
Towards Correct-by-Construction Interrupt Routing
on Real Hardware

Lukas Humbel, Reto Achermann, David Cock, Timothy Roscoe
Systems Group, Dept. of Computer Science, ETH Zurich

Abstract
In this paper we address the problem of correctly configuring
interrupts. The interrupt subsystem of a computer is increas-
ingly complex: a zoo of different controllers with varying
constraints and capabilities form a network with limited con-
nectivity. An OS which aspires to provable correctness must
manage a limited set of interrupt vectors, delegate interrupts
to device drivers and configure the controllers correctly. No
well-specified approach exists.

As a foundation for applying language-level techniques
like program sketching and synthesis to this problem, we
present a formal model for interrupt routing which can cap-
ture all the system topologies and interrupt controllers we
have encountered in the wild, show applications of such a
model not possible with informal, ad-hoc approaches like
DeviceTrees, and finally discuss an implementation based
on the model which forms the new interrupt subsystem of
the Barrelfish OS.

CCS Concepts • Software and its engineering→Oper-
ating systems; • Theory of computation → Constraint
and logic programming;

Keywords Hardware configuration, Hardware abstraction,
Interrupt routing, Eclipse/CLP

1 Introduction
We report on work to solve the problem of correctly (and
provably so) configuring interrupt routing across a range
of increasing diverse and complex hardware platforms. We
present a formal model which can represent the complete
interrupt topology (sources, vectors, links, controllers and
cores) of real computer systems from a PC to a phone System-
on-Chip (SoC) and capture the constraints on interrupt rout-
ing imposed by real-world hardware components.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS 2017, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5153-9/17/10.
https://doi.org/10.1145/3144555.3144557

We also show how to obtain properties of a given instance
of themodel, such as “Can every interrupt source be uniquely
distinguished at its destination?”, and to configure interrupt
hardware to correctly route and deliver interrupts in the
system based on operating system (OS) requirements. We
also describe a concrete implementation based on the for-
malism which configures interrupt controllers on demand
in the Barrelfish OS by realizing the model in Prolog.
The problem of correctly configuring the interrupt sub-

system is surprisingly complex. As we show in Section 2,
a modern computer includes many cores as potential des-
tinations of interrupts and a complex network of interrupt
controllers routing interrupt signals – it is not unusual for
a signal to traverse more than 5 translation units before de-
livery to software. There also exists a wide variety of such
controllers (we describe a representative set of 15 different
ones), and support for virtualization adds further levels of
complexity.

The problem is also important: a modern general-purpose
OS has to handle the full complexity of a system like this,
and the topology is generally not known when the OS is
written. Correct operation of the system on a new piece of
hardware depends on correct configuration of this network
by software, and correct reconfiguration as device driver
threads migrate and hardware is hot-plugged.

Moreover, the problem is not going away (and is therefore
not amenable to a one-time hard-wired solution): new in-
terrupt controllers are appearing all the time, and new SoC
designs present new combinations of devices and heteroge-
neous cores with new constraints on which interrupts can
be delivered where. Furthermore, formally proving the cor-
rectness on a system with interrupts must rest on a formal
model of the underlying hardware.
Formally modeling interrupts also has value beyond sys-

tem software design, since it can shed light on desirable
properties of hardware designs (both complete platforms
and individual controllers) as well.
This paper builds on our previous work, a formal model

in Isabelle/HOL, on modeling memory and interrupt sys-
tems [1]. Our contributions over that paper are as follows:
In section 3 we extend the model to capture constraints of
real interrupt controllers, discuss how we have represented
all the controllers we have seen to date in our systems, and
state useful properties of any given system that can be deter-
mined from the model. In section 4 we describe a practical
application: We have implemented the model in Prolog and
C and we instantiate it online to configure interrupt routing

https://doi.org/10.1145/3144555.3144557

PLOS 2017, October 28, 2017, Shanghai, China Lukas Humbel, Reto Achermann, David Cock, Timothy Roscoe

in the Barrelfish OS. We show how it can be used online to
derive valid configurations for interrupt hardware.

In the next section, we further motivate the problem and
delve into the complexity of modern interrupt systems.

2 Background
Modern interrupt hardware is complex. Whereas in the dis-
tant past, an interrupt was a dedicated electrical signal to
the processor, today a computer has a network of interrupt
controllers which can be configured to deliver many distinct
interrupts generated by a given device to different vectors
on different cores.
Table 1 shows 15 different interrupt controllers used by

machines in our server room. New interrupt controllers are
introduced all the time, whether evolutions of existing de-
signs or new, specialized functions for particular SoCs. Each
has different capabilities and constraints on the number of
interrupt signals they can source and sink, and how they
can map between them. For instance, the venerable Intel
8259A PIC [9] has a fixed mapping of 8 input ports to a sin-
gle output port and 8 bit vector. The Local APIC [11] maps
interrupt messages on a bus to a corresponding local core
vector. Intel IOAPIC controllers [10, 12] convert events di-
rectly from PCI functions or through PCI Link Devices [17]
to APIC messages in a particular delivery mode, but behave
differently when combined with an IOMMU [14], which can
translate memory writes from devices to message-signaled
interrupts [17]. The ARM GICv2 [3] supports 1024 differ-
ent interrupts but not all can be delivered to all cores, and
vectors cannot be changed. The compatible CoreLink GIC-
400 [2] adds additional constraints on its reconfigurability,
the GICv3 exists in two variants [4] with implementation-
defined limits on vector size and GICv4 adds virtualization
support [4]. Additionally, the ARM GIC are programmed
using a memory mapped register and/or CPU interface.

These controllers are connected in a non-trivial platform-
specific network. Figure 1 shows a simplified PC-based illus-
tration. Interrupts may be delivered to a single core, a set
(1-N) or broadcast. Virtualization allows interrupt delivery
directly to a virtual machine [13, 14].
The OS must discover and correctly configure this net-

work dynamically. Some topology data can be obtained from
PCI discovery [17] and ACPI [23], but it is incomplete or may
not exist at all. DeviceTree [8] files are used by many OSes
to work around this, but the file format has no clear seman-
tics, is error-prone [19], and despite containing controller
information [18] fails to capture configuration constraints or

Device
Driver
Device
Driver

PCI devices
(NW card, ...)

Local (Timer)

MSI

I/OMMU

Legacy Devices
(Keyboard, ...) IOAPIC

Physical
CPU 2

Link Dev

Legacy

Local (Timer) Physical
CPU 1

IPI

IPI

Figure 1. Simplified x86 interrupt network

cover inter-processor interrupts. Even so, the proliferation
of DeviceTrees shows that configuration is a problem.
After discovery, correct configuration of a modern com-

puter is essentially a network routing problem with highly
constrained switches, but current OS designs reflect a legacy
of much simpler hardware.
Linux, for example, defines a single namespace of “IRQ

numbers” for all interrupts, and then attempts tomap this to a
strict hierarchy of interrupt controllers. “IRQ Domains” [15]
map Linux IRQ numbers to hardware sources and implicitly
hard-codes the topology. Device drivers are responsible for
identifying the controllers they need to program (via a driver
interface) to deliver interrupts correctly. The common case
is to deliver an interrupt to all cores, and vector numbers
are assumed to be the same across all cores. Constraints in
interrupt routing are not well handled and generally special-
cased in the code.
Chen etal. [7] verify an interruptible operating system

kernel including a simple verified interrupt controller driver.
The focus of our work is on the topology of the interrupt sys-
tem, we are interested in properties of the configuration and
ensure, for instance, that the correct controller is configured.
Stepping back, a better approach is to define a formal

model which captures the complexity of modern interrupt
subsystems and provides both a basis for verifying imple-
mentations and a template for engineering a correct solution
which works across a wide variety of platforms. This paper
describes early work in this direction: both a preliminary
model and an implementation.

3 Model
We base our model on prior work [1] about formally specify-
ing memory accesses and interrupts and extend it to enable
interrupt controller configuration. Currently, the model is
implemented informally in Prolog, described in section 4. We
present the extensions necessary to provide a formal basis
for that implementation.
We express the topology of a system as a decoding net, a

directed graph consisting of nodes with two properties: i)
a set of accepted addresses ii) a set of translated addresses
that map onto another node, where addresses here repre-
sent interrupt ports. Address resolution starts at a particular
node and address and terminates if a node accepts the input
address or it is not in the set of translated addresses.

3.1 Model refinement
The nodes are a set of interrupt sources (e.g. devices), a set
of destinations (e.g. an interrupt vector on a core) and a
set of interrupt controllers. We refer to addresses on nodes
in the decoding net as ports. We assign a globally unique
identifier to all ports. We further extend the model in [1]
with the refinements below and summarize the extensions
in Figure 2.

Towards Correct-by-Construction Interrupt Routing on Real Hardware PLOS 2017, October 28, 2017, Shanghai, China

Controller In Port # In Vector Size Out Port # Out Vector Size Constraints
PIC n · 8 + (8 − n) 0 bit 1 8bit fixed
I/OAPIC 24 0 bit 16 8 bit None
I/OxAPIC 24 0 bit 256 8 bit None
I/Ox2APIC 24 0 bit 232 8 bit None
I/Ox2APIC + I/OMMU 24 0 bit 216 0 bit None
LAPIC LVT 7 0 bit 1 8 bit None
PCI Link Device 4 0 bit 4 0 bit None
MSI Link Device 20−4 0 bit 232 32 bit Same port, contiguous addresses
MSIx Link Device 64 − 2048 0 bit 232 32 bit None
IRTE Mapper 220 32 bit 1 16bit fixed
IPI RT ? 0 bit 16 8 bit None
I/OMMU 1 16 bit 232 8 bit None
ARM GICv2 Dist 987 0 bit 8 10 bit INTID out port == in port
ARM GICv3 ITS 232 32 bit 1 10 bit INTID + 16 bit ICID unique INTID outputs
ARM GICv3 CT 1 10 bit INTID + 16 bit ICID 232 10 bit INTID INTID must match input INTID

Table 1. Characteristics of interrupt controllers showing input and output port numbers and vector sizes.

Definition (Port Set). P ⊂ N
Definition (Interrupt Format).

I = {Empty,Vector ,Mem}

Where
• Empty = {} is an interrupt with no associated data.
• Vector ⊂ N is the set of interrupts that can be described using
a single interrupt vector number.

• Mem ⊂ N ×N the set of memory write operations represented
as address-data word tuples.

Definition (Mapping Function). Partially defined function
from an input to an output format-port tuple.

F :: I × P⇀ I × P

Definition (Controller).

C = (inPorts,outPorts,mapValid) ∈ P × P × 2F = C

Where 2F denotes all possible mapping functions andmapValid ⊆

2F are the valid mapping functions. C is the set of controllers.

Definition (Configuration).

Conf :: C⇀ F

A configuration is valid if ∀C .Conf (C) ∈ C .mapValid .

Definition (System).

S = (inPorts,outPorts, ctrls) ∈ (P × P × C)

Where inPorts and outPorts are the sets of incoming and outgoing
ports respectively ctrls is a set of controllers.

Figure 2. Interrupt Model Definition

Ports and Vectors: In a plain decoding net, a node only
knows about addresses. Interrupt controllers, in contrast,
can distinguish between source (i.e. port) and actual data (i.e.
vector) transferred. Since ports and vectors are both of finite
domain, we could define a mapping of (port, vector) pairs
to a single numeric range through enumeration. However,
since the separation into ports and vectors naturally reflects
the exposed programming interface to interrupt controllers,
we keep them separate in the refined model.

This does lead to redundancy in the model and a potential
choice in how to split the representation of a given con-
troller between ports and vectors. We use the following rule
of thumb: Multiple output ports should be used if the con-
troller can direct interrupts to multiple destinations. Simi-
larly, multiple input ports should be used if the controller
can distinguish between different interrupt sources. Vectors
should be used to distinguish between input events from the
same source, or outputs to the same destination.

Interrupt formats: The controllers in Table 1 use three
different interrupt formats: i) a plain signal asserting an
occurred event (e.g. device interrupt), ii) plain signal + vector
providing a word of information about the event (e.g. CPUs
receive an interrupt vector) and iii) a memory write of a data
word to a specific address (as inMSI-X). Therefore, the node’s
translate function must be able to differentiate and convert
between different interrupt formats.

Configurability: One of our goals is to correctly config-
ure interrupt controllers, thus we need to capture the set
of possible configurations of a controller. We add a third
property, the set of valid translate functions, to the decoding
net nodes that expresses supported interrupt formats, data
words, and transformations.

We further define an interrupt system as a tuple of incom-
ing ports, outgoing ports and controllers, i.e. a complete
decoding net. To express the current state of the system,
each controller is assigned a configuration. We say that the
configuration is valid if each controller is assigned a valid
translation function.
Note the model allows two controllers that produce/con-

sume different interrupt formats to be linked. For consistency,
we interpret this as stating that the controllers cannot receive
messages from each other.

3.2 Representing interrupt controllers
We have expressed all the interrupt controllers in Table 1.
Note there is no unique representation of an interrupt sys-
tem: identifiers of ports and vectors can be changed while

PLOS 2017, October 28, 2017, Shanghai, China Lukas Humbel, Reto Achermann, David Cock, Timothy Roscoe

IOAPIC
CIOAPIC = (inPorts, toCPUs,apV) with |inPorts | = 24, f ∈ apV ↔ ∀port : f (_,port).int ∈ {32..255}
Intel IOMMU
CI RT EMAP = (inPorts, IRTE, irV) with |inPorts | = 1, irV = { f (mem(addr ,data),port) → {addr + data, _}}
CI RT E = (IRTE, toCPUs, 2F) with |IRTE | = 1
MSI
CMSI = (inPorts,memWrite,msiV) with inPorts = [0, 32], baseaddr = constant, basedata = constant

f ∈msiV ↔ f (in,port) → {mem(baseaddr ,basedata + port), _}

Figure 3. Real interrupt controllers expressed in model

preserving the controller’s semantics and even splitting and
merging of controllers is possible – it is theoretically possible
to express an entire interrupt system using a single controller
and a complex predicate for valid mappings. Practical con-
siderations of modularity, reuse, and readability determine a
“good” representation; we give three examples (Figure 3).

On the Intel IOAPIC all of 24 input ports are directly
connected to an interrupt source. The interrupt format is
a plain signal. Each port can be configured independently,
and interrupts are always delivered on the APIC bus with a
vector in the range [32, 255]. We model it with 24 input ports
because of the direct input connections and provide a valid
mapping function to constrain the possible emitted vectors.

Devices supportingMessage Signaled Interrupts (MSI)
can trigger up to 32 different interrupts. We model such
sources as interrupt controllers themselves since they de-
termine the delivery destination of interrupts. As with the
IOAPIC, we express the device as a controller with 32 plain-
signal input ports that generate consecutive memory writes.
These writes (the MSIs themselves) impose dependencies
between different “ports” on the device, and so we need
to carefully constrain the set of valid configurations for a
MSI-capable device.
As a final example, the Intel IOMMU translates all MSI

memory writes into an index into a single table, using a non-
injective function. While we could represent this constraint
logically in the model, it is simpler and more elegant to split
the IOMMU into two imaginary controllers: a fixed function
called IRTEMAP which maps the MSI into an integer on a
single output port, and the remapping table called IRTE with
multiple output ports that captures the routing functionality.
The IOMMU cannot perform a different routing decision
based on the source, therefore we use one input port.
We have found this trick of splitting a controller into

a fixed-mapping controller and a freely configurable one
which as a pair preserve the original semantics to be useful
and quite widely applicable: it pushes complexity out of the
constraints and into the model, and as a side effect simplifies
implementing the controller drivers themselves.
However, not all controllers can be split. Mapping con-

straints that depend on the configuration of other ports, such
as in the case of the MSI controller, can not be split.

3.3 Useful properties
Once we have a model that can capture both the topology of
a real machine’s interrupt subsystem and the functionality
of its programmable interrupt controllers, we can start to
formulate useful properties of a given system that can be
proved (or disproved) from the model representation.
A first case is Reachability. It is particularly the case

with SoCs that a given interrupt cannot be delivered to any
processor in the system. Using the model, we can derive the
reachability matrix for interrupts in a given system. Further-
more, since our model also integrates configuration, we can
also answer a slightly more challenging question: Given a
set of interrupt source-destination pairs, is it possible to find a
configuration that connects all of them?

For each source-destination pair, there exist multiple con-
troller configurations that connect these two parts and de-
vices can use different signaling mechanisms, which in turn
may result in multiple distinct routes through the controller
network. As long as controllers can distinguish incoming
interrupts, the intermediate representation does not matter
(e.g. IOMMU + MSI). Using the model, we can enumerate all
possible configurations.

A second useful property of a system is reliable delivery:
under what conditions can be guaranteed that every inter-
rupt will arrive at the appropriate destination. This may be
required to prove the liveness of the system, but even if not
(where interrupts are a “hint” to improve the performance
of a polling model), failure to deliver interrupts can create
hard-to-diagnose performance degradation.

Note that this subsumes the problem of verifying whether
a given configuration of the system is “correct” but is stricter:
it includes the idea that at no point during a reconfiguration
of the interrupt system will it enter a state where interrupts
can be lost or misrouted. Given a system representation in
ourmodel we can verify the correct delivery of each interrupt
for any given configuration of interrupt routers.

A less serious but dual problem is spurious interrupts. Our
model can be used to constrain the set of possible causes of
a spurious interrupt received at a given core, as long as our
model of each controller is sufficiently faithful.
As a final example, distinguishing interrupts is an im-

portant requirement for an OS so that it can invoke the
appropriate device driver. This should be trivial (each dis-
tinct interrupt should arrive on a different vector on a given

Towards Correct-by-Construction Interrupt Routing on Real Hardware PLOS 2017, October 28, 2017, Shanghai, China

core), actually proving that it is the case is not, and has some
similarities with a network capacity problem. A controller
is able to distinguish up to N = #ports × #vectors different
interrupts where each ports-vector tuple identifies an entry
in the controller’s routing table. If there are more interrupt
sources than the smallest interrupt controller can distin-
guish, interrupt sharing (two distinct sources trigger the
same destination) may occur eventually – when using a sub-
optimal configuration heuristic even before all port-vector
tuples have been allocated. The model can identify which
interrupts are shared and where. Thanks to the inclusion of
configuration options we can pick a minimal sharing config-
uration. Currently used heuristics fail to do so on complex
machines.

4 Implementation
We used our model to entirely replace the existing interrupt
subsystem of the Barrelfish OS [5]. In Barrelfish, our work
is made easier by the System Knowledge Base (SKB) [20]
– a Prolog engine and constraint solver – which holds the
state of the model as a set of Prolog facts and predicates, and
implements the routing algorithm.
At time of writing, the implementation successfully con-

figures device interrupts on demand on all real and virtual
hardware used by the Barrelfish development team, includ-
ing a variety of x86 and ARMv8-based server machines and
ARMv7-A development boards.

While the current implementation is based on the formal
model represented in logic programming, it does not provide
the assurance of a fully-verified implementation, and the
low-level hardware access for discovery and register pro-
gramming is hand-coded in C and Barrelfish’s (non-verified)
Mackerel domain-specific language for hardware [22].
Nevertheless, the implementation is functional, demon-

strates the viability of the approach, and has greatly sim-
plified and unified device programming across diverse plat-
forms in Barrelfish. Moreover, it is clear that a different (per-
haps more complex) implementation is possible in C for
monolithic kernel systems like Linux.
Our implementation consists of 179 lines of Prolog for

the generic model. As an example, 185 additional lines of
Prolog implement the x86 specific part; the bulk of the latter
dealing with populating the model with topology informa-
tion discovered from ACPI and the (user-space) PCIe driver.
For a given interrupt controller, the constraints on routing
it imposes can usually be expressed in a single line. The
high-level architecture is shown in Figure 4.

4.1 The routing service
The Interrupt Routing Service (IRS) is implemented inside
the SKB as a set of inference rules (analogous in this case to
stored procedures in a relational database) and executes the
routing algorithm incrementally over the SKB’s represen-
tation of the interrupt topology and current configuration.

Route
Request

Config
Request

Model PopulationHardware
Discovery

Unified Interface

Interrupt Routing
Service

Model
State Controller

Driver
Controller

Driver
Controller

Driver

Device
Driver
Device
Driver
Device
Driver

Figure 4. System Architecture

The output of the algorithm is a set of (re)configurations for
specific interrupt controllers, which are then programmed
by their respective driver processes.

Barrelfish’s Multikernel [6] architecture, as in a microker-
nel, implements most drivers in user space, including most of
the interrupt controller drivers. The IRS model encodes the
routing constraints specific to particular interrupt controller
types, but the interface to an interrupt controller used by the
IRS can be entirely generic, simplifying implementation.
The model contains all information necessary to route

interrupts. A routing request consists of an interrupt source
and an interrupt destination. For simplicity, we assume the
interrupt destination is provided by the requester. Often,
the interrupt destination has some freedom: It is important
on which CPU the interrupt ends up, but the exact vector
triggered is not important.

The routing algorithm determines a valid configuration for
each controller such that all the existing routes plus the new
request are satisfied. A natural, though inefficient, approach
in Prolog is a back-tracking, depth-first search. The enter-
ing interrupt to be routed is followed to its first controller,
the first configuration that does not discard the interrupt
is considered, tracing the interrupt to the next controller
and repeating it until a destination is found. If the interrupt
destination does not match, or it discards one of the existing
routes, we backtrack. In practice, we can improve this by
only picking output ports that get us closer to the desired
destination, and failing (or resorting to interrupt sharing) as
soon as we encounter a link where the new interrupt doesn’t
“fit” in the identifier space. This latter event is rare, and only
occurs in highly resource-constrained systems.

So far, solving time has had a negligible impact on system
performance, even on complex multisocket platforms.

4.2 Topology discovery
Various sources of hardware discovery populate the model
for a given machine. Existing drivers for ACPI and PCIe in
Barrelfish were simple to modify for this purpose, since they
already entered discovered information in the SKB, indeed,
in some cases a single Prolog rule provided an appropriate
“view” over existing information.

Ideally, PCIe, ACPI, etc. would allow the OS to discover the
entire interrupt topology online. However, many platforms
(in particular, ARMv7-A SoCs), completely lack a discovery
mechanism for devices and interrupts. In other cases, discov-
ery is incomplete for one or more reasons (such as devices

PLOS 2017, October 28, 2017, Shanghai, China Lukas Humbel, Reto Achermann, David Cock, Timothy Roscoe

which are not on a discoverable bus). For non-discoverable
interrupt information we fall back to static information in
compiled Prolog files provided in the startup RAM disk. The
OS loads at boot the relevant predicates based on what sys-
tem (and core) it is booting on.
Finally, even the information gained from a discovery

mechanism is usually insufficient to instantiate the model,
even if all the controllers are discovered. The topology itself
is often represented only implicitly, such as through the hi-
erarchy of the PCI bus. Often, certain links or translations
are missing (for example, in ACPI, it is not discoverable how
MSI interrupts are translated to CPU vectors). For this infor-
mation, we also fall back knowledge the system programmer
has extracted from datasheets (or, conceivably, DeviceTree
files) and coded into the configuration algorithm or a sup-
plemental Prolog file. This information is crucial for any
operating system. Our approach explicitly exposes all trans-
lation units, while in commodity systems, this knowledge is
implicitly contained in program code. Note that the topology
and set of controllers in the system can be entirely dynamic.

4.3 Clients
Clients of the IRS are device drivers which wish to receive
interrupts from the devices they manage. A full description
of the Barrelfish driver protocol (including the authorization
framework for interrupts) is beyond the scope of this paper,
but can be briefly summarized as follows.
When a device driver is started by the Barrelfish device

manager, it receives capabilities for resources it needs to ac-
cess the device. This includes memory-mapped I/O register
areas but also capabilities granting the right to receive in-
terrupt notifications from a specific interrupt source. The
driver creates a communication endpoint (also represented
by a capability) and hands this together with the interrupt
source capability to the IRS. Capabilities are also used to
grant access to specific vectors in interrupt controllers (up
to and including interrupt delivery vectors on destination
cores). This allows more decentralized implementation in
the future, but crucially isolates the interrupt resources of a
device and its driver from others in the system.

4.4 Discussion
Our implementation was driven both by the formal model
and the particular architecture and facilities of Barrelfish.
However, the separation of mechanism from policy (routing)
that results in, we claim, an elegant solution and we see no
strong reason why the techniques are not equally applicable
to monolithic systems like Linux or microkernels like seL4.

The approach allows high-level language techniques (like
inference and constraint solving) to be applied to low-level
concerns (interrupts), with a consequent simplification both
of individual drivers for peripheral device and interrupt con-
trollers, and also the core of the OS as a whole. A further
benefit is that generic interfaces to interrupt controllers and

IRS do not end up in contradiction with the behavioral quirks
of specific components.

5 Ongoing work and conclusion
Two major aspects of interrupts are not yet fully captured by
our model. The first is that interrupts are currently unicast:
we configure interrupt controllers to forward an interrupt to
one destination, rather than multicasting (or broadcasting)
the interrupt to many destinations. This is well-suited to the
Barrelfish architecture, but less so for a monolithic system
like Linux, and in any system is valuable for, e.g., optimizing
TLB shootdowns within a shared physical address space.
Extending the model to support multicast is straightforward.
Secondly, we do not address dynamic aspects of inter-

rupt delivery, such as how interrupts are acknowledged, and
the distinction between edge- and level-triggered interrupts.
While rare these days, level-triggered interrupts have impor-
tant use-cases, and how to capture the distinction is a topic
of ongoing work.

Nevertheless, we have devised a model of interrupt deliv-
ery and formulated it, together which descriptions real hard-
ware platforms and components in Prolog and demonstrated
its practicality in a real OS. In previous work we have shown
how a similar model can be formalized in Isabelle/HOL [16],
and we plan on fully formalizing the propsed model.

To avoid manual translation between the dual Prolog and
formal representation, we plan to extend a concrete syntax
and compiler written to express complex memory subsys-
tems [21] to include interrupt topologies and controller con-
figurations. Then have this language generate both Prolog
facts for runtime use and a formal representation for offline
reasoning.
A practical extension would be to compile a DeviceTree

file into this syntax widen our device support. However, we
have found that the lack of clear DeviceTree semantics still
requires a manual (human) step in the translation process to
a formal specification.
Our programming code works on static snapshots of the

interrupt subsystem, but does not address how to get from
one configuration to a new one. We are exploring program
synthesis techniques to generate a series of atomic reconfig-
uration operations that can, by construction, reconfigure the
interrupt subsystem so that at no point does it pass through
a “bad” state (e.g. where interrupts are lost or misdelivered).

We are also exploring program synthesis for programming
individual interrupt controllers. In particular, by expressing
the hardware registers and their meanings in the form of a
program sketch, we can use synthesis techniques to generate
correct register operations on each device.
Our work is at an early stage, but our experience both

with the formal and implementation aspects suggests that
we have a solid foundation for our ongoing work, with the
long-term goal of generating correct and efficient OS code
for an increasingly complex hardware landscape.

Towards Correct-by-Construction Interrupt Routing on Real Hardware PLOS 2017, October 28, 2017, Shanghai, China

References
[1] Reto Achermann, Lukas Humbel, David Cock, and Tim-

othy Roscoe. 2017. Formalizing Memory Accesses and
Interrupts. In 2nd Workshop on Models for Formal Analy-
sis of Real Systems (MARS 2017). Electronic Proceedings
in Theoretical Computer Science, Uppsala, Sweden, 66–
117. https://doi.org/10.4204/EPTCS.244.4

[2] ARM Ltd. 2011. CoreLink GIC-400 Generic Interrupt
Controller - Technical Reference Manual (revision r0p0
ed.). ARM.

[3] ARM Ltd. 2016. ARM Generic Interrupt Controller - Ar-
chitecture version 2.0 (issue b ed.). ARM.

[4] ARM Ltd. 2016. ARM Generic Interrupt Controller Archi-
tecture Specification - GIC architecture version 3.0 and
version 4.0 (issue c ed.). ARM.

[5] Barrelfish team. 2017. The Barrelfish Research Operat-
ing System. (August 2017). www.barrelfish.org.

[6] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for
Scalable Multicore Systems. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Princi-
ples (SOSP ’09). ACM, Big Sky, Montana, USA, 29–44.
https://doi.org/10.1145/1629575.1629579

[7] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao,
Joshua Lockerman, and Ronghui Gu. 2016. Toward
Compositional Verification of Interruptible OS Kernels
and Device Drivers. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, Santa Barbara, CA,
USA, 431–447. https://doi.org/10.1145/2908080.2908101

[8] Devicetree.org. 2016. Devicetree Specification (release
0.1 ed.). Linaro, Ltd. http://www.devicetree.org/
specifications-pdf.

[9] Intel Corporation. 1988. 8259A - Programmable Interrupt
Controller. Intel Corporation. Order Number: 231468-
003.

[10] Intel Corporation. 1996. 82093AA I/O Advanced Pro-
grammable Interrupt Controller (IOAPIC). Intel Corpo-
ration. Order Number: 290566-001.

[11] Intel Corporation. 1997. MultiProcessor Specification
(revision 006 ed.). Intel Corporation.

[12] Intel Corporation. 2014. Intel 64 Architecture x2APIC
Specification. Intel Corporation. Reference Number:
318148-004.

[13] Intel Corporation. 2016. Intel 64 and IA-32 Architec-
tures Software Developer’s Manual (volume 3, systems
programming guide ed.). Intel Corporation.

[14] Intel Corporation. 2016. Intel Virtualization Technology
for Directed I/O - Architecture Specification (revision 2.4
ed.). Intel Corporation.

[15] Grant Likely, Linus Walleij, Jiang Liu, Jianyu Zhan,
Marc Zyngier, Kevin Cernekee, Xishi Qiu, and Mark

Brown. 2016. irq_domain interrupt number mapping
library. The Linux Foundation. https://www.kernel.
org/doc/Documentation/IRQ-domain.txt.

[16] Larry Paulson, Tobias Nipkow, and Makarius Wenzel.
2017. Isabelle / HOL Proof Assistant. (August 2017).
http://isabelle.in.tum.de.

[17] PCI Special Interest Group. 2004. PCI Local Bus Specifi-
cation Revision 3.0 (revision 2.3 ed.). PCI Special Interest
Group.

[18] Thierry Reding, Rob Herring, Grant Likely, and
Bjorn Helgaas. 2014. Specifying interrupt in-
formation for devices. Kernel.org. https:
//www.kernel.org/doc/Documentation/devicetree/
bindings/interrupt-controller/interrupts.txt.

[19] Mark Rutland. 2013. Device Tree - The Disaster So Far.
Online. (2013). ELC Europe. http://elinux.org/images/
8/8e/Rutland-presentation_3.pdf.

[20] Adrian Schüpbach, Andrew Baumann, Timothy Roscoe,
and Simon Peter. 2011. A Declarative Language Ap-
proach to Device Configuration. In Proceedings of the
Sixteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, Newport Beach, California, USA,
119–132. https://doi.org/10.1145/1950365.1950382

[21] Daniel Schwyn. 2017. Hardware Configuration with
Dynamically-Queried Formal Models. Master’s thesis.
Systems Group, ETH Zurich.

[22] Timothy Roscoe. 2013. Barrelfish Technical Note 2 -
Mackerel User Guide (version 1.5 ed.). Barrelfish Project.

[23] UEFI Forum. 2017. Advanced Configuration and Power
Interface Specification (version 6.2 ed.). UEFI Forum.

https://doi.org/10.4204/EPTCS.244.4
www.barrelfish.org
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/2908080.2908101
http://www.devicetree.org/specifications-pdf
http://www.devicetree.org/specifications-pdf
https://www.kernel.org/doc/Documentation/IRQ-domain.txt
https://www.kernel.org/doc/Documentation/IRQ-domain.txt
http://isabelle.in.tum.de
https://www.kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
http://elinux.org/images/8/8e/Rutland-presentation_3.pdf
http://elinux.org/images/8/8e/Rutland-presentation_3.pdf
https://doi.org/10.1145/1950365.1950382

	Abstract
	1 Introduction
	2 Background
	3 Model
	3.1 Model refinement
	3.2 Representing interrupt controllers
	3.3 Useful properties

	4 Implementation
	4.1 The routing service
	4.2 Topology discovery
	4.3 Clients
	4.4 Discussion

	5 Ongoing work and conclusion
	References

