes it difficult to de-
termine the overlay’s coarse structure and invariant proper-
ties. The alternative is a structure-centric approach, whose
roots can be traced to the specification of parallel inter-
connection networks [19]. This style, which has influenced
the literature on distributed hash tables (DHTs), specifies
overlays by focusing on a network graph structure (hyper-
cube, torus, de Bruijn graph, small-world graph, etc.), whose

invariant properties must be maintained via asynchronous
messaging. Unfortunately, graph-theoretic descriptions tend
to be expressed at a high level in natural language, and often
gloss over details of the actual runtime messaging. As a re-
sult, implementing structure-centric overlays often requires
a fair bit of engineering [10, 29], and different implemen-
tations of the same overlay can vary significantly in their
actual execution.

P2 spans the two approaches above, and expands upon
them in a way that we believe is particularly attractive for
overlay specification and runtime. The interface of P2 is
closer in spirit to the structure-centric approach, in that
it encourages the specification of overlays as logical struc-
tures with invariants. However, it also automatically com-
piles this specification to a dataflow program for managing
asynchronous messages, which looks closer to the protocol-
centric approach. We believe P2 improves upon previous
overlay specification work in either camp, by providing a
machine-interpretable description language based on rela-
tions among node states in the network, and by using a
dataflow runtime model instead of automaton-based proto-
cols.

Here, we provide a high-level view of the three compo-
nents of our approach: the use of relational tables to rep-
resent overlay state, our high-level declarative language to
specify the overlay’s logical properties and behavior, and
graphs of dataflow elements to represent runtime informa-
tion processing. The specific implementation details of these
components are deferred until Section 3.

2.1 Tables and Streams
We model an overlay as a distributed data structure, rep-

resented via a set of structured relations (sets of tuples) as
in a relational database. P2 employs two types of relations:
soft-state tables, and streams of transient tuples, as in stream
query engines [4, 7, 26].

There are many ways to represent network graphs, but
the relational approach seems attractive for a variety of rea-
sons. First, structured tables are a simple and natural rep-
resentation for network state; for example, neighbor tables
are widely used in networks. Second, and more importantly
for our purposes, tables and relationships between them are
easy to represent concisely in a declarative language, as the
success of SQL has shown. Third, the distributed database
abstraction provides a consistently–named view of all the lo-
cal tables and messages at different nodes: queries and rules
can specify distributed state in a high-level, concise way.

Finally, the relational abstraction is a natural way to reuse
functionality and share routing state among different over-
lays. Tables with multiple indices can store tuples relevant
to several overlays or parts of overlays, which can select
elements from each table with their own criteria. For in-
stance, a table holding network links along with their mea-
sured capacity and latency can be shared between a latency-
conscious overlay as well as a capacity-conscious overlay. Ta-
ble names (with appropriate namespace scoping) provide a
natural way to share definitions between multiple overlay
specifications.

Our experience with overlay implementations has shown
that relations, together with some suitable mechanisms for
selecting tuples from each table, can fairly naturally repre-
sent the persistent routing state of the overlays we consid-
ered. We give examples later in support of this claim.



2.2 The OverLog language
Having established our data model, we turn our atten-

tion to the P2 specification language for overlays. As noted
above, we choose to specify overlays declaratively via a logic
language. Our language, which we term OverLog, is based
on the widely-used Datalog [2] query language.

A few preliminary remarks are in order to frame the dis-
cussion that follows. Datalog itself is a general declarative
query language – a subset of Prolog free from operational
(imperative) constructs. OverLog is not a pure logic lan-
guage like Datalog; we add constructs to specify physical
distribution properties (in particular, where tuples are phys-
ically generated, stored, or sent), continuous queries over
streams as well as tables, and deletion of tuples from tables.

Note that OverLog is not designed as a Domain-Specific
Language for overlay specification; it is simply an adapta-
tion of a powerful query language to a distributed context
of data and messages. Our motivation for the design of
OverLog was to investigate which language features are of
particular value for specifying the properties of overlay net-
works, and so lay the groundwork for a future, dedicated
overlay description language. We reflect on the suitability
of OverLog for overlay specification in Section 4.1.

Despite these caveats, overlay descriptions in OverLog are
remarkably concise, especially considering that they can be
directly translated by P2 into dataflow graphs that maintain
overlay networks. In the rest of this section, we introduce
OverLog progressively by example, giving a specification of
a mesh overlay like that used by Narada [8] in 16 Over-
Log rules. Later in the paper we compare the performance
of our full Chord implementation, specified in 47 rules, to
published results from a handcoded implementation.

2.3 OverLog by Example: A Narada Mesh
Narada is a popular overlay multicast system, which im-

plements the multicast functionality using two layers: the
first layer constructs and maintains a mesh connecting all
members in the group, while the second layer constructs de-
livery trees on top of the mesh using a DVMRP-like multi-
cast algorithm [11]. We focus on constructing a Narada-like
mesh here as an example of the use of OverLog.

Briefly, the mesh maintenance algorithm works as follows.
Each node maintains a set of neighbors, and the set of all
members in the group. Every member epidemically propa-
gates keep-alives for itself, associated with a monotonically
increasing sequence number. At the same time, neighbors
exchange information about membership liveness and se-
quence numbers, ensuring that every member will eventually
learn of all the other group members’ liveness. If a member
fails to hear from a direct neighbor for a period, it declares
its neighbor dead, updating its own membership state and
propagating this information to the rest of the population.

In addition, each node A periodically probes a random
group member B measuring their round-trip latency. If the
probed node (B) improves the routing utility of node A by
a certain threshold, node A adds node B to its neighbor
set. Similarly, if node A concludes that the cost of a link to
neighbor B exceeds some predefined threshold, it removes
B from its neighbor set.

In the rest of this section, we show how the mesh main-
tenance portion of Narada can be expressed in OverLog. In
the interest of brevity, we omit node removal and recovery
from network partitions.

An OverLog program is largely composed of table decla-
ration statements and rules; we consider each in turn. As
in Datalog, the number and types of fields in relations are
inferred from their (consistent) use in the program’s rules.
However, unlike Datalog, tables must be defined explicitly
in OverLog via “materialization” statements, which specify
constraints on the size and soft-state lifetime of tuple storage
– any relations not declared as tables are treated as named
streams of tuples. For example, the declarations:

materialize(neighbor, 120, infinity, keys(2)).
materialize(member, 120, infinity, keys(2)).
materialize(sequence, infinity, 1, keys(2)).

specify that neighbor and member are tables whose tuples
are retained for 120 seconds and have unbounded size, while
sequence allows a single entry that does not expire. The
keys(...) construct specifies the position of the tuple field
or fields making up the primary key of each table. Each
tuple within a table has unique primary-key fields.

Much like Datalog and Prolog, OverLog rules have the
form [<ruleID> <head> :- <body>.] where the <body> is
a list of relations (“predicates”) over constants and variables,
and the <head> defines a set of tuples derived by variable
assignments satisfying the body’s predicates. The order in
which the rules are presented is immaterial. The commas
separating the predicates in a <body> are interpreted as
logical conjuncts (AND), and the order in which predicates
appear in a <body> has no semantic significance. Following
Prolog and Datalog, names for tuples, predicates, function
symbols, and constants in OverLog begin with a lower-case
letter, while variable names begin with an uppercase letter.

Narada periodically gossips with neighbors to refresh mem-
bership information. We start with a rule that causes a node
to initiate a refresh:

R1 refreshEvent(X) :- periodic(X, E, 3).

In Datalog, this rule with identifier R1 would be read as
“table refreshEvent has a row with value (X), for any X,
if table periodic has a row with value (X, E, 3), for some
E.” Because of the use of streams and continuous queries in
P2, the OverLog interpretation is slightly different.

First, periodic is a built-in term; it is not a stored ta-
ble but a stream that periodically produces a tuple with a
unique identifier E at node X – in this example the period
is 3 seconds. Since refreshEvent and periodic are data
streams rather than stored tables, it is more appropriate
to read this rule as “generate a refreshEvent tuple with a
value (X) whenever you see a periodic tuple of value (X,

E, 3).”
Before a Narada node can refresh its neighbors, it must

update its own sequence number, stored in the singleton
table sequence.

R2 refreshSeq(X, NewSeq) :- refreshEvent(X),
sequence(X, Seq), NewSeq := Seq + 1.

R3 sequence(X, NewS) :- refreshSeq(X, NewS).

Every time the refreshEvent is issued for a node X, rule
R2 creates a new refresh sequence number NewSeq for X by
incrementing the currently stored sequence number Seq in
the sequence table. Rule R3 updates the stored sequence
number. Because sequence is a materialized table instead of
a data stream, whenever a new sequence tuple is produced,



as is done with rule R3, it is implicitly inserted into the
associated table.

Though not explicitly specified in the materialize direc-
tives above, the neighbor table contains tuples of the form

neighbor(MyAddress, NeighborAddress)

while the member table contains tuples of the form

member(MyAddress, MemberAddress, MemberSequence,
MemberInsertionTime, MemberLive)

MemberLive is a boolean indicating whether the local node
believes a member is live or has failed.

We now introduce location specifiers, which annotate the
components of a rule to specify the node at which the tuples
in question should exist. Consider the following:

R4 member@Y(Y, A, ASeqX, TimeY, ALiveX) :-
refreshSeq@X(X, S), member@X(X, A, ASeqX, _, AliveX),
neighbor@X(X, Y), not member@Y(Y, A, _, _, _),
TimeY := f_now@Y().

This is read as follows: “if a refreshSeq tuple is seen at node
X with fields (X, S), and a (X, A, ASeqX, , ALiveX) tu-
ple is in X’s member table, and a (X, Y) tuple in X’s neighbor
table, and there is no member tuple in Y’s table for address A,
then a member tuple (Y, A, ASeqX, TimeY, ALiveX) should
appear at node Y, where TimeY is the value of the built-in
function f now() at Y1.” f now returns a node’s wall-clock
time, and as in other languages an underscore denotes a
“don’t care” variable. Because the location specifiers in this
rule belong to two different nodes, when this rule is executed
some data are shipped across the network.

In terms of Narada, rule R4 specifies that whenever a re-
fresh happens at node X, for any of X’s members unknown to
Y, a copy of X’s member tuple for that member appears in Y’s
table, with Y’s insertion time updated. Note here that this
logical rule makes no mention of where the complex body
of the rule will be executed, or how many network messages
will be sent. Alternatively, a programmer could have spec-
ified this functionality with explicit message transmissions
(see Appendix A).

Rule R5 below specifies how Y updates an existing member
entry when X performs a refresh.

R5 member@Y(Y, A, ASeqX, TimeY, ALiveX) :-
refreshSeq@X(X, S), member@X(X, A, ASeqX, _, ALiveX),
neighbor@X(X, Y), member@Y(Y, A, ASeqY, _, _),
ASeqY < ASeqX, TimeY := f_now@Y().

If both X and Y know member A, and if the sequence number
that Y knows for A is older than that in X’s member entry,
then Y updates its own entry for A with X’s sequence number
and the wall-clock time at Y.

Finally, every time X refreshes Y, Y updates its member
entry for X itself, as per rule R6.

R6 member@Y(Y, X, S, TimeY, true) :-
refreshSeq@X(X, S), neighbor@X(X, Y),
TimeY := f_now@Y().

1We are purposely vague about the type of location spec-
ifiers. For simplicity, one can simply think of them as IP
addresses. However, we make no assumption about the un-
derlying addressing scheme in the network, and there may
be a case for using P2 in contexts where addressing is dif-
ferent.

To join the mesh, a new node need only know one member
of the mesh, placing that member into its neighbor table.

N1 neighbor@Y(Y, X) :- refreshSeq@X(X, S),
neighbor@X(X, Y).

This rule ensures that neighbor relationships are mutual.
Finally, rules L1-4 check neighbor liveness. Every second,

rule L1 initiates a neighbor check by which rule L2 declares
dead a neighboring member that has failed to refresh for
longer than 20 seconds. Dead neighbors are deleted from the
neighbor table by rule L3 and rule L4 sets a dead neighbor’s
member entry to be “dead” and further propagated to the
rest of the mesh during refreshes.

L1 neighborProbe@X(X) :- periodic@X(X, E, 1).
L2 deadNeighbor@X(X, Y) :- neighborProbe@X(X),

neighbor@X(X, Y), member@X(X, Y, _, YT, _),
f_now() - YT > 20.

L3 delete neighbor@X(X, Y) :- deadNeighbor@X(X, Y).
L4 member@X(X, Neighbor, DeadSeq, T, false) :-

deadNeighbor@X(X, Neighbor),
member@X(X, Neighbor, S, _, _),
DeadSeq := S + 1, T:= f_now().

Note that rule L3 introduces an additional syntactic con-
struct (delete), used to delete tuples from a stored table.

Narada continuously improves its mesh by measuring net-
work latency to all members.

P0 pingEvent@X(X, Y, E, max<R>) :-
periodic@X(X, E, 2), member@X(X, Y, _, _, _),
R := f_rand().

Every 2 seconds, rule P0 picks a member at random with
which to measure round-trip latency. Specifically, it asso-
ciates a random number with each known member, and then
chooses the member associated with the maximum random
number. Note that function<fields> denotes an aggregation
function, max in this example.

P1 ping@Y(Y, X, E, T) :-
pingEvent@X(X, Y, E, _), T := f_now@X().

P2 pong@X(X, Y, E, T) :- ping@Y(Y, X, E, T).
P3 latency@X(X, Y, T) :- pong@X(X, Y, E, T1),

T := f_now@X() - T1.

When a tuple appears in data stream pingEvent, rule P1

pings the randomly chosen member stored in the event, rule
P2 echoes that ping, and rule P3 computes the round-trip
latency of the exchange.

Nodes use such latency measurements – along with the
paths computed by a routing protocol operating on top of
the mesh – to compute a utility function. A node may add
to its neighbors a member that is not currently a neighbor
if the utility gain of doing so lies over an addition threshold.
Similarly, if the cost of maintaining a current neighbor is
greater than a removal threshold, the node may break its link
with that neighbor. We show how neighbor addition would
work in an OverLog implementation of Narada below. We
assume that each node maintains a routing table over the
mesh which contains for each member the next hop to that
member and the cost of the resulting path; e.g., route@X(X,
Y, N, C) indicates that node X must route via next-hop
node N to get to destination Y with a path latency of C.

U1 ugain@X(X, Z, sum<UGain>) :- latency@X(X, Z, T),
not neighbor@X(X, Z), route@Z(Z, Y, _, C),
UNew := T + C, route@X(X, Y, _, UCurr), UNew < UCurr,
UGain := (UCurr - UNew) / UCurr.



Rule U1 measures the utility gain that could be obtained if
node Z were to become X’s immediate neighbor, as per the
Narada definition [8]. For an individual destination Y, this is
computed by taking the latency of Z’s path to Y and adding
the latency between X and Z to it. If this new path latency
(assuming Z becomes the next hop from X) is lower than the
current latency of X’s route to Y, then the relative decrease
in latency contributes to the utility gain by adding neighbor
Z. If this utility gain is above a threshold addThresh, then
rule U2 adds this new neighbor

U2 neighbor@X(X, Z) :- ugain@X(X, Z, UGain),
UGain > addThresh.

Appendix A collects the mesh formation portion of our
Narada specification in OverLog. This specification consists
of just 16 rules and 3 table declarations. The OverLog spec-
ification is perhaps not as easy to read as pseudocode, but
remarkably it can be directly compiled and executed by a
set of P2 nodes to maintain a Narada-style mesh.

2.4 Dataflow
Given that OverLog is a declarative query-like language

over distributed nodes, it is natural to consider compiling it
into an executable representation akin to a database “query
plan.” Parallel and distributed database query systems like
Gamma [12], Volcano [14] and PIER [16] use dataflow graphs

as their basic query executables: these graphs connect vari-
ous database “operators” with dataflow edges that represent
the passing of tuples among operators, possibly across a net-
work. A query engine runtime can execute these dataflow
programs over stored and streaming data sources.

Traditionally, network implementation models are built
on automaton abstractions, which do not appear at first
sight to have much in common with database query plans.
However software router toolkits like Scout [25], Click [18]
and XORP [15] in recent years have demonstrated that net-
work message handling and protocol implementation can be
neatly factored into dataflow diagrams, and that this model
provides clarity and extensibility beyond that offered by
automata, without sacrificing performance. We adopt the
Click term element for a node in a P2 dataflow graph, but
as in database query plans, each edge in the graph carries a
stream of well structured tuples, rather than annotated IP
packets. Note that while all tuples flowing on a single edge
share a structure (schema), tuples on one edge may have
very different structure than tuples on another – this is a
significant distinction with the uniform IP packets of Click.

P2 dataflows tend to mix together network packet process-
ing elements for tasks like queuing, (de)multiplexing, and
congestion control along with relational database operators
like joins and aggregations. The use of joins is endemic to P2
because of our choice of OverLog: the unification (match-
ing) of variables in the body of a rule is implemented in a
dataflow by an equality-based relational join or equijoin2, a
point we return to in Section 2.5.

2.5 Discussion
The combination of a declarative language and a dataflow

runtime forms a powerful and surprisingly natural environ-
ment for overlay specification and runtime. The obvious al-
ternative to our approach is the automaton approach used in
2To avoid confusion with the notion of a node “joining” an
overlay, we will use the term equijoin to refer to relational
joins in the remainder of the paper.

traditional protocol specifications and implementations, and
in the MACEDON overlay toolkit. Relative to automata,
logical specifications and dataflow graphs have a number of
software engineering advantages:

• Scoping: In principle, automata must handle any pos-
sible event (message) in each state. While automata
can in principle be nested or encapsulated as a matter
of design discipline, the potentially arbitrary interplay
between states and events leads to relatively few design
constraints, making automata difficult both to specify
correctly, and to understand once specified. By con-
trast, in a dataflow diagram compiled from an OverLog
program, the inputs to an element are by definition

coming from other specific elements whose behavior is
well specified. This constrains what needs to be han-
dled in each element implementation, aiding in both
specification and comprehension.

• Typing: Similarly, the events or messages handled in
automata are of any type possible in the system. In
dataflow diagrams, all tuples that pass along an edge
share the same schema, hence a dataflow element im-
plementation need only worry about a stream of simi-
lar, well-formed tuples.

• Encapsulation and Reuse: Because automata in-
terrelate possible events and states, they are difficult
to reuse in other contexts that may involve different
sets of events, or additional states with different in-
teractions. By contrast, subsets of rules in OverLog
programs can be easily extracted and reused in other
programs. Moreover, even the compiled dataflow di-
agrams often have discrete subgraphs that are clearly
reusable: a dataflow subgraph typically has a few well-
specified inputs (incoming edges) and outputs (outgo-
ing edges), and in many cases has easily interpretable
behavior. This admits the possibility of allowing in-
coming programs to opportunistically “jump on” to
existing dataflows, in the spirit of adaptive stream
query engines like TelegraphCQ [7].

The modularity provided by a declarative language is also
useful for bootstrapping the system. We can compare P2 to
another distributed query processor built over a dataflow
framework: PIER [16]. PIER uses a distributed hash table
(Bamboo [29]) as a basic common substrate, which is then
employed to instantiate query-specific overlay networks such
as aggregation trees. In contrast, P2 simply uses whatever
underlying network is present, and each node can be con-
figured with a relatively small set of “base facts” (such as
addresses of a few nearby neighbors). Knowledge of the
rest of the network is then built up in the declarative do-
main. It is possible to construct a DHT over P2 – indeed,
our main example in this paper is a version of Chord – but
P2 in no way requires a DHT to be present, nor relies on
the assumptions a DHT typically exploits (such as full-mesh
connectivity between nodes, and lack of explicit control over
node and data placement).

We close with a discussion on the (perhaps surprising)
centrality of the database equijoin operator in our system
for implementing overlay networks. First, we observe that
overlay network maintenance traffic is fundamentally a mat-
ter of asynchronous data structure manipulation: matching



������

�������	
���

�
�����

�����
�����������

���

�������

�
�����

������

����	�
�

Figure 1: Block diagram of a P2 node

a stream of incoming structural change messages (node ar-
rivals and departures, neighbor table updates, path changes,
etc.) with existing state at a node to produce new state, new
messages, or both. This matching of asynchronous messages
is naturally representable as an equijoin of a stream and a
table, whether or not it is highlighted as such in the execu-
tion model. This issue is discussed further in the context of
database queries in [28].

To illustrate the utility of equijoins, we consider the ex-
ample of rule R6 from Section 2.3:

R6 member@Y(Y, X, S, TimeY, true) :-
refreshSeq@X(X, S), neighbor@X(X, Y),
TimeY := f_now@Y().

Since neighbor has already been declared as a table, this
rule specifies that the arrival of a refreshSeq event will
catch any neighbor entries identified in the last 120 seconds.
It translates into a simple equijoin of the refreshSeq stream
and the neighbor table.

3. IMPLEMENTATION
Our P2 implementation runs over Linux and consists of

around 20,000 lines of C++, plus 3rd-party support libraries.
The design of P2 was inspired by prior work in both

databases and networking. Software dataflow architectures
like P2 occupy a constrained but surprisingly rich design
space that has been explored in a variety of contexts3. We
based our design in large part on our side-by-side compar-
ison between the PIER peer-to-peer query engine [16] and
the Click router [18]. Like PIER, P2 can manage structured
data tuples flowing through a broad range of query process-
ing operators, which may accumulate significant state and
perform substantial asynchronous processing. Like Click,
P2 stresses high-performance transfers of data units, as well
as dataflow elements with both “push” and “pull” modali-
ties. P2 differs at its core from both PIER and Click, but
subsumes many of the architectural features of both.

At a coarse grain, P2 consists of a Datalog parser, a plan-
ner, a set of dataflow element implementations, and a run-
time plan executor (Figure 1). The life of a query is simple:

3There is also a rich hardware dataflow tradition in Com-
puter Architecture (e.g., [27, 36]), with its own terminology
and points of reference. For brevity we will not consider
those systems here, and when we refer to dataflow architec-
tures, we limit our discussion to software dataflow.

the query is parsed into an internal representation, the plan-
ner constructs a corresponding dataflow graph of elements,
and the graph is executed by the runtime until it is canceled.

In this section, we describe the system bottom-up, start-
ing with the runtime, then the dataflow framework, and
finally the parser and planner that translate from OverLog
to dataflow element graphs and tables.

3.1 Runtime
The P2 runtime consists of a library of useful classes and

functions upon which the rest of the system is built. We
limit our discussion here to those parts that are essential for
understanding the rest of the system.

As basic data types, P2 uses Values, and Tuples. A Value

is a reference-counted object used to pass around any item
of information in the system; Value types include strings, in-
tegers, timestamps, and large unique identifiers. The Value

class, together with the rules for converting between the var-
ious value types, constitute the concrete type system of P2.

A Tuple is a vector of Values, and is the basic unit of
data transfer in P2. Dataflow elements, described below,
pass tuples between them, and table rows hold tuples.

Early on in the development of P2 we implemented PEL,
a small but powerful expression language for manipulating
Values and Tuples. PEL is a stack-based RPN-like postfix
language, and provides all the natural operations on the P2
concrete data types. PEL is not intended for human use;
rather PEL programs are generated by the planner from
OverLog. P2 includes a byte-code compiler for PEL and a
simple but fast virtual machine that executes the resulting
code.

Building PEL early in the development process dramati-
cally simplified the construction of the rest of P2. Several
dataflow elements benefit greatly from being parameterized
by one or more PEL programs, as we describe below.

P2 is currently based on a single-threaded, event-driven
loop using libasync from the SFS toolkit [24]. Each event
handler runs to completion before the next one is called.
Long-running computations must therefore be handed off to
a separate thread if new events are to be handled in a timely
manner.

3.2 Tables
Our table implementation is relatively straightforward,

and we only discuss it briefly here. Tables are queues of
tuples that implement the expiry time and size constraints
discussed in Section 2. Tables are named using unique IDs,
and consequently can be shared between different queries
and/or dataflow elements. Queries over tables can be spec-
ified by filters written in PEL, providing an expressivity
roughly equivalent to a traditional database query over a
single table. In-memory indices (implemented using stan-
dard balanced binary trees) can be attached to attributes of
tables to enable quick equality lookups. Note that the table
implementation – including associated indices – is a node-
local construct. The partitioning of tuples across nodes is
controlled by the @X location specifiers in the rules (Sec-
tion 2.3).

The current in-memory implementation serves our require-
ments for implementing the overlays discussed in this pa-
per, all of which tend to view their routing tables as “soft
state.” The event-driven, run-to-completion model provided
by libasync obviates the need for locking or transaction



support in our application, and relatively simple indices suf-
fice to meet our performance requirements. In the future,
there is clearly scope for table implementations that use sta-
ble storage for persistent data placement, or that wrap an
existing relational database implementation.

3.3 Dataflow framework
We now describe how we implement the P2 dataflow model

described in Section 2. Since P2’s architecture is influenced
by the Click [18] modular router, we first give an overview of
the Click model, and then describe how and why P2 departs
from the design of Click.

As in Click, nodes in a P2 dataflow graph can be chosen
from a set of C++ objects called elements. In database
systems these are often called operators, since they derive
from logical operators in the relational algebra. Although
they perform a similar function, P2 elements are typically
smaller and more numerous than database operators. Unlike
textbook database query plans, P2 graphs need not be trees;
indeed we make heavy use of cyclic dataflow for the kind of
recursive queries that occur frequently when querying graph
structures.

Elements have some number of input and output ports.
An arc in the dataflow graph is represented by a binding
between an output port on one element and an input port
on another. Tuples arrive at the element on input ports,
and elements emit tuples from their output ports. An input
port must be connected to an output port.

Handoff of a tuple between two elements takes one of two
forms, push or pull, determined when the elements are con-
figured into a graph. In a push handoff, the source element
invokes a virtual method on the destination, passing the tu-
ple, while in a pull handoff the destination calls the source
requesting the tuple, which is returned as the result of the
call. We return to the choice of connection types at the end
of this section.

The implementation of dataflow elements in P2 differs
from Click in significant ways, as a result of different re-
quirements.

First, the common case in a router is that a packet tra-
verses a single path through the dataflow graph. Conse-
quently Click implements copy-on-write for packets that must
be modified (for example, to implement multicast). This has
the additional benefit of very lightweight hand-offs of pack-
ets between elements – throughput is of primary concern in
Click, and inter-element handoff is simply pointer passing
through a virtual function call.

In contrast, the dataflow graphs that the P2 planner gen-
erates from OverLog specifications have many more branch-
ing points and tuples traverse more than one path. For ex-
ample, a tuple might be stored in a table but also forwarded
to another element as an event notification. At the same
time, raw forwarding performance in P2 is less of a prior-
ity. This led to two related design decisions: first, tuples
in P2 are completely immutable once they are created, and
second, tuples are reference-counted and passed between P2
elements by reference. C++ inlining and templates mini-
mize this overhead at runtime.

Second, P2 passes tuples between elements rather than
annotated packets, and elements in P2 are frequently emu-
lating database operators rather than packet routing func-
tions, which means flows frequently block and unblock. In
Click, a flow event is typically initiated by a packet arriving

over the network, queues rarely block when full (instead,
they implement an explicit drop policy as in most other
routers), and consequently Click’s design can process pack-
ets efficiently using only event-driven scheduling of dataflow,
together with “active elements,” invoked periodically by the
Click scheduler.

In contrast, not only do P2 dataflow graphs tend to branch
more, but tuples are frequently generated inside the dataflow
graph in response to the arrival of other tuples – most com-
monly during equijoin operations, which are fundamental to
OverLog’s rule constructs.

Furthermore, the consequences of dropping tuples due to
queue overflow in P2 are much more undesirable than the
dropping of a packet in a router under high load. Many
queue elements in P2 dataflow graphs therefore “block” when
full or empty, and a low-latency mechanism is required for
restarting a particular dataflow when new tuples arrive or
space becomes available.

P2 therefore implements a simple signaling facility to al-
low elements to restart flows they have previously blocked.
An extra argument to each “push” or “pull” invocation be-
tween elements specifies a callback (in effect, a continuation)
to be invoked at some later stage if and only if the dataflow
has been stalled as a result of the call.

For a “pull” transition, if the pull call returns no tuple
then there is no data available. When a tuple does become
available, the callback previously passed with the pull is in-
voked. This call will typically happen as part of a push
transition into the source element (e.g., in the case of equi-
joins) or the passage of time (e.g., in a rate limiter), and the
recipient of the callback will generally schedule a deferred
procedure call to retry the pull as soon as possible.

“Push” transitions operate slightly differently, since the
coupling of control flow and dataflow means that the desti-
nation of a push has to accept the tuple – if it did not, any
state operations that occurred previously in the dataflow
chain would have to be undone. As a result, push calls are
always assumed to succeed, and return a boolean indicat-
ing whether it is acceptable to call push again. If not, the
callback will be invoked at some later stage as with pull.

The use of callbacks in this way removes from the ele-
ment implementation itself any scheduling decisions, while
imposing a minimum of policy. P2’s transitions are not as
efficient as Click’s but are still very fast – most take about
50 machine instructions on an ia32 processor, or 75 if the
callback is invoked.

3.4 Dataflow elements
This section gives a brief overview of the suite of dataflow

elements implemented in P2.
To start with, P2 provides the relational operators found

in most database systems, as well as query processors like
PIER [16]: selection, projection, streaming relational join
operations, “group-by,” and various aggregation functions.
Many of these elements are greatly simplified by parame-
terizing them with PEL programs; for example, a “project”
element implements a superset of a purely logical database
projection operator by running a PEL program on each in-
coming tuple to generate an outgoing tuple.

Since one of our motivations in designing P2 was to in-
vestigate the applicability of the dataflow element model for
distributed computing, we have tried to push as much func-
tionality of the system as possible into dataflow elements.



One example of this is in P2’s networking stack. Sys-
tems like PIER [16] abstract details of transport protocols,
message formats, marshaling, etc., away from the dataflow
framework, and operators only deal with fully unmarshaled
tuples. In contrast, P2 explicitly uses the dataflow model to
chain together separate elements responsible for socket han-
dling, packet scheduling, congestion control, reliable trans-
mission, data serialization, and dispatch.

While P2’s networking subsystem exists entirely as a set of
dataflow elements, at the OverLog level it is abstracted be-
hind the @ syntax for location specifiers. A fuller exploration
of P2’s networking subsystem and its high-level specification
is ongoing and is beyond the scope of this paper.

A variety of elements form a bridge between the dataflow
graph and persistent state in the form of stored tables. P2
has elements that store incoming tuples in tables, lookup ele-
ments that can iteratively emit all tuples in a table matching
a search filter expressed in PEL, and aggregation elements
that maintain an up-to-date aggregate (such as max, min,
count, etc.) on a table and emit it whenever it changes. Ta-
bles are frequently shared between elements, though some
elements hold private tables. For example, the element re-
sponsible for eliminating duplicate results in a dataflow uses
a table to keep track of what it has seen so far.

Finally, like Click, P2 includes a collection of general-
purpose “glue” elements, such as a queue, a multiplexer,
a round-robin scheduler (which, when pulled, pulls tuples
from its inputs in order), etc.

It is quite simple to add new elements to the collection
provided by P2, but at present the planner is not yet de-
signed to be easily extensible. To use a new element class,
one must either “hand-wire” dataflow diagrams as in Click [18]
and PIER [16], or modify the planner to translate OverLog
into dataflows that use the new element.

3.5 OverLog Translation
The OverLog parser in our implementation is fairly con-

ventional, and implemented using flex and bison. It con-
verts OverLog files into a canonical form and produces lists
of events, rules and table definitions. The heavy lifting of
generating the dataflow graphs is performed by the planner,
which generates a directed graph of dataflow elements from
the query parse tree in a variety of phases. We describe the
general process of translating an OverLog description here,
and later in Section 4 we explore a concrete example, that
of Chord.

First, all the required tables and indices are created. We
create an index for every table’s primary key, and secondary
indices for table keys participating in equijoins. Each rule
head is associated with either a table or a data stream con-
sisting of tuples that pass through the dataflow engine with-
out being stored.

Next, for each rule the planner identifies matching vari-
ables across rule terms and creates a sequence of elements
implementing relational equijoins. As noted in Section 2,
our current version of OverLog only supports equijoins of a
stream and a table. Since tables are implemented as main-
memory data structures with local indices over them, tuples
from the stream are pushed into an equijoin element, and
all matches in the table are found via an index lookup.

After the translation of the equijoins in a rule, the plan-
ner creates elements for any selection filters. Each filter is
compiled into a PEL expression, and a selection element

evaluates the expression over each tuple, dropping those for
which the result is false. In some cases, we can optimize
the dataflow to push a selection upstream of an equijoin, to
limit the state and work in the equijoin.

Aggregate operations like min or count are translated af-
ter equijoins and selections, since they usually operate on
one of the fields in the rule head. Aggregate elements gener-
ally hold internal state, and when a new tuple arrives either
compute the aggregate incrementally or run a PEL program
to recalculate the new aggregate from scratch.

The final part of translating each rule is the addition of a
“projection” element that constructs a tuple matching the
head of the rule, by using a PEL program to select and
reorder fields in the incoming tuple.

In addition to creating the relational operations described
above, the planner also constructs the other areas of the
dataflow graph: the networking stack, including multiplex-
ing and demultiplexing tuples, marshaling, congestion con-
trol, etc. As with Click, it also inserts explicit queue el-
ements where there is a push/pull mismatch between two
elements that need to be connected.

Certain rule terms in OverLog, such as periodic and
f now introduced in Section 2.3, refer to “built in” element
classes, which the planner also knows about and directly
maps to dataflow elements.

As an aside, we have found it useful to implement a log-
ging facility using the same dataflow framework. The plan-
ner can be configured (through additional OverLog direc-
tives) to connect a “logging” port on particular elements to
a dataflow chain that sends such tuples over the network,
providing a flexible way to obtain logging and debugging
data at runtime.

The planner has the potential to implement a number of
query optimizations in the database literature such as join
reordering [31], Magic Sets [2,21], and multi-query optimiza-
tion [32]; however currently these optimizations are achieved
by rewriting queries at the input by hand.

4. A BIGGER EXAMPLE: CHORD
We now present a more involved P2 example: a full im-

plementation of the Chord distributed lookup service [34].
We show that the OverLog specification of a complex over-
lay such as Chord can be intuitive, concise, and reusable for
other overlays.

Chord is essentially a mechanism for maintaining a ring.
Nodes join by contacting a landmark node within the ring
that they already know. In OverLog, newcomer ni has a
“materialized” fact in a table database pointing to its land-
mark node li (or to the null node otherwise):

landmark@ni(ni,li).

as well as a fact about its own address ni and identifier n:

node@ni(ni,n).

To enter the ring, ni generates a join tuple at node ni,
whose arrival triggers the following rules:

C1 joinEvent@NI(NI,E) :- join@NI(NI,E).
C2 joinReq@LI(LI,N,NI,E) :- joinEvent@NI(NI,E),

node@NI(NI,N), landmark@NI(NI,LI), LI != "-".
C3 succ@NI(NI,N,NI) :- landmark@NI(NI,LI),

joinEvent@NI(NI,_), node@NI(NI,N), LI == "-".
C4 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).
C5 succ@NI(NI,S,SI) :- join@NI(NI,E),

lookupResults@NI(NI,_,S,SI,E).



����
������	
��

�

����	
�

����
������	
��


��������	
�

�������������
�

������
������
����

�������
������ ��

�������

�������

�������

�������������
�

����
����!�����"���	
��



�����	
�

�������������
�

����
����!�����"���	
��



�����	
�

����

"���#
�$���%�&'

�
��
�
�
�
�
���
�
��

�


��(����)��*����������

���%�



�
�(
�
��
���

�
�
��
!
�
�
�
�
�
"
��
�

+�
�
,
�
�

�
�
��
�
�
��

��������

��
�
�
�
�

-
�
#

�
��
�
�
�
�
���
�
��
�

�
*
�
�
�
�

"
�
�

+��,��

�
�
�
�

 
�
�
�
�
 
�
�
��

"
�
�
�
#

���
�
��
�

�
%
�
�
'

.,,����/"0
���+��,��

"1
�2324��3�����
��'

.,,����/3�0
���+��,��

"

�2324��3�����
��'

Figure 2: Part of the dataflow that P2 generates from the Chord OverLog specification. Not shown are
the elements responsible for stabilization and maintenance of fingers. Following Click conventions, ports are
either triangular (for input) or rectangular (for output), black (for push) or white (for pull), and doubly lined
for agnostic. The “Network In” and “Network Out” elements represent a longer sequence of network-related
elements that we elide here for simplicity.

Rule C1 starts a join event upon arrival of the join tuple. In
rule C2, if the landmark node is known (i.e., non-null), then
a joinReq (join request) tuple is sent to that landmark node;
otherwise C3 sets the node to point to itself as a successor,
forming an overlay by itself and awaiting others to join in.
When the landmark receives a joinReq, rule C4 initiates a
lookup for the successor of the joining node’s identifier N.
C5 defines the joining node’s successor to be the result of
the lookup. Successors and predecessors are materialized in
tables, and pending join events are also stored ephemerally.

A Chord node also holds a finger table, pointing at peers
whose ID distances exponentially increase from itself:

F1 fFix@NI(NI,E,I) :- periodic@NI(NI,E,tFix),
range(I,0,fNum-1), f_coinFlip(fFixProb).

F2 lookup@NI(NI,K,NI,E) :- fFix@NI(NI,E,I),
node(NI,N), K:=N+1<<I.

F3 finger@NI(NI,I,B,BI) :- fFix@NI(NI,E,I),
lookupResults@NI(NI,K,B,BI,E), K in (N+1<<I,N),
node@NI(NI,N).

At time intervals of tFix seconds, a “fix-finger” event is
triggered for the I-th finger, in rule F1, where I is in the
range of valid finger entry indices. F1 chooses whether to
fix each finger entry according to a probability distribution;
it could, instead, be made to pick indices in order (by re-
placing f coinFlip with a counter equated to I) or can be
made to pick all indices, by removing f coinFlip altogether.
F2 issues a Chord lookup for the identifier that is 2I away
from the local node’s identifier. If a successor of that iden-

tifier is found, F3 places that successor into all appropriate
finger entries: those whose target identifier n + 2I also lie
between the local node’s identifier n and that successor on
the identifier ring.

For clarity of exposition, we have kept these finger-fixing
rules rather näıve and ignore possible optimizations that
speed up the process. In Appendix B we present the ac-
tual optimized finger-fixing rules F1-9 that we use for our
implementation of Chord.

Lookups for key K seek the node whose identifier is the
immediate successor on the ring of K:

L1 lookupResults@R(R,K,S,SI,E) :- node@NI(NI,N),
lookup@NI(NI,K,R,E), bestSucc@NI(NI,S,SI), K in
(N,S].

L2 bestLookupDist@NI(NI,K,R,E,min<D>) :-
node@NI(NI,N), lookup@NI(NI,K,R,E),
finger@NI(NI,_,B,_), D:=K - B - 1, B in (N,K).

L3 lookup@BI(min<BI>,K,R,E) :- node@NI(NI,N),
bestLookupDist@NI(NI,K,R,E,D),
finger@NI(NI,_,B,BI), D == K - B - 1, B in (N,K).

Rule L1 returns a successful lookup result if the received
lookup seeks a key K found between the receiving node’s
identifier and that of its best successor (we come back to
the best successor below). In parallel, rule L2 finds the min-
imum distance from the local node’s fingers to K, for every
finger node BI whose identifier B lies between the local node’s
identifier N and K. The first address of a finger with that
minimum distance to the key K is chosen in L3 to receive the



forwarded lookup. The condition B in (N,K) ensures that
either L1 or L3 produces a result, not both.

In a Chord configuration such as MACEDON’s where only
a single successor is maintained, a “best successor” can be
defined simply as:

N1 bestSucc@NI(NI,S,SI) :- succ@NI(NI,S,SI).

However, replacing this rule with the following two allows
our Chord specification the maintenance of more successors
for resilience of the overlay (a typical value is log n, where
n is the estimated size of the network):

N1 bestSuccDist@NI(NI,min<D>) :- node@NI(NI,N),
succ@NI(NI,S,_), D := S - N - 1.

N2 bestSucc@NI(NI,S,SI) :- succ@NI(NI,S,SI),
bestSuccDist@NI(NI,D), node@NI(NI,N),
D == S - N - 1.

N1 and N2 define as “best” the successor among those stored
in the succ stored table whose identifier distance from the
current node’s identifier is the lowest. Candidate successors
(and predecessor) are supplied during the stabilization phase
of the Chord overlay maintenance. In OverLog, one of the
several Chord stabilization activities looks as follows:

SB5 sendSuccessors@SI(SI,NI) :- stabilize@NI(NI,_),
succ@NI(NI,_,SI).

SB6 succ@PI(PI,S,SI) :- sendSuccessors@NI(NI,PI),
succ@NI(NI,S,SI).

In SB5, a node asks all of its successors to send it their own
successors, whenever the stabilize event is issued. SB6 in-
stalls at the original node the returned successor. Successor
selection, not shown here, only keeps those successors clos-
est to a node in the table, evicting the remaining nodes.
Due to space constraints, we limit ourselves here to this
15-rule OverLog specification of a simplistic but functional
version of the Chord overlay. However, a fuller specification
including all Chord stabilization activities, explicit succes-
sor evictions, and connectivity monitoring for fault tolerance
requires no more than 47 OverLog rules, which can be in-
put to the P2 parser directly, producing an automatically
generated running Chord implementation. This version is
available in Appendix B.

Figure 2 illustrates the generated dataflow that captures
the lookup rules L1, L2, and L3, following the notational
conventions of Click. The dataflow is made up of three
parts. First, the three rules are translated into the shaded
dataflows in the middle of the diagram. Below them lie the
simple dataflows that store into tables any received store-
able tuples node, bestSucc and finger.

Input to these flows comes from a large demultiplexer on
the bottom left of the figure, which classifies its push input
according to its tuple name, and forwards it to the appro-
priate rule. Note that lookup tuples are duplicated by the
“Dup” element, since they appear on the right hand sides
of both L1 and L2. On the other side of the graph, output
tuples are merged by the round-robin pull scheduler into
a single stream, which is then demultiplexed according to
tuples’ network destination (the “@” notation of OverLog).
Remote tuples are sent via an output queue to the network
stack to be packetized, marshaled, and buffered by our UDP
transport, while tuples destined for local consumption are
wrapped around to the left of the figure and queued along
with other input tuples arriving over the network.

4.1 Discussion: OverLog
The above 15 rules are sufficient to specify a Chord overlay

that is reasonably faithful to the original Chord proposal.
Having now presented versions of both Narada meshes and
Chord, it is reasonable to ask how good a fit the OverLog
language is for overlay specification.

OverLog succeeds in its goal of conciseness. It can cap-
ture a complex overlay like Chord remarkably succinctly, in
a form that can be automatically translated to a dataflow
framework. Moreover, this process is amenable to a num-
ber of optimization techniques and presents several oppor-
tunities for sharing state, communication, and computation
across multiple overlay specifications.

On the other hand, while succinct, OverLog has a non-
trivial learning curve for programmers used to imperative
languages like Java and C. One example issue is the trick-
iness of coding up the equivalent of if-then-else logic. For
example, consider the lookup rules above that treat either
a locally-satisfied lookup (L1) or forwarding (L2 and L3).
The order of evaluating the three rules is unspecified; the
two cases are essentially tested “in parallel.” Hence it is
important in specifying the bodies of these rules that only
one or the other case of lookup logic can be satisfied under
any circumstances. This has minimal performance impact
since the common rule components can easily be compiled
to share a dataflow subgraph – indeed, it may have signifi-
cant performance benefits in a multiprocessor environment,
an issue we plan to investigate in the future. That said, the
programming style is unusual. Some syntactic sugar would
help with this issue, but it highlights the kinds of unconven-
tional thinking that arise for the declarative programmer.

Similarly, we are sensitive to the fact that the syntax of
Datalog – and hence OverLog – is an acquired taste. Our
Chord specification is about as long as the pseudocode in the
original paper, but harder for most humans to read. Obvi-
ously the ability of P2 to execute our specification gives it
a qualitative advantage over the Chord pseudocode, but a
different syntax might make it more readable to systems
programmers. The success of SQL is suggestive here – it
is easier for most people to read simple SQL queries than
their Datalog equivalents. However, SQL’s support for re-
cursive rules is awkward, and recursion is key to networking
protocols because of their reliance on graph transitivity –
e.g., constructing multi-hop paths as with Chord lookups
out of single-hop links. Some middle-ground syntax may be
appropriate for our purposes.

More fundamentally, it is less clear that OverLog achieves
the goals set out in Section 2 for logical structure of the
specification. Our Chord rules have a somewhat operational
flavor: rather than declaratively stating the invariants of
the Chord data structure – a ring with fingers at increasing
powers of two – our specification has rules for the activities

of “joining” the overlay and “fixing fingers.” In this respect,
of course, it closely follows the Chord pseudocode, and the
pseudocode itself is operational. It could be argued that our
Chord description is still reasonably declarative in nature,
but the key observation is that OverLog neither encourages
nor requires structural specification of the overlay, and this
is a consequence of the language’s generality.

Based on our experience so far, we are designing a re-
placement for OverLog that has a more readable syntax,
and frames the overlay design process more concretely as
two separate specifications: structural invariants, and the
dynamics of maintenance rules.



 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0  2  4  6  8  10  12  14  16

Fr
eq

ue
nc

y

Hop Count

(i)

100
300
500

 0

 50

 100

 150

 200

 250

 300

 350

 100  200  300  400  500

M
ai

nt
en

an
ce

 B
W

 (B
yt

es
/s

)

Population Size

(ii)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
D

F

Latency (s)

(iii)

100
300
500

Figure 3: Performance of static Chord networks of different sizes. (i) shows hop-count distribution for
lookups, (ii) shows maintenance traffic in the absence of churn for different population sizes; and (iii) shows
measured cumulative distribution of the latency over all lookups.

5. EVALUATION
In this section we present performance results from P2.

We have two goals in this evaluation. First, we wish to
validate that our simple declarative specifications of complex
overlays result in the expected network properties, including
topological properties and messaging overheads. Second, we
examine our raw performance with an eye toward feasibility:
we do not expect our per-node performance to be as good
as a highly-tuned hand-coded implementation, but we would
like it to be acceptable.

In our experiments, we focus on the full Chord DHT spec-
ification in Appendix B. We chose to present Chord results
largely because it is a good stress test of our architecture,
being relatively complex compared to other examples like
gossip and end-system multicast. Chord also has the advan-
tage of being well-studied.

We deployed P2 on the Emulab testbed [38], with in-
stances of P2 spread over a network of 100 machines. Ex-
cept where noted, the network is a GT-ITM transit-stub
topology with 10 transit domains and 100 stubs (one per
physical node) emulated using DummyNet on 10 additional
machines. The RTT between two transit nodes is 50ms,
while the RTT between two nodes in the same domain is
2ms. The link capacity is set to 100Mbps and 10Mbps for
domain and stub nodes respectively.

5.1 Feasibility Experiments
We begin with the high-level characteristics of the Chord

overlay, to validate that the P2 implementation exhibits the
expected properties. We generate a uniform workload of
DHT “lookup” requests to a static membership of nodes
in the overlay, with no nodes joining or leaving. This is
somewhat unrealistic but it allows us to observe the static
properties of Chord.

Figure 3(i) shows the hop-count distribution for our work-
load. As expected, the hop-count averages log N/2, where
N is the size of the network. Figure 3(ii) shows the main-
tenance traffic for the network; this is the bandwidth used
by the nodes while idling. As can be seen, our overlay is
configured to use relatively low bandwidth – networks aim-
ing at high consistency and low latency typically use about
1 KByte/s per node [29].

Figure 3(iii) shows the raw latency performance of our
implementation. While the latency increases with network
size (as might be expected), on a 500-node static network

96% of all lookups complete in 6 seconds or less. Our la-
tency numbers are within the same order of magnitude as
the published numbers [34] of the MIT Chord deployment.

5.2 Handling Churn
In our second round of experiments, we focus on the per-

formance of our Chord implementation under varying de-
grees of membership churn. Again, our goal is to validate
that our compact specification of Chord faithfully captures
its salient properties. We bring up a 400 node Chord net-
work, and then churn the network for 20 minutes, following
the methodology in [29].

Figure 4 shows our results. The first graph (i) measures
the “maintenance traffic” for the network, that is, all traffic
not associated with lookups and responses. This includes
traffic for checking the status of nodes in the network, and
recovery traffic as the nodes come and go. As in the static
case, our maintenance traffic is fairly respectable.

Figure 4(ii) examines consistency of lookups (following
the experimental setup of Bamboo [29]), and Figure 4(iii)
considers raw latency of external (i.e., non-maintenance-
related) lookups under churn. P2 Chord does respectably
under low churn (session times of 64 minutes and above),
generating at least 97% consistent lookups, most of which
complete within 4 seconds. On the other hand, under high
churn (session times of 16 minutes and less), P2 Chord does
not perform well, producing only 42% and 84% consistent
lookups with high latencies.

Ultimately, an evaluation of a system like P2 rests on an
assessment of the ideal tradeoff between code size and per-
formance. Our current Chord overlay written in OverLog
performs acceptably, but clearly does not attain the pub-
lished figures for the MIT implementation (at least 99.9%
consistency for a session time of 47 minutes, and mean lookup
latency of less than 5 seconds under high churn).

We conjecture that a carefully crafted and complete MACE-
DON implementation of Chord might outperform our 47
OverLog rules, but it would be more than an order of mag-
nitude more complex. We note that the 320-line version
supplied with the distribution4 is not sufficiently complete
to evaluate under churn or compare meaningfully to MIT
Chord or our implementation over P2; for example, MACE-
DON’s Chord implements 32-bit node identifiers instead of

4See chord.mac in MACEDON release 1.2.1-20050531, from
http://macedon.ucsd.edu/release/.



 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 8  16  32  64  128

M
ai

nt
en

an
ce

 B
W

 (B
yt

es
/s

)

Session Time (min)

(i)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F

Consistent fraction

(ii)

C
on

si
st

en
cy

 th
re

sh
ol

d8 min
16 min
32 min
64 min

128 min

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

C
D

F

Latency (s)

(iii)

8 min
16 min
32 min
64 min

128 min

Figure 4: Performance of a 400-node Chord overlay under varying degrees of churn (8, 16, 32, 64, and 128
minute session times). (i) shows maintenance traffic over time during our experiment; (ii) shows consistency
of lookups over time, and (iii) shows lookup latency under churn. Each is a cumulative distribution over all
lookups.

the traditional 160 bits, and provides only a single successor
for each node, making it highly likely that the ring becomes
partitioned.

6. RELATED WORK
The design of P2 can be viewed as a synthesis of ideas from

database systems, particularly recent work in distributed
and continuous query processing, with logic languages, and
the result applied to overlay networks. Throughout this pa-
per we have highlighted the database systems techniques we
have employed in P2; in this section we situate OverLog and
P2’s approach in the context of existing work on generating
overlays from protocol descriptions.

There is a long tradition of automating the generation of
protocol implementations from specifications. Much of the
early work focuses on expressing OSI protocols in a finite
state machine language (Esterel, Estelle, LOTOS, SDL [5,
35], etc.), and compiling them into CPU-efficient implemen-
tations (e.g., [9, 37]). The focus of this body of work is on
supporting formal protocol specification (e.g., for verifica-
tion), ideally without sacrificing CPU performance.

More recently, there has been increased emphasis on read-
ability and code reuse for network protocol specification lan-
guages. This includes domain-specific object-oriented lan-
guages like Morpheus [1] and Prolac [17], and functional
approaches like the Fox project’s TCP implementation [6].

It is typical to think of implementing network protocols
in terms of state machines, whose transitions are triggered
by timer events or the arrival of messages (either over the
network or from a local client application). This is the ap-
proach taken in essentially all of the work cited above. Net-
work protocol stacks are typically implemented in such a
manner even when hand-coded, and this approach lends it-
self to object-oriented programming languages, where finite
state machines (FSMs) are encapsulated in software objects.

Overlays built using an FSM approach are generally event-
driven from a Unix “select” loop or equivalent OS function-
ality, and can be highly efficient in terms of resource usage
(CPU, etc.) on a node. A recent example of this approach
is MACEDON [30], which adopts the FSM approach by en-
capsulating the event loop, timers, finite state machines, and
message formats, and compiling the resulting syntactic ele-
ments to C++. Because the output of the MACEDON com-
piler closely mirrors the structure of the code that a skilled

programmer would produce for an overlay, we believe that
the performance of a well-tuned MACEDON network could
approach a custom implementation with less code than C++
would require, though the current MACEDON overlay suite
does not approach this.

An interesting alternative to state machines is RTAG [3],
where the protocol is expressed as a grammar. Incoming
messages and events are modeled as tokens causing reduc-
tions in grammar rules, and the state of a connection is held
on the parser stack rather than encapsulated in an FSM.

The i3 [33] infrastructure offers a rendezvous-based ab-
straction that provides significant flexibility in specifying
communication structures and patterns. i3 is similar in fun-
damental ways to the relational abstraction used in P2– the
decoupling of senders and receivers via keys in i3 is similar to
the keys and foreign keys of relational models, and the same
flexible indirections are possible in both. However, i3 is tar-
geted as a fundamental communication abstraction, whereas
P2 is a more functional but arguably more special-purpose
system.

Although Click’s configuration language unambiguously
specifies the dataflow elements and graph to be generated,
the idea of using a high-level logic language for describ-
ing network protocols seems relatively new. Loo et al. [21]
recently proposed performing IP routing using declarative
queries, also written in a variant of Datalog. Our imple-
mentation of P2 is focused on overlay construction rather
than IP routing, but as we discussed in Section 3.5, some
of the optimization techniques suggested in [21] from the
deductive database literature are applicable in P2.

As in [21], by representing the desired network properties
in OverLog at a higher level of abstraction than a dataflow
graph, protocol grammar, or FSM description, P2 achieves
very concise descriptions that can nevertheless generate ex-
ecutable dataflow graphs to maintain the overlay.

In addition to conciseness, as section 2.2 discusses, a top-
down approach like OverLog offers more opportunities for
compile- and run-time optimization of overlay descriptions,
and OverLog’s decomposition of state into tables and flows
provides more natural opportunities for code reuse and run-
time sharing.

7. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the feasibility of ex-



pressing overlay networks in a declarative language, and
then directly executing the resulting specification to con-
struct and maintain the overlay network.

The approach looks promising: overlays can be specified
extremely concisely, yet with enough detail to be executed
with performance and robustness acceptable for many ap-
plications. Furthermore, OverLog makes it easy to alter
overlay routing algorithms without reimplementing complex
state machines.

Our current system successfully compiles and runs speci-
fications for all overlays discussed in this paper. Our plan-
ner does not currently handle directly some of the more in-
volved constructs of the OverLog language, such as multi-
node rule bodies and the logic of negation; slightly wordier
rule rewrites allow us to circumvent these limitations, as the
next design iteration of the planner takes shape. The ap-
pendices contain overlay specifications that are executable
by our system as of July 2005.

We continue our efforts in several directions.
Breadth: In the short term, we are working on coding

a variety of other overlay networks in OverLog: epidemic-
based networks, link-state- and path-vector-based overlays,
and further DHT schemes. This has the benefit of exercising
the P2 planner and ensuring that OverLog is sufficiently
expressive to cover the design space, but will also enable us
to start to identify common constructs that can be factored
out of particular overlay specifications and shared.

Sharing: Sharing is intriguing not only in terms of code
reuse, but also for the possibility that multiple overlays can
execute simultaneously, sharing state, communication, and
computation by sharing dataflow subgraphs. Sharing be-
tween multiple overlays can allow a single application to
achieve different performance goals for different tasks, by ef-
ficiently deploying multiple overlay variants simultaneously.
For example, a peer-to-peer content distribution network
that combines search with parallel download might choose
to construct two different overlays for these very different
tasks. These overlays might fruitfully share rules for liveness
checking, latency and bandwidth estimation, etc. Runtime
sharing across overlays can also allow separately deployed
systems to co-exist efficiently within a shared network infras-
tructure; this might become important if overlays emerge as
a prevalent usage model for the Internet.

The näıve approach for sharing is to do so explicitly at the
OverLog level, by sharing rule specifications. However, we
hope to apply multiquery optimization techniques from the
database literature to identify further sharing opportunities
automatically, within the P2 planner. This enhancement
to the planner is tandem with applying some of the single
query optimization techniques we mentioned in section 3.5.

Transport Protocols: While bringing different overlays
to P2, we have rediscovered the multifaceted nature of over-
lay requirements on network and transport facilities. Differ-
ent applications require different combinations of reliable,
in-order, congestion-, and flow-controlled transports, and
different levels of control and inspection for each. For exam-
ple, going from applying TCP-friendly congestion control on
a per-peer basis (as in Bamboo [29]) to having a single con-
gestion window for the whole node (as in MIT Chord [20]) is
a matter of design requirements that may not be sufficiently
addressed by a monolithic transport solution. P2’s dataflow
architecture makes such choices as simple as rearranging the
bindings between a few common elements.

Similarly, making the transport “layer” a graph of dataflow
elements means that different bits of functionality can be
broken up and spread out throughout the application logic.
For instance, one can push transmission retries to happen
upstream of route selection, to allow nodes route flexibil-
ity when the next hop is not the ultimate destination for a
transmission. Or, an application can push a transmit buffer
upstream, near where tuples are first produced, reducing
the amount of queuing that tuples encounter outside of P2,
which minimizes the time during which they are unavailable
for computation. Instead, tuples are available for compu-
tation as soon as possible after they arrive on a node, get-
ting pulled out of a table, routed, marshaled, and sent only
when the corresponding socket can send data, the conges-
tion window has room, and the outgoing packet scheduler
has selected the tuple’s dataflow.

On-line distributed debugging: A unique opportunity
offered by our system is its multi-resolution programming
paradigm, allowing the programmer to specify a system as a
set of logical rules, which are translated to a dataflow graph
and then executed at runtime. By exposing the execution
history of the system – in terms of rules that fired at a first
level, or in terms of actions taken by each dataflow element
at a second level – P2 is astonishingly capable to provide
introspection support for on-line overlay debugging. In fact,
since execution history at any resolution can be exported
as a set of relational tables, much as everything else with
P2, debugging itself becomes an exercise in writing OverLog
rules for high-level invariants or for execution history min-
ing. We are actively building up the infrastructure within
P2 to evaluate the exciting debugging possibilities that such
support would enable.

Security: It is a natural, short step (though perhaps a
precarious one) to move from system introspection to secu-
rity assessment. P2’s runtime composition of small, simple
dataflow elements along with flat state tables implies that
we might be able to express security invariants for each el-
ement in isolation, which would ideally compose into global
security properties for the whole system. We are exploring
the application of our earlier work on preserving the his-

toric integrity of a distributed system [22] to the problem of
making the execution of a complex overlay tamper-evident.

Language: The version of OverLog that we describe in
this work is a strawman vehicle, expressive enough to aid
us in our initial exploration of the design space. We have
produced a preliminary formal semantics for OverLog, to
enable reasoning about program properties (safety, termina-
tion, etc.). We are also exploring the extensions in the lan-
guage that would permit a high-level specification of sharing,
transport, debugging, and security logic, as described above.

We expect to revisit the choice of Datalog as a basis for
OverLog. As we have discussed, Datalog’s generality makes
it an ideal choice as a “first cut” declarative language for
overlays. How OverLog can be improved by tailoring its
syntax and semantics more specifically towards overlay de-
scription is an interesting research direction.

8. ACKNOWLEDGMENTS
We would like to thank our shepherd Dahlia Malkhi, Brent

Chun for initial encouragement and help using his distributed
automated testing tool for our evaluation, David Gay for
his significant contributions to OverLog’s operational se-
mantics, and Tristan Koo for testing code and performance



microbenchmarks. We are also indebted to Brent, David,
Ryan Huebsch, Kevin Lai, Raghu Ramakrishnan, Sylvia
Ratnasamy, and Sean Rhea, for their thoughtful comments
on drafts of this paper. Finally, our paper has benefitted sig-
nificantly from the detailed feedback offered by the anony-
mous reviewers.

9. REFERENCES
[1] M. B. Abbott and L. L. Peterson. A language-based

approach to protocol implementation. IEEE/ACM
Transactions on Networking, 1(1), Feb. 1993.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.

[3] D. P. Anderson. Automated protocol implementation with
RTAG. IEEE Trans. Softw. Eng., 14(3):291–300, 1988.

[4] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
M. Cherniack, C. Convey, E. Galvez, J. Salz,
M. Stonebraker, N. Tatbul, R. Tibbetts, and S. Zdonik.
Retrospective on Aurora. VLDB Journal, 13(4), Dec. 2004.

[5] G. Berry. The Foundations of Esterel, pages 425–454. MIT
Press, 1998.

[6] E. Biagioni. A structured TCP in Standard ML. In Proc.
SIGCOMM, 1994.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In CIDR, 2003.

[8] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proc. of ACM SIGMETRICS, pages 1–12,
2000.

[9] W. Dabbous, S. W. O’Malley, and C. Castelluccia.
Generating efficient protocol code from an abstract
specification. In Proc. SIGCOMM, pages 60–72, 1996.

[10] F. Dabek, J. Li, E. Sit, F. Kaashoek, R. Morris, and
C. Blake. Designing a DHT for low latency and high
throughput. In Proc. NSDI, Month 2004.

[11] S. Deering and D. R. Cheriton. Multicast routing in
datagram internetworks and extended LANs. ACM
Transactions on Computer Systems, 8(2):85–111, May
1990.

[12] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens,
K. B. Kumar, and M. Muralikrishna. Gamma - a high
performance dataflow database machine. In VLDB, pages
228–237, 1986.

[13] M. Fecko, M. Uyar, P. Amer, A. Sethi, T. Dzik, R. Menell,
and M. McMahon. A success story of formal description
techniques: Estelle specification and test generation for
MIL-STD 188-220. Computer Communications (Special
Edition on FDTs in Practice), 23, 2000.

[14] G. Graefe. Encapsulation of parallelism in the Volcano
query processing system. In Proc. of the 1990 ACM
SIGMOD International Conference on Management of
Data, Atlantic City, NJ, May 23-25, 1990, pages 102–111.
ACM Press, 1990.

[15] M. Handley, A. Ghosh, P. Radoslavov, O. Hodson, and
E. Kohler. Designing extensible IP router software. In Proc.
NSDI, May 2005.

[16] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo,
P. Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.
Yumerefendi. The architecture of PIER: an Internet-scale
query processor. In CIDR, pages 28–43, 2005.

[17] E. Kohler, M. F. Kaashoek, and D. R. Montgomery. A
readable TCP in the Prolac protocol language. In Proc.
SIGCOMM, 1999.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, 2000.

[19] F. T. Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann, San Mateo, CA, 1992.

[20] J. Li, J. Stribling, T. Gil, R. Morris, and F. Kaashoek.
Comparing the performance of distributed hash tables
under churn. In Proc. IPTPS, 2004.

[21] B. T. Loo, J. M. Hellerstein, and I. Stoica. Customizable
routing with declarative queries. In Third Workshop on
Hot Topics in Networks (HotNets-III), Nov. 2004.

[22] P. Maniatis. Historic Integrity in Distributed Systems. PhD
thesis, Computer Science Department, Stanford University,
Stanford, CA, USA, Aug. 2003.

[23] G. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed hashing in a small world. In Proc. USITS, 2003.

[24] D. Mazières. A toolkit for user-level file systems. In Proc.
of the 2001 USENIX Technical Conference, June 2001.

[25] D. Mosberger and L. L. Peterson. Making paths explicit in
the Scout operating system. In Proc. OSDI, pages 153–167.
ACM Press, 1996.

[26] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation, and resource
management in a data stream management system. In
Proc. CIDR, 2003.

[27] G. M. Papadopoulos and D. E. Culler. Monsoon: An
explicit token store architecture. In Proc. ISCA, May 1990.

[28] V. Raman, A. Deshpande, and J. M. Hellerstein. Using
state modules for adaptive query processing. In Proc.
ICDE, 2003.

[29] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz.
Handling Churn in a DHT. In Proc. of the 2004 USENIX
Technical Conference, Boston, MA, USA, June 2004.

[30] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and
A. Vahdat. MACEDON: Methodology for Automatically
Creating, Evaluating, and Designing Overlay Networks”,.
In Proc. NSDI, March 2004.

[31] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD Conference,
pages 23–34, 1979.

[32] T. Sellis. Multiple Query Optimization. ACM Transactions
on Database Systems, 13(1):23–52, Mar. 1988.

[33] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana.
Internet indirection infrastructure. IEEE/ACM
Transactions on Networking, (2), Apr. 2004.

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a
scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[35] K. J. Turner, editor. Using formal description techniques –
An Introduction to Estelle, LOTOS and SDL. Wiley, 1993.

[36] A. H. Veen. Dataflow machine architecture. ACM
Computing Surveys, 18(4), Dec. 1986.

[37] S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic
implementation of protocols using an Estelle-C compiler.
IEEE Transactions on Software Engineering, 14(3), Mar.
1988.

[38] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed
systems and networks. In Proc. OSDI 2002, Boston, MA,
Dec. 2002.



APPENDIX
A. NARADA IN OverLog

Here we provide an executable OverLog implementation
of Narada’s mesh maintenance algorithms. Current limita-
tions of the P2 parser and planner require slightly wordier
syntax for some of our constructs. Specifically, handling of
negation is still incomplete, requiring that we rewrite some
rules to eliminate negation. Furthermore, our planner cur-
rently handles rules with collocated terms only. The Over-
Log specification below is directly parsed and executed by
our current codebase.

/** Base tables */

materialize(member, infinity, infinity, keys(2)).
materialize(sequence, infinity, 1, keys(2)).
materialize(neighbor, infinity, infinity, keys(2)).

/* Environment table containing configuration
values */

materialize(env, infinity, infinity, keys(2,3)).

/* Setup of configuration values */

E0 neighbor@X(X,Y) :- periodic@X(X,E,0,1), env@X(X,
H, Y), H == "neighbor".

/** Start with sequence number 0 */

S0 sequence@X(X, Sequence) :- periodic@X(X, E, 0,
1), Sequence := 0.

/** Periodically start a refresh */

R1 refreshEvent@X(X) :- periodic@X(X, E, 3).

/** Increment my own sequence number */

R2 refreshSequence@X(X, NewSequence) :-
refreshEvent@X(X), sequence@X(X, Sequence),
NewSequence := Sequence + 1.

/** Save my incremented sequence */

R3 sequence@X(X, NewSequence) :-
refreshSequence@X(X, NewSequence).

/** Send a refresh to all neighbors with my current
membership */

R4 refresh@Y(Y, X, NewSequence, Address, ASequence,
ALive) :- refreshSequence@X(X, NewSequence),
member@X(X, Address, ASequence, Time, ALive),
neighbor@X(X, Y).

/** How many member entries that match the member
in a refresh message (but not myself) do I have? */

R5 membersFound@X(X, Address, ASeq, ALive,
count<*>) :- refresh@X(X, Y, YSeq, Address, ASeq,
ALive), member@X(X, Address, MySeq, MyTime,
MyLive), X != Address.

/** If I have none, just store what I got */

R6 member@X(X, Address, ASequence, T, ALive) :-
membersFound@X(X, Address, ASequence, ALive, C),
C == 0, T := f_now().

/** If I have some, just update with the
information I received if it has a higher
sequence number. */

R7 member@X(X, Address, ASequence, T, ALive) :-
membersFound@X(X, Address, ASequence, ALive, C),
C > 0, T := f_now(), member@X(X, Address,
MySequence, MyT, MyLive), MySequence < ASequence.

/** Update my neighbor’s member entry */

R8 member@X(X, Y, YSeq, T, YLive) :- refresh@X(X,
Y, YSeq, A, AS, AL), T := f_now(), YLive := 1.

/** Add anyone from whom I receive a refresh
message to my neighbors */

N1 neighbor@X(X, Y) :- refresh@X(X, Y,
YS, A, AS, L).

/** Probing of neighbor liveness */

L1 neighborProbe@X(X) :- periodic@X(X, E, 1).
L2 deadNeighbor@X(X, Y) :- neighborProbe@X(X), T :=

f_now(), neighbor@X(X, Y), member@X(X, Y, YS, YT,
L), T - YT > 20.

L3 delete neighbor@X(X, Y) :- deadNeighbor@X(X, Y).
L4 member@X(X, Neighbor, DeadSequence, T, Live) :-

deadNeighbor@X(X, Neighbor), member@X(X,
Neighbor, S, T1, L), Live := 0, DeadSequence := S
+ 1, T:= f_now().

B. CHORD IN OverLog
Here we provide the full OverLog specification for Chord.

This specification deals with lookups, ring maintenance with
a fixed number of successors, finger-table maintenance and
opportunistic finger table population, joins, stabilization,
and node failure detection.

/* The base tuples */

materialize(node, infinity, 1, keys(1)).
materialize(finger, 180, 160, keys(2)).
materialize(bestSucc, infinity, 1, keys(1)).
materialize(succDist, 10, 100, keys(2)).
materialize(succ, 10, 100, keys(2)).
materialize(pred, infinity, 100, keys(1)).
materialize(succCount, infinity, 1, keys(1)).
materialize(join, 10, 5, keys(1)).
materialize(landmark, infinity, 1, keys(1)).
materialize(fFix, infinity, 160, keys(2)).
materialize(nextFingerFix, infinity, 1, keys(1)).
materialize(pingNode, 10, infinity, keys(2)).
materialize(pendingPing, 10, infinity, keys(2)).

/** Lookups */

L1 lookupResults@R(R,K,S,SI,E) :- node@NI(NI,N),
lookup@NI(NI,K,R,E), bestSucc@NI(NI,S,SI), K in



(N,S].
L2 bestLookupDist@NI(NI,K,R,E,min<D>) :-

node@NI(NI,N), lookup@NI(NI,K,R,E),
finger@NI(NI,I,B,BI), D:=K - B - 1, B in (N,K).

L3 lookup@BI(min<BI>,K,R,E) :- node@NI(NI,N),
bestLookupDist@NI(NI,K,R,E,D),
finger@NI(NI,I,B,BI), D == K - B - 1, B in (N,K).

/** Neighbor Selection */

N1 succEvent@NI(NI,S,SI) :- succ@NI(NI,S,SI).
N2 succDist@NI(NI,S,D) :- node@NI(NI,N),

succEvent@NI(NI,S,SI), D:=S - N - 1.
N3 bestSuccDist@NI(NI,min<D>) :-

succDist@NI(NI,S,D).
N4 bestSucc@NI(NI,S,SI) :- succ@NI(NI,S,SI),

bestSuccDist@NI(NI,D), node@NI(NI,N), D == S - N
- 1.

N5 finger@NI(NI,0,S,SI) :- bestSucc@NI(NI,S,SI).

/** Successor eviction */

S1 succCount@NI(NI,count<*>) :- succ@NI(NI,S,SI).
S2 evictSucc@NI(NI) :- succCount@NI(NI,C), C > 4.
S3 maxSuccDist@NI(NI,max<D>) :- succ@NI(NI,S,SI),

node@NI(NI,N), evictSucc@NI(NI), D:=S - N - 1.
S4 delete succ@NI(NI,S,SI) :- node@NI(NI,N),

succ@NI(NI,S,SI), maxSuccDist@NI(NI,D), D == S -
N - 1.

/** Finger fixing */

F0 nextFingerFix@NI(NI, 0).
F1 fFix@NI(NI,E,I) :- periodic@NI(NI,E,10),

nextFingerFix@NI(NI,I).
F2 fFixEvent@NI(NI,E,I) :- fFix@NI(NI,E,I).
F3 lookup@NI(NI,K,NI,E) :- fFixEvent@NI(NI,E,I),

node@NI(NI,N), K:=1I << I + N.
F4 eagerFinger@NI(NI,I,B,BI) :- fFix@NI(NI,E,I),

lookupResults@NI(NI,K,B,BI,E).
F5 finger@NI(NI,I,B,BI) :-

eagerFinger@NI(NI,I,B,BI).
F6 eagerFinger@NI(NI,I,B,BI) :- node@NI(NI,N),

eagerFinger@NI(NI,I1,B,BI), I:=I1 + 1, K:=1I << I
+ N, K in (N,B), BI != NI.

F7 delete fFix@NI(NI,E,I1) :-
eagerFinger@NI(NI,I,B,BI), fFix@NI(NI,E,I1), I >
0, I1 == I - 1.

F8 nextFingerFix@NI(NI,0) :-
eagerFinger@NI(NI,I,B,BI), ((I == 159) || (BI ==
NI)).

F9 nextFingerFix@NI(NI,I) :- node@NI(NI,N),
eagerFinger@NI(NI,I1,B,BI), I:=I1 + 1, K:=1I << I
+ N, K in (B,N), NI != BI.

/** Churn Handling */

C1 joinEvent@NI(NI,E) :- join@NI(NI,E).
C2 joinReq@LI(LI,N,NI,E) :- joinEvent@NI(NI,E),

node@NI(NI,N), landmark@NI(NI,LI), LI != "-".
C3 succ@NI(NI,N,NI) :- landmark@NI(NI,LI),

joinEvent@NI(NI,E), node@NI(NI,N), LI == "-".
C4 lookup@LI(LI,N,NI,E) :- joinReq@LI(LI,N,NI,E).
C5 succ@NI(NI,S,SI) :- join@NI(NI,E),

lookupResults@NI(NI,K,S,SI,E).

/** Stabilization */

SB0 pred@NI(NI,"-","-").

SB1 stabilize@NI(NI,E) :- periodic@NI(NI,E,15).
SB2 stabilizeRequest@SI(SI,NI) :-

stabilize@NI(NI,E), bestSucc@NI(NI,S,SI).
SB3 sendPredecessor@PI1(PI1,P,PI) :-

stabilizeRequest@NI(NI,PI1), pred@NI(NI,P,PI), PI
!= "-".

SB4 succ@NI(NI,P,PI) :- node@NI(NI,N),
sendPredecessor@NI(NI,P,PI),
bestSucc@NI(NI,S,SI), P in (N,S).

SB5 sendSuccessors@SI(SI,NI) :- stabilize@NI(NI,E),
succ@NI(NI,S,SI).

SB6 returnSuccessor@PI(PI,S,SI) :-
sendSuccessors@NI(NI,PI), succ@NI(NI,S,SI).

SB7 succ@NI(NI,S,SI) :-
returnSuccessor@NI(NI,S,SI).

SB7 notifyPredecessor@SI(SI,N,NI) :-
stabilize@NI(NI,E), node@NI(NI,N),
succ@NI(NI,S,SI).

SB8 pred@NI(NI,P,PI) :- node@NI(NI,N),
notifyPredecessor@NI(NI,P,PI),
pred@NI(NI,P1,PI1), ((PI1 == "-") || (P in
(P1,N))).

/** Connectivity Monitoring */

CM0 pingEvent@NI(NI,E) :- periodic@NI(NI,E,5).
CM1 pendingPing@NI(NI,PI,E) :- pingEvent@NI(NI,E),

pingNode@NI(NI,PI).
CM2 pingReq@PI(PI,NI,E) :- pendingPing@NI(NI,PI,E).
CM3 delete pendingPing@NI(NI,PI,E) :-

pingResp@NI(NI,PI,E).
CM4 pingResp@RI(RI,NI,E) :- pingReq@NI(NI,RI,E).
CM5 pingNode@NI(NI,SI) :- succ@NI(NI,S,SI), SI !=

NI.
CM6 pingNode@NI(NI,PI) :- pred@NI(NI,P,PI), PI !=

NI, PI != "-".
CM7 succ@NI(NI,S,SI) :- succ@NI(NI,S,SI),

pingResp@NI(NI,SI,E).
CM8 pred@NI(NI,P,PI) :- pred@NI(NI,P,PI),

pingResp@NI(NI,PI,E).
CM9 pred@NI(NI,"-","-") :- pingEvent@NI(NI,E),

pendingPing@NI(NI,PI,E), pred@NI(NI,P,PI).


