
noVeMber 2009 | VoL. 52 | no. 11 | communications of the acm 87

Declarative Networking
By Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,
Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica

abstract
Declarative Networking is a programming methodology
that enables developers to concisely specify network proto-
cols and services, which are directly compiled to a dataflow
framework that executes the specifications. This paper pro-
vides an introduction to basic issues in declarative network-
ing, including language design, optimization, and dataflow
execution. We present the intuition behind declarative pro-
gramming of networks, including roots in Datalog, exten-
sions for networked environments, and the semantics of
long-running queries over network state. We focus on a
sublanguage we call Network Datalog (NDlog), including
execution strategies that provide crisp eventual consistency
semantics with significant flexibility in execution. We also
describe a more general language called Overlog, which
makes some compromises between expressive richness and
semantic guarantees. We provide an overview of declara-
tive network protocols, with a focus on routing protocols
and overlay networks. Finally, we highlight related work in
declarative networking, and new declarative approaches to
related problems.

1. intRoDuction
Over the past decade there has been intense interest in the
design of new network protocols. This has been driven from
below by an increasing diversity in network architectures
(including wireless networks, satellite communications,
and delay-tolerant rural networks) and from above by a
quickly growing suite of networked applications (peer-to-
peer systems, sensor networks, content distribution, etc.)

Network protocol design and implementation is a chal-
lenging process. This is not only because of the distrib-
uted nature and large scale of typical networks, but also
because of the need to balance the extensibility and flex-
ibility of these protocols on one hand, and their robustness
and efficiency on the other hand. One needs to look no
further than the Internet for an illustration of these hard
trade-offs. Today’s Internet routing protocols, while argu-
ably robust and efficient, make it hard to accommodate
the needs of new applications such as improved resilience
and higher throughput. Upgrading even a single router is
hard. Getting a distributed routing protocol implemented
correctly is even harder. Moreover, in order to change or
upgrade a deployed routing protocol today, one must get
access to each router to modify its software. This process
is made even more tedious and error-prone by the use of
conventional programming languages.

In this paper, we introduce declarative networking, an
application of database query language and processing tech-
niques to the domain of networking. Declarative networking
is based on the observation that network protocols deal at

their core with computing and maintaining distributed state
(e.g., routes, sessions, performance statistics) according to
basic information locally available at each node (e.g., neigh-
bor tables, link measurements, local clocks) while enforcing
constraints such as local routing policies. Recursive query
languages studied in the deductive database literature27
are a natural fit for expressing the relationship between
base data, derived data, and the associated constraints. As
we demonstrate, simple extensions to these languages and
their implementations enable the natural expression and
efficient execution of network protocols.

In a series of papers with colleagues, we have described
how we implemented and deployed this concept in the P2
declarative networking system.24 Our high-level goal has
been to provide software environments that can accelerate
the process of specifying, implementing, experimenting
with and evolving designs for network architectures.

As we describe in more detail below, declarative net-
working can reduce program sizes by orders of magnitude
relative to traditional approaches, in some cases resulting in
programs that are line-for-line translations of pseudocode
in networking research papers. Declarative approaches also
open up opportunities for automatic protocol optimization
and hybridization, program checking, and debugging.

2. LanGuaGe
In this section, we present an overview of the Network Datalog
(NDlog) language for declarative networking. The NDlog
language is based on extensions to traditional Datalog, a
well-known recursive query language designed for query-
ing graph-structured data in a centralized database. NDlog’s
integration of networking and logic is unique from the per-
spectives of both domains. As a network protocol language, it
is notable for the absence of any communication primitives
like “send” or “receive”; instead, communication is implicit
in a simple high-level specification of data partitioning. In
comparison to traditional logic languages, it is enhanced
to capture typical network realities including distribution,
link-layer constraints on communication (and hence deduc-
tion), and soft-state8 semantics.

We step through an example to illustrate the standard
execution model for Datalog, and demonstrate its close
connections to routing protocols, recursive network graph
computations, and distributed state management. We then
describe the Overlog21 extensions to the NDlog language that
support soft-state data and events.

A previous version of this paper was published in Pro-
ceedings of ACM SIGMOD’s International Conference of
 Management of Data (2006).

Doi:10.1145/1592761.1592785

88 communications of the acm | noVeMber 2009 | VoL. 52 | no. 11

research highlights

The program has four rules (which for conve-
nience we label sp1–sp4), and takes as input a base
(extensional) relation link(src, Dest, Cost). Rules
sp1–sp2 are used to derive “paths” in the graph, rep-
resented as tuples in the derived (intensional) relation
path(src, Dest, path, Cost). The src and Dest fields
represent the source and destination endpoints of the
path, and path is the actual path from src to Dest. The
 number and types of fields in relations are inferred from
their (consistent) use in the program’s rules.

Since network protocols are typically computations over
distributed network state, one of the important require-
ments of NDlog is the ability to support rules that express
distributed computations. NDlog builds upon traditional
Datalog by providing control over the storage location of
tuples explicitly in the syntax via location specifiers. Each
location specifier is a field within a predicate that dictates
the partitioning of the table. To illustrate, in the above pro-
gram, each predicate has an “@” symbol prepended to a
single field denoting the location specifier. Each tuple gen-
erated is stored at the address determined by its location
specifier. For example, each path and link tuple is stored
at the address held in its first field @src.

Rule sp1 produces path tuples directly from exist-
ing link tuples, and rule sp2 recursively produces path
tuples of increasing cost by matching (joining) the desti-
nation fields of existing links to the source fields of previ-
ously computed paths. The matching is expressed using
the repeated nxt variable in link(src,nxt,Cost1) and
path(nxt,Dest,path2,Cost2) of rule sp2. Intuitively,
rule sp2 says that “if there is a link from node src to node
nxt, and there is a path from node nxt to node Dest along
a path path2, then there is a path path from node src to
node Dest where path is computed by prepending src
to path2.” The matching of the common nxt variable in
link and path corresponds to a join operation used in
 relational databases.

Given the path relation, rule sp3 derives the relation
spCost(src,Dest,Cost) by computing the minimum
cost Cost for each source and destination for all input
paths. Rule sp4 takes as input spCost and path tuples
and then finds shortestpath(src,Dest,path,Cost)
tuples that contain the shortest path path from src to
Dest with cost Cost. Last, as denoted by the Query label,
the shortestpath table is the output of interest.

2.3. shortest path execution example
We step through an execution of the shortest-path NDlog
program above to illustrate derivation and communica-
tion of tuples as the program is computed. We make use
of the example network in Figure 1. Our discussion is nec-
essarily informal since we have not yet presented our dis-
tributed implementation strategies; in the next section,
we show in greater detail the steps required to generate
the execution plan. Here, we focus on a high-level under-
standing of the data movement in the network during
query processing.

For ease of exposition, we will describe communication
in synchronized iterations, where at each iteration, each

2.1. introduction to Datalog
We first provide a short review of Datalog, following the con-
ventions in Ramakrishnan and Ullman’s survey.27 A Datalog
program consists of a set of declarative rules and an optional
query. Since these programs are commonly called “recursive
queries” in the database literature, we use the term “query”
and “program” interchangeably when we refer to a Datalog
program.

A Datalog rule has the form p :- q1, q2, …, qn, which can be
read informally as “q1 and q2 and … and qn implies p.” p is the
head of the rule, and q1, q2, …, qn is a list of literals that consti-
tutes the body of the rule. Literals are either predicates over
fields (variables and constants), or functions (formally, func-
tion symbols) applied to fields. The rules can refer to each
other in a cyclic fashion to express recursion. The order in
which the rules are presented in a program is semantically
immaterial. The commas separating the predicates in a rule
are logical conjuncts (AND); the order in which predicates
appear in a rule body also has no semantic significance,
though most implementations (including ours) employ a
left-to-right execution strategy. Predicates in the rule body
are matched (or joined) based on their common variables to
produce the output in the rule head. The query (denoted by a
reserved rule label Query) specifies the output of interest.

The predicates in the body and head of traditional
Datalog rules are relations, and we refer to them inter-
changeably as predicates or relations. In our work, every
relation has a primary key, which is a set of fields that
uniquely identifies each tuple within the relation. In the
absence of other information, the primary key is the full set
of fields in the relation.

By convention, the names of predicates, function symbols,
and constants begin with a lowercase letter, while variable
names begin with an uppercase letter. Most implementations
of Datalog enhance it with a limited set of side-effect-free
function calls including standard infix arithmetic and various
simple string and list manipulations (which start with “f_” in
our syntax). Aggregate constructs are represented as aggrega-
tion functions with field variables within angle brackets (áñ).

2.2. nDLog by example
We introduce NDlog using an example program shown below
that implements the path-vector protocol, which computes
in a distributed fashion, for every node, the shortest paths
to all other nodes in a network. The path-vector protocol
is used as the base routing protocol for exchanging routes
among Internet Service Providers.

sp1 path(@src,Dest,path,Cost) :- link(@src,Dest,Cost),

path=f_init(src,Dest).

sp2 path(@src,Dest,path,Cost) :- link(@src,nxt,Cost1),

path(@nxt,Dest,path2,Cost2), Cost=Cost1+Cost2,

path=f_concatpath(src,path2).

sp3 spCost(@src,Dest,min<Cost>) :- path(@src,Dest,path,Cost).

sp4 shortestpath(@src,Dest,path,Cost) :-

spCost(@src, Dest,Cost), path(@src,Dest,path,Cost).

Query shortestpath(@src,Dest,path,Cost).

noVeMber 2009 | VoL. 52 | no. 11 | communications of the acm 89

along the physical links. In order to send a message in a low-
level network, there needs to be a link between the sender
and receiver. This is not a natural construct in Datalog.
Hence, to model physical networking components where
full connectivity is not available, NDlog provides restrictions
ensuring that rule execution results in communication only
among nodes that are physically connected with a bidirec-
tional link. This is syntactically achieved with the use of the
special link predicate in the form of link-restricted rules.
A link-restricted rule is either a local rule (having the same
location specifier variable in each predicate), or a rule with
the following properties:

1. There is exactly one link predicate in the body.
2. All other predicates (including the head predicate)

have their location specifier set to either the first
(source) or second (destination) field of the link
predicate.

This syntactic constraint precisely captures the require-
ment that we be able to operate directly on a network whose
link connectivity is not a full mesh. Further, as we demon-
strate in Section 3, link-restriction also guarantees that all
programs with only link-restricted rules can be rewritten
into a canonical form where every rule body can be evaluated
on a single node, with communication to a head predicate
along links. The following is an example of a link-restricted
rule:

p(@Dest,...) :- link(@src,Dest...),p1(@src,...),
p2(@src,...),..., pn(@src,...).

The rule body of this example is executed at @src and the
resulting p tuples are sent to @Dest, preserving the commu-
nication constraints along links. Note that the body predi-
cates of this example all have the same location specifier:
@src, the source of the link. In contrast, rule sp2 of the
shortest path program is link-restricted but has some rela-
tions whose location specifier is the source, and others
whose location specifier is the destination; this needs to be
rewritten to be executable in the network, a topic we return
to in Section 3.2.

In a fully connected network environment, an NDlog
parser can be configured to bypass the requirement for link-
restricted rules.
soft-state storage Model: Many network protocols use the
soft-state approach to maintain distributed state. In the soft-
state storage model, stored data have an associated lifetime
or time-to-live (TTL). A soft-state datum needs to be periodi-
cally refreshed; if more time than a TTL passes without a
datum being refreshed, that datum is deleted. Soft state is
often favored in networking implementations because in a
very simple manner it provides well-defined eventual consis-
tency semantics. Intuitively, periodic refreshes to network
state ensure that the eventual values are obtained even if
there are transient errors such as reordered messages, node
disconnection, or link failures. However, when persistent
failures occur, no coordination is required to register the

network node generates paths of increasing hop count, and
then propagates these paths to neighbor nodes along links.
We show only the derived paths communicated along the
solid lines. In actual query execution, derived tuples can be
sent along the bidirectional network links (dashed links).

In the first iteration, all nodes initialize their local
path tables to 1-hop paths using rule sp1. In the second
iteration, using rule sp2, each node takes the input paths
generated in the previous iteration, and computes 2-hop
paths, which are then propagated to its neighbors. For
example, path(@a,d,[a,b,d],6) is generated at node
b using path(@b,d,[b,d],1) from the first iteration,
and propagated to node a. In fact, many network protocols
propagate only the nextHop and avoid sending the entire
path vector.

As paths are computed, the shortest one is incre-
mentally updated. For example, node a computes the
cost of the shortest path from a to b as 5 with rule sp3,
and then finds the corresponding shortest path [a,b]
with rule sp4. In the next iteration, node a receives
path(@a,b,[a,c,b],2) from node c, which has lower
cost compared to the previous shortest cost of 5, and hence
shortestpath(@a,b,[a,c,b],2) replaces the previ-
ous tuple (the first two fields of source and destination are
the primary key of this relation).

Interestingly, while NDlog is a language to describe net-
works, there are no explicit communication primitives.
All communication is implicitly generated during rule
execution as a result of data placement specifications. For
example, in rule sp2, the path and link predicates have
different location specifiers, and in order to execute the rule
body of sp2 based on their matching fields, link and path
tuples have to be shipped in the network. It is the movement
of these tuples that generates the messages for the resulting
network protocol.

2.4. Language extensions
We describe two extensions to the NDlog language: link-
restricted rules that limit the expressiveness of the language
in order to capture physical network constraints, and a soft-
state storage model commonly used in networking protocols.
Link-restricted rules: In the above path vector protocol, the
evaluation of a rule must depend only on communication

p(@a,b,[a,b],5)
p(@a,c,[a,c],1)

a

b

c

d

Initially

l(@a,b,5)
l(@a,c,1)

l(@c,b,1)

l(@b,d,1)

5
1

1

a

b

c
5

1

First iteration

1 1

p(@c,b,[c,b],1)p(@b,d,[b,d],1)

p(@a,d,[a,b,d],6)
p(@a,b,[a,c,b],2) a

b

c
5

1

Second iteration

1

p(@c,d,[c,b,d],2)

el(@e,a,1)

1

p(@e,a,[e,a],1)
p(@e,b,[e,a,b],6)
p(@e,c,[e,a,c],2)

d

1

d

1

e e

11

figure 1. nodes in the network are running the shortest-path pro-
gram. We only show newly derived tuples at each iteration.

90 communications of the acm | noVeMber 2009 | VoL. 52 | no. 11

research highlights

some debate about the desired semantics, focusing on
attempts to provide an intuitive declarative representation
while enabling familiar event-handler design patterns used
by protocol developers.

3. execution PLan GeneRation
Our runtime execution of NDlog programs differs from
the traditional implementation patterns for both network
protocols and database queries. Network protocol imple-
mentations often center around local state machines that
emit messages, triggering state transitions at other state
machines. By contrast, the runtime systems we have built
for NDlog and Overlog are distributed dataflow execution
engines, similar in spirit to those developed for parallel
database systems, and echoed in recent parallel map-reduce
implementations. However, the recursion in Datalog intro-
duces cycles into these dataflows. The combination of recur-
sive flows and the asynchronous communication inherent
in wide-area systems presents new challenges that we had
to overcome.

In this section, we describe the steps required to automat-
ically generate a distributed dataflow execution plan from an
NDlog program. We first focus on generating an execution
plan in a centralized implementation, before extending the
techniques to the network scenario.

3.1. centralized plan generation
In generating the centralized plan, we utilize the well-
known semi-naïve fixpoint3 Datalog evaluation mechanism
that ensures no redundant evaluations. As a quick review,
in semi-naïve (SN) evaluation, input tuples computed in the
previous iteration of a recursive rule execution are used as
input in the current iteration to compute new tuples. Any
new tuples that are generated for the first time in the cur-
rent iteration, and only these new tuples, are then used as
input to the next iteration. This is repeated until a fixpoint is
achieved (i.e., no new tuples are produced).

The SN rewritten rule for rule sp2 is shown below:

sp2-1 Dpathnew (@Src,@Dest,Path,Cost) :-
 link(@Src,Nxt,Cost1),
 Dpathold(@Nxt,Dest,Path2,Cost2),
 Cost=Cost1+Cost2,
 Path=f_concatPath(Src,Path2).

Figure 2 shows the dataflow realization for a centralized
implementation of rule sp2-1 using the conventions of P2.24

failure: any data provided by failed nodes are organically
“forgotten” in the absence of refreshes.

We introduced soft-state into the Overlog 21 declara-
tive networking language, an extension of NDlog. One
additional feature of Overlog is the availability of a mate-
rialized keyword at the beginning of each program
to specify the TTL of predicates. For example, the defini-
tion materialized(link, {1,2}, 10) specifies that the
link table has its primary key set to the first and second
fields (denoted by {1,2}), and each link tuple has a life-
time of 10 seconds. If the TTL is set to infinity, the predicate
will be treated as hard state, i.e., a traditional relation that
does not involve timeout-based deletion.

The Overlog soft-state storage semantics are as follows.
When a tuple is derived, if there exists another tuple with
the same primary key but differences on other fields, an
update occurs, in which the new tuple replaces the previ-
ous one. On the other hand, if the two tuples are identical,
a refresh occurs, in which the existing tuple is extended by
its TTL.

If a given predicate has no associated materialize dec-
laration, it is treated as an event predicate: a soft-state predi-
cate with TTL = 0. Event predicates are transient tables, which
are used as input to rules but not stored. They are primarily
used to “trigger” rules periodically or in response to network
events. For example, utilizing Overlog’s built-in periodic
event predicate, the following rule enables node X to generate
a ping event every 10 seconds to its neighbor Y denoted in the
link(@X, Y) predicate:

ping(@Y, X) :- periodic(@X, 10), link(@X, Y).

Subtleties arise in the semantics of rules that mix event,
soft-state and hard-state predicates across the head and
body. One issue involves the expiry of soft-state and event
tuples, as compared to deletion of hard-state tuples. In a
traditional hard-state model, deletions from a rule’s body
relations require revisions to the derived head relation to
maintain consistency of the rule. This is treated by research
on materialized view maintenance.13 In a pure soft-state
model, the head and body predicates can be left inconsis-
tent with each other for a time, until head predicates expire
due to the lack of refreshes from body predicates. Mixtures
of the two models become more subtle. We provided one
treatment of this issue,19 which has subsequently been
revised with a slightly different interpretation.9 There is still

figure 2. Rule strand for a centralized implementation of rule sp2-1 in P2. output paths that are generated from the strand are “wrapped
back” as input into the same strand.

sp2-1 Join
pathnew.Nxt=link.Nxt

Project
pathnew

Bufferpath
pathold pathold

link

noVeMber 2009 | VoL. 52 | no. 11 | communications of the acm 91

since the tuples that must be joined are situated at different
nodes in the network. A rule localization rewrite step ensures
that all tuples to be joined are at the same node. This allows
a rule body to be locally computable.

Consider the rule sp2 from the shortest-path program,
where the link and path predicates have different loca-
tion specifiers. These two predicates are joined by a com-
mon @nxt address field. Figure 3 shows the corresponding
logical query plan depicting the distributed join. The
clouds represent an “exchange”-like operator11 that for-
wards tuples from one network node to another; clouds are
labeled with the link attribute that determines the tuple’s
recipient. The first cloud (link.nxt) sends link tuples to
the neighbor nodes indicated by their destination address
fields, in order to join with matching path tuples stored by
their source address fields. The second cloud (path.src)
transmits for further processing new path tuples com-
puted from the join, setting the recipient according to the
source address field.

Based on the above distributed join, rule sp2 can be
rewritten into the following two rules. Note that all predi-
cates in the body of sp2a have the same location specifiers;
the same is true of sp2b.

sp2a linkD(@nxt,src,Cost) :- link(@src,nxt,Cost).

sp2b path(@src,Dest,nxt,path,Cost) :- linkD(@nxt,src,Cost1),

 path(@nxt,Dest,path2,Cost2),Cost=Cost1+Cost2,

 path = f_concatpath(src,path2).

The rewrite is achievable because the link and path
predicates, although at different locations, share a common
join address field. The details of the rewrite algorithm and
associated proofs are described in a longer article.20

Returning to our example, after rule localization we per-
form the SN rewrite, and then generate the rule strands shown
in Figure 4. Unlike the centralized strand in Figure 2, there
are now three rule strands. The extra two strands (sp2a@src
and sp2b-2@nxt) are used as follows. Rule strand sp2a@

The P2 system uses an execution model inspired by data-
base query engines and the Click modular router,14 which
consists of elements that are connected together to imple-
ment a variety of network and flow control components. In
addition, P2 elements include database operators (such as
joins, aggregation, selections, and projects) that are directly
generated from the rules.

We will briefly explain how the SN evaluation is achieved
in P2. Each SN rule is implemented as a rule strand. Each
strand consists of a number of relational operators for selec-
tions, projections, joins, and aggregations. The example
strand receives new delta_path_old tuples generated
in the previous iteration to generate new paths (delta_
path_new), which are then inserted into the path table
(with duplicate elimination) for further processing in the
next iteration.

In Algorithm 1, we show the pseudocode for a centralized
implementation of multiple SN rule strands where each rule
has the form:

Dpj
new :- p1

old ,..., pk
old
-1, Dpk

old, pk+1,..., pn, b1, b2,..., bm.

p1, …, pn are recursive predicates and b1, …, bm are base predi-
cates. Dpk

old refers to pk tuples generated for the first time in
the previous iteration. pk

old refers to all pk tuples generated
before the previous iteration. These rules are logically equiv-
alent to rules of the form:

Dpj
new :- p1

 ,..., pk-1, Dpk
old, pk+1,..., pn, b1, b2,..., bm.

The earlier rules have the advantage of avoiding redundant
inferences within each iteration.

algorithm 1 Semi-naïve (SN) Evaluation in P2
while $Bk.size > 0

"Bk where Bk.size > 0, Dpk
old ¬ Bk. flush()

execute all rule strands
foreach recursive predicate pj

pj
old ¬ pj

old È Dpj
old

Bj ¬ Dpj
new - pj

old

pj ¬ pj
old È Bj

Dpj
new ¬ f

In the algorithm, Bk denotes the buffer for pk tuples gen-
erated in the previous iteration (Dpk

old). Initially, pk, pk
old, Dpk

old,
and Dpk

new are empty. As a base case, we execute all the rules
to generate the initial pk tuples, which are inserted into the
corresponding Bk buffers. Each subsequent iteration of the
while loop consists of flushing all existing Dpk

old tuples from Bk
and executing all rule strands to generate Dpj

new tuples, which
are used to update pj

old, Bj , and pj accordingly. Note that only
new pj tuples generated in the current iteration are inserted
into Bj for use in the next iteration. Fixpoint is reached when
all buffers are empty.

3.2. Distributed plan generation
In the distributed implementation of the path-vector pro-
gram, nonlocal rules whose body predicates have differ-
ent location specifiers cannot be executed at a single node,

figure 3. Logical query plan for rule sp2.

(link.Src,path. Dest, f_concatPath(link.Src,
path.Path2), link.Cost1 + path.Cost2) as

path(Src,Dest,Path,Cost)

path(Nxt,Dst,Path2,Cost2)

link.Nxt=path.Nxt
path.Src

link(Src,Nxt,Cost1)

link.Nxt

project

92 communications of the acm | noVeMber 2009 | VoL. 52 | no. 11

research highlights

Algorithm 2 shows the pseudocode for PSN. Each tuple,
denoted t, has a superscript (old/new, i) where i is its corre-
sponding iteration number in SN evaluation. Each process-
ing step in PSN consists of dequeuing a tuple tk

old,i from Qk
and then using it as input into all corresponding rule strands.
Each resulting tj

new,i+1 tuple is pipelined, stored in its respective
pj table (if a copy is not already there), and enqueued into Qj for
further processing. Note that in a distributed imple mentation.
Qj can be a queue on another node, and the node that receives
the new tuple can immediately process the tuple after the
enqueue into Qj. For example, the dataflow in Figure 4 is based
on a distributed implementation of PSN, where incoming
path and linkD tuples received via the network are stored
locally, and enqueued for processing in the corresponding
rule strands.

To fully pipeline evaluation, we have also removed the dis-
tinctions between pj

old and pj in the rules. Instead, a timestamp
(or monotonically increasing sequence number) is added to
each tuple at arrival, and the join operator matches each tuple
only with tuples that have the same or older timestamp. This
allows processing of tuples immediately upon arrival, and is
natural for network message handling. This represents an
alternative “book-keeping” strategy to the rewriting used in SN
to ensure no repeated inferences. Note that the timestamp only
needs to be assigned locally, since all the rules are localized.

We have proven elsewhere20 that PSN generates the same
results as SN and does not repeat any inferences, as long as
the NDlog program is monotonic and messages between two
network nodes are delivered in FIFO order.

3.4. incremental maintenance
In practice, most network protocols are executed over a long
period of time, and the protocol incrementally updates and
repairs routing tables as the underlying network changes
(link failures, node departures, etc.). To better map into
practical networking scenarios, one key distinction that
differentiates the execution of NDlog from earlier work in
Datalog is our support for continuous rule execution and
result materialization, where all tuples derived from NDlog
rules are materialized and incrementally updated as the
underlying network changes. As in network protocols,
such incremental maintenance is required both for timely
updates and for avoiding the overhead of recomputing all
routing tables “from scratch” whenever there are changes

src sends all existing links to the destination address field
as linkD tuples. Rule strand sp2b-2@nxt takes the new
linkD tuples it received via the network and performs a join
operation with the local path table to generate new paths.

3.3. Relaxing semi-naïve evaluation
In our distributed implementation, the execution of rule
strands can depend on tuples arriving via the network, and
can also result in new tuples being sent over the network.
Traditional SN evaluation completely evaluates all rules on
a given set of facts, i.e., completes the iteration, before con-
sidering any new facts. In a distributed execution environ-
ment where messages can be delayed or lost, the completion
of an iteration in the traditional sense can only be detected
by a consensus computation across multiple nodes, which
is expensive; further, the requirement that many nodes com-
plete the iteration together (a “barrier synchronization” in par-
allel computing terminology) limits parallelism significantly
by restricting the rate of progress to that of the slowest node.

We address this by making the notion of iteration local
to a node. New facts might be generated through local rule
execution, or might be received from another node while a
local iteration is in progress. We proposed and proved cor-
rect a variation of SN iteration called pipelined semi-naïve
(PSN) to handle this situation.20 PSN extends SN to work in
an asynchronous distributed setting. PSN relaxes SN evalua-
tion to the extreme of processing each tuple as it is received.
This provides opportunities for additional optimizations on
a per-tuple basis. New tuples that are generated from the SN
rules, as well as tuples received from other nodes, are used
immediately to compute new tuples without waiting for the
current (local) iteration to complete.

algorithm 2 Pipelined Semi-naïve (PSN) Evaluation
while $ Qk.size > 0

tk
old,i ¬ Qk.dequeueTuple()

foreach rule strand execution
 Dpj

new,i+1 : —
 p1,...,pk-1, tk

old,i, pk+1,..., pn, b1, b2,..., bm

 foreach tj
new,i+1 Î Dpj

new,i+1

 if tj
new,i+1 Ï pj

 then pj ¬ pj È tj
new,i+1

 Qj.enqueueTuple (tj
new,i+1)

figure 4. Rule strands for the distributed version of sp2 after localization in P2.

sp2a@Src
link

path

link

linkD

sp2b-1@Nxt Join
path.Nxt=linkD.Nxt

Project
path

sp2b-2@Nxt Join
linkD.Nxt=path.Nxt

Project
path

SEND to linkD.Nxt

SEND to path.Src

SEND to path.Src

Project
linkD

Queue

RECV linkD

RECV path Queue

Queue

N
etw

ork O
ut

N
etw

ork In

path

linkD

noVeMber 2009 | VoL. 52 | no. 11 | communications of the acm 93

function symbols) has polynomial time and space com-
plexities in the size of the input. This property provides a
natural bound on the resource consumption. However,
many extensions of Datalog (including NDlog) augment the
core language in various ways, invalidating its polynomial
complexity.

Fortunately, static analysis tests have been developed to
check for the termination of an augmented Datalog query
on a given input.15 In a nutshell, these tests identify recur-
sive definitions in the query rules, and check whether these
definitions terminate. Examples of recursive definitions
that terminate are ones that evaluate monotonically increas-
ing (decreasing) predicates whose values are upper (lower)
bounded. Moreover, the declarative framework is amenable
to other verification techniques, including theorem prov-
ing,32 model checking,25 and runtime verification.28

NDlog can express a variety of well-known routing proto-
cols (e.g., distance vector, path vector, dynamic source rout-
ing, link state, multicast) in a compact and clean fashion,
typically in a handful of lines of program code. Moreover,
higher-level routing concepts (e.g., QoS constraints) can be
achieved via simple modifications to these queries. Finally,
writing the queries in NDlog illustrates surprising relation-
ships between protocols. For example, we have shown that
distance vector and dynamic source routing protocols differ
only in a simple, traditional query optimization decision:
the order in which a query’s predicates are evaluated.

To limit query computation to the relevant portion of the
network, we use a query rewrite technique, called magic sets
rewriting.4 Rather than reviewing the Magic Sets optimiza-
tion here, we illustrate its use in an example. Consider the
situation where instead of computing all-pairs shortest
paths, we are only in computing the shortest paths from a
selected group of source nodes (magicsrc) to selected des-
tination nodes (magicDst). By modifying rules sp1–sp4
from the path-vector program, the following computes only
paths limited to sources/destinations in the magicsrc/
magicDst tables, respectively.

sp1-sd pathDst(@Dest,src,path,Cost) :- magicsrc(@src),

link(@src,Dest,Cost), path=f_init(src,Dst).

sp2-sd pathDst(@Dst,src,path,Cost) :-

pathDst(@nxt,src,path1,Cost1), link(@nxt,Dest,Cost2),

Cost=Cost1+Cost2, path=f_concatpath(path1,Dest).

sp3-sd spCost(@Dest,src,min<Cost>) :- magicDst(@Dest),

pathDst(@Dest,src,path,Cost).

sp4-sd shortestpath(@Dest,src,path,Cost) :-

spCost(@Dest,src,Cost), pathDst(@Dest,src,path,Cost).

Query shortestpath(@src,Dest,path,Cost).

Our evaluation results21 based on running declarative
routing protocols on the PlanetLab26 global testbed and
in a local cluster show that when all nodes issue the same
query, the query execution has similar scalability properties
as the traditional distance vector and path-vector protocols.
For example, the convergence latency for the path-vector
program is proportional to the network diameter, and con-
verges in the same time as the path-vector protocol. Second,

to the underlying network. In the presence of insertions and
deletions to base tuples, our original incremental view main-
tenance implementation utilizes the count algorithm13 that
ensures only tuples that are no longer derivable are deleted.
This has subsequently been improved18 via the use of a com-
pact form of data provenance encoded using binary decision
diagrams shipped with each derived tuple.

In general, updates could occur very frequently, at a
period that is shorter than the expected time for a typical
query to reach a fixpoint. In that case, query results can never
fully reflect the state of the network. We focus our analysis
instead on a bursty model. In this weaker, but still fairly real-
istic model, updates are allowed to happen during query
processing. However, we make the assumption that after a
burst of updates, the network eventually quiesces (does not
change) for a time long enough to allow all the queries in the
system to reach a fixpoint. Unlike the continuous model, the
bursty model is amenable to simpler analysis; our results on
that model provide some intuition as to the behavior in the
continuous update model as well.

We have proven20 that in the presence of reliable, in-order
delivery of messages, link-restricted NDlog rules under the
bursty model achieve a variant of the typical distributed
systems notion of eventual consistency, where the eventual
state of the quiescent system corresponds to what would be
achieved by rerunning the queries from scratch in that state.

4. use cases
In the past 3 years, since the introduction of declarative
networking and the release of P2, several applications have
been developed. We describe two of the original use cases
that motivated our work and drove several of our language
and system designs: safe extensible routers and overlay net-
work development. We will briefly mention new applications
in Section 5.

4.1. Declarative routing
The Internet’s core routing infrastructure, while arguably
robust and efficient, has proven to be difficult to evolve to
accommodate the needs of new applications. Prior research
on this problem has included new hard-coded routing
protocols on the one hand, and fully extensible Active
Networks31 on the other. Declarative routing21 explores a new
point in this design space that aims to strike a better bal-
ance between the extensibility and robustness of a routing
infrastructure.

With declarative routing, a routing protocol is imple-
mented by writing a simple query in NDlog, which is then
executed in a distributed fashion at the nodes that receive
the query. Declarative routing can be viewed as a restric-
tive instantiation of Active Networks for the control plane,
which aims to balance the concerns of expressiveness, per-
formance and security, properties which are needed for an
extensible routing infrastructure to succeed.

Security is a key concern with any extensible system par-
ticularly when it relates to nontermination and the con-
sumption of resources. NDlog is amenable to static analysis
due to its connections to Datalog. In terms of query execu-
tion, pure Datalog (without any negation, aggregation, or

94 communications of the acm | noVeMber 2009 | VoL. 52 | no. 11

research highlights

We note that our Chord implementation is roughly
two orders of magnitude less code than the original C++
 implementation. This is a quantitative difference that is
 sufficiently large that it becomes qualitative: in our opinion
(and experience), declarative programs that are a few dozen
lines of code are markedly easier to understand, debug,
and extend than thousands of lines of imperative code.
Moreover, we demonstrate19, 21 that our declarative overlays
achieve the expected high-level properties of their respec-
tive overlay networks for both static and dynamic networks.
For example, in a static network of up to 500 nodes, the mea-
sured hop-count of lookup requests in the Chord network
conformed to the theoretical average of 0.5 × log2N hops,
and the latency numbers were within the same order of mag-
nitude as published Chord numbers.

5. concLusion
In Jim Gray’s Turing Award Lecture,12 one of his grand chal-
lenges was the development of “automatic programming”
techniques that would be (a) 1000× easier for people to use,
(b) directly compiled into working code, and (c) suitable for
general purpose use. Butler Lampson reiterated the first two
points in a subsequent invited article, but suggested that
they might be more tractable in domain-specific settings.16

Declarative Networking has gone a long way toward
Gray’s vision, if only in the domain of network protocol
implementation. On multiple occasions we have seen at
least two orders of magnitude reduction in code size, with
the reduced linecount producing qualitative improvements.
In the case of Chord, a multi-thousand-line C++ library was
rewritten as a declarative program that fits on a single sheet
of paper—a software artifact that can be studied and holisti-
cally understood by a programmer in a single sitting.

We have found that a high-level declarative language not
only simplifies a programmer’s work, but refocuses the pro-
gramming task on appropriately high-level issues. For example,
our work on declarative routing concluded that discussions
of routing in wired vs. wireless networks should not result in
different protocols, but rather in different compiler optimiza-
tions for the same simple declaration, with the potential to be
automatically blended into new hybrid strategies as networks
become more diverse.5, 17 This lifting of abstractions seems
well suited to the increasing complexity of modern network-
ing, introducing software malleability by minimizing the affor-
dances for over-engineering solutions to specific settings.

Since we began our work on this topic, there has been
increasing evidence that declarative, data-centric program-
ming has much broader applicability. Within the network-
ing domain, we have expanded in multiple directions from
our initial work on routing, to encompass low-level network
issues at the wireless link layer6 to higher-level logic including
both overlay networks21 and applications like code dissemi-
nation, object tracking, and content distribution. Meanwhile,
a variety of groups have been using declarative programming
ideas in surprising ways in many other domains. We briefly
highlight two of our own follow-on efforts.
secure distributed systems: Despite being developed inde-
pendently by separate communities, logic-based security
specifications and declarative networking programs both

the per-node communication overhead increases linearly
with the number of nodes. This suggests that our approach
does not introduce any fundamental overheads. Moreover,
when there are few nodes issuing the same query, query
optimization and work-sharing techniques can significantly
reduce the communication overhead.

One promising direction stems from our surprising
observation on the synergies between query optimization
and network routing: a wired protocol (distance-vector proto-
col) can be translated to a wireless protocol (dynamic source
routing) by applying the standard database optimizations of
magic sets rewrite and predicate reordering. More complex
applications of query optimization have begun to pay divi-
dends in research, synthesizing new hybrid protocols from
traditional building blocks.5, 17 Given the proliferation of
new routing protocols and a diversity of new network archi-
tecture proposals, the connection between query optimiza-
tions and network routing suggests that query optimizations
may help us inform new routing protocol designs and allow
the hybridization of protocols within the network.

4.2. Declarative overlays
In declarative routing, we demonstrated the flexibility and
compactness of NDlog for specifying a variety of routing pro-
tocols. In practice, most distributed systems are much more
complex than simple routing protocols; in addition to rout-
ing, they typically also perform application-level message
forwarding and handle the formation and maintenance of
a network as well.

In our subsequent work on declarative overlays,21 we dem-
onstrate the use of the Overlog to implement practical appli-
cation-level overlay networks. An overlay network is a virtual
network of nodes and logical links that is built on top of an
existing network with the purpose of implementing a network
service that is not available in the existing network. Examples
of overlay networks on today’s Internet include commercial
content distribution networks,1 peer-to-peer (P2P) applica-
tions for file- sharing10 and telephony,29 as well as a wide range
of experimental prototypes running on PlanetLab.

In declarative overlays, applications submit to P2 a con-
cise Overlog program that describes an overlay network, and
the P2 system executes the program to maintain routing
tables, perform neighbor discovery and provide forwarding
for the overlay.

Declarative overlay programs are more complex than
routing due to the handling of message delivery, acknowl-
edgments, failure detection, and timeouts. These programs
also heavily utilize soft-state features in Overlog not pres-
ent in the original NDlog language. Despite the increased
complexity, we demonstrate that our NDlog programs are
significantly more compact compared to equivalent C++
implementations. For instance, the Narada7 mesh formation
and a full-fledged implementation of the Chord distributed
hash table30 are implemented in 16 and 48 rules, respec-
tively. In the case of the Chord DHT presented by Loo et al.,19
there are rules for performing various aspects of Chord,
including initial joining of the Chord network, Chord ring
maintenance, finger table maintenance, recursive Chord
lookups, and failure detection of neighbors.

noVeMber 2009 | VoL. 52 | no. 11 | communications of the acm 95

extend Datalog in surprisingly similar ways: by supporting the
notion of context (location) to identify components (nodes) in
distributed systems. The Secure Network Datalog33 language
extends NDlog with basic security constructs for implement-
ing secure distributed systems, which are further enhanced
with type checking and meta-programmability in the LBTrust23
system for supporting various forms of encryption/authenti-
cation, delegation, for distributed trust management.
datacenter Programming: The BOOM2 project is explor-
ing the use of declarative languages in the setting of Cloud
Computing. Current cloud platforms provide developers
with sequential programming models that are a poor match
for inherently distributed resources. To illustrate the ben-
efits of declarative programming in a cloud, we used Overlog
as the basis for a radically simplified and enhanced reimple-
mentation of a standard cloud-based analytics stack: the
Hadoop File System (HDFS) and MapReduce infrastructure.
Our resulting system is API-compatible with Hadoop, with
performance that is equivalent or better. More significantly,
the high-level Overlog specification of key Hadoop inter-
nals enabled a small group of graduate students to quickly
add sophisticated distributed features to the system that
are not in Hadoop: hot standby master nodes supported
by MultiPaxos consensus, scaleout of (quorums of) master
nodes via data partitioning, and implementations of new
scheduling protocols and query processing strategies.

In addition to these two bodies of work, others have suc-
cessfully adopted concepts from declarative networking, in
the areas of mobility-based overlays, adaptively hybridized
mobile ad-hoc networks, overlay network composition, sen-
sor networking, fault-tolerant protocols, network configura-
tion, replicated filesystems, distributed machine learning
algorithms, and robotics. Outside the realm of networking
and distributed systems, there has been an increasing use of
declarative languages—many rooted in Datalog—to a wide
range of problems including natural language processing,
compiler analysis, security, and computer games. We main-
tain a list of related declarative languages and research proj-
ects at http://declarativity.net/related.

For the moment, these various efforts represent individual
instances of Lampson’s domain-specific approach to Gray’s
automatic programming challenge. In the coming years, it will
be interesting to assess whether these solutions prove fruitful,
and whether it is feasible to go after Gray’s challenge directly: to
deliver an attractive general-purpose declarative programming
environment that radically simplifies wide range of tasks.

Boon Thau Loo (boonloo@cis.upenn.edu)
University of Pennsylvania, Philadelphia,
Pa.

Tyson Condie (tcondie@cs.berkeley.edu)
University of California, berkeley, Ca.

Minos Garofalakis (minos@softnet.tuc.gr)
technical University of Crete, greece.

David E. Gay (david.e.gay@intel.com)
intel research, berkeley, Ca.

Joseph M. hellerstein (hellerstein@
cs.berkeley.edu) University of California,
berkeley, Ca.

Petros Maniatis (petros.maniatis@intel.
com) intel research, berkeley, Ca.

Raghu Ramakrishnan (ramakris@yahoo-
inc.com) yahoo! research, Silicon Valley.

Timothy Roscoe (troscoe@inf.ethz.ch)
eth Zurich, Switzerland.

Ion Stoica (istoica@cs.berkeley.edu)
University of California, berkeley, Ca.

 7. Chu, y.-h., rao, S.g., Zhang, h. a
case for end system multicast. in
Proceedings of ACM SIGMETRICS
(2000), 1–12.

 8. Clark, D.D. the design philosophy
of the DarPa internet protocols.
in Proceedings of ACM SIGCOMM
Conference on Data Communication
(Stanford, Ca, 1988), aCM, 106–114.

 9. Condie, t., Chu, D., hellerstein,
J.M., Maniatis, P. evita raced:
metacompilation for declarative
networks. in Proceedings of VLDB
Conference (2008).

 10. gnutella. http://www.gnutella.com.
 11. graefe, g. encapsulation of parallelism

in the volcano query processing
system. in Proceedings of ACM
SIGMOD International Conference on
Management of Data (1990).

 12. gray, J. What next? a few remaining
problems in information technlogy,
SigMoD Conference 1999. aCM
turing award Lecture, Video.
ACM SIGMOD Digital Symposium
Collection 2, 2 (2000).

 13. gupta, a., Mumick, i.S.,
Subrahmanian, V.S. Maintaining views
incrementally. in Proceedings of ACM
SIGMOD International Conference on
Management of Data (1993).

 14. Kohler, e., Morris, r., Chen, b.,
Jannotti, J., Kaashoek, M.f. the click
modular router. ACM Trans. Comp.
Sys. 18, 3 (2000), 263–297.

 15. Krishnamurthy, r., ramakrishnan, r.,
Shmueli, o. a framework for testing
safety and effective computability. J.
Comp. Sys. Sci. 52, 1 (1996), 100–124.

 16. Lampson, b. getting computers to
understand. J. ACM 50, 1 (2003),
70–72.

 17. Liu, C., Correa, r., Li, x., basu, P., Loo,
b.t., Mao, y. Declarative Policy-based
adaptive Manet routing. in 17th
IEEE International Conference on
Network Protocols (ICNP) (2009).

 18. Liu, M., taylor, n., Zhou, W., ives, Z.,
Loo, b.t. recursive computation of
regions and connectivity in networks.
in Proceedings of IEEE Conference
on Data Engineering (ICDE) (2009).

 19. Loo, b.t. the Design and
implementation of Declarative
networks (Ph.D. Dissertation).
technical report UCb/eeCS-2006-
177, UC berkeley (2006).

 20. Loo, b.t., Condie, t., garofalakis, M.,
gay, D.e., hellerstein, J.M., Maniatis,
P., ramakrishnan, r., roscoe, t.,

Stoica, i. Declarative networking:
language, execution and optimization.
in Proceedings of ACM SIGMOD
International Conference on
Management of Data (2006).

 21. Loo, b.t., Condie, t., hellerstein, J.M.,
Maniatis, P., roscoe, t., Stoica, i.
implementing declarative overlays.
in Proceedings of ACM Symposium on
Operating Systems Principles (2005).

 22. Loo, b.t., hellerstein, J.M., Stoica, i.,
ramakrishnan, r. Declarative routing:
extensible routing with declarative
queries. in Proceedings of ACM
SIGCOMM Conference on Data
Communication (2005).

 23. Marczak, W.r., Zook, D., Zhou, W., aref,
M., Loo, b.t. Declarative reconfigurable
trust management. in Proceedings
of Conference on Innovative Data
Systems Research (CIDR) (2009).

 24. P2: Declarative networking System.
http://p2.cs.berkeley.edu.

 25. Perez, J.n., rybalchenko, a., Singh,
a. Cardinality abstraction for
declarative networking applications.
in Proceedings of Computer Aided
Verification (CAV) (2009).

 26. PlanetLab. global testbed. 2006.
http://www.planet-lab.org/.

 27. ramakrishnan, r., Ullman, J.D. a
survey of research on deductive
database systems. J. Logic Prog. 23, 2
(1993), 125–149.

 28. Singh, a., Maniatis, P., roscoe, t.,
Druschel, P. Distributed monitoring
and forensics in overlay networks. in
Proceedings of Eurosys (2006).

 29. Skype. Skype P2P telephony. 2006.
http://www.skype.com.

 30. Stoica, i., Morris, r., Karger, D.,
Kaashoek, M.f., balakrishnan,
h. Chord: a scalable P2P lookup
service for internet applications. in
SIGCOMM (2001).

 31. tennenhouse, D.L., Smith, J.M.,
Sincoskie, W.D., Wetherall, D.J.,
Minden, g.J. a survey of active
network research. IEEE Commun.
Mag. 35, 1 (1997), 80–86.

 32. Wang, a., basu, P., Loo, b.t., Sokolsky,
o. towards declarative network
verification. in 11th International
Symposium on Practical Aspects of
Declarative Languages (PADL) (2009).

 33. Zhou, W., Mao, y., Loo, b.t., abadi, M.
Unified declarative platform for secure
networked information systems. in
Proceedings of IEEE Conference on
Data Engineering (ICDE) (2009).

 1. akamai. akamai Content Distribution
network. 2006. http://www.akamai.com.

 2. alvaro, P., Condie, t., Conway, n.,
elmeleegy, K., hellerstein, J.M.,
Sears, r.C. booM: Data-centric
programming in the datacenter.
technical report UCb/eeCS-2009-
98, eeCS Department, University of
California, berkeley, Jul 2009.

 3. balbin i., ramamohanarao, K. a
generalization of the differential
approach to recursive query evaluation.
J. Logic Prog. 4, 3 (1987), 259–262.

 4. bancilhon, f., Maier, D., Sagiv, y.,
Ullman, J. Magic sets and other
strange ways to implement logic

programs. in Proceedings of ACM
SIGMOD International Conference on
Management of Data (1986).

 5. Chu, D., hellerstein, J. automating
rendezvous and proxy selection
in sensor networks. in Eighth
International Conference on
Information Processing in Sensor
Networks (IPSN) (2009).

 6. Chu, D.C., Popa, L., tavakoli, a.,
hellerstein, J.M., Levis, P., Shenker,
S., Stoica, i. the design and
implementation of a declarative
sensor network system. in 5th ACM
Conference on Embedded Networked
Sensor Systems (SenSys) (2007). © 2009 aCM 0001-0782/09/1100 $10.00

References

