The Design Principles of PlanetLab

Larry Peterson
Princeton University

ABSTRACT

PlanetLab is a geographically distributed platform for
deploying, evaluating, and accessing planetary-scale net-
work services. PlanetLab is a shared community effort
by a large international group of researchers, each of
whom gets access to one or more isolated slices of Plan-
etLab’s global resources. Because we deployed Planet-
Lab and started supporting users before we fully un-
derstood what its architecture would be, being able to
evolve the system became a requirement. This paper
examines the set of design principles that guided this
evolution. Some of these principles were explicit at the
project outset, and others have become crystallized as
the platform has developed.

1. INTRODUCTION

PlanetLab is a globally distributed computing plat-
form shared, built, and maintained by a community of
researchers at 300 sites in more than 30 countries. In
exchange for hosting a small number of nodes (servers),
participants obtain access to a share of resources across

the entire platform for deploying and evaluating planetary-

scale network services [4]. In addition, the platform it-
self, including the essential services required to operate
it, is a communal design work in progress and an inter-
esting research area in its own right.

In this paper we concentrate on the design princi-
ples of PlanetLab. By “design principles”, we mean
the rules we have come to recognize and formulate that
guide our decisions about how to put the platform to-
gether. In contrast, we use the term “architecture” to
denote the composition of the platform itself, in other
words the end result of these decisions. We do not de-
scribe PlanetLab’s architecture in this paper other than
to illustrate the consequences of our design principles.
The architecture of the platform at time of writing is
described in several PlanetLab Design Notes (PDNs)
and academic publications [1].

Of course, the boundary between design principles
and high-level architectural features is somewhat arbi-
trary. Nonetheless, we have found it useful to try to
tease the two apart. It is comparatively rare for the doc-

Timothy Roscoe

Intel Research — Berkeley

umentation of large systems to include an attempt to
reflect on the thought processes of its architects, David
Clark’s description of the Internet design philosophy [2]
being one notable example.

The evolving design of PlanetLab has been an at-
tempt at principled pragmatism. The principles we
present here did not, in general, predate the implemen-
tation of PlanetLab, though some were explicit from the
outset. Instead, they have co-evolved with the architec-
ture itself, and thus we expect them, like the architec-
ture itself, to continue to change over time.

2. GOALS

Underlying the design principles are the high-level
goals of PlanetLab. From the beginning [4], we have
identified three:

e to provide a platform for researchers to experiment
with planetary-scale network services;

e to provide a platform for novel network services to
be deployed and serve a real user community; and

e to catalyze the evolution of the Internet into a
service-oriented architecture.

It should be clear that these goals are highly syn-
ergistic and reinforcing: early experiments with ideas
lead to the deployment of new network services, and
the availability of a rich set of network services effec-
tively changes the nature of the Internet. There are,
however, subtle tensions between the three. For ex-
ample, a platform that supports only short-term ex-
periments would likely be designed differently than one
that must also support continuously-running services.
We hope to support both workloads, but with a bias
towards the latter. Similarly, a platform that supports
a collection of services developed by the research com-
munity need not necessarily consider the full range of
scalability, security, and autonomy issues that must be
addressed by a platform which aspires to become the
conduit through which users interact with the Internet.
The balance-point between these two goals is difficult to



define: we must continue to push the scalability, secu-
rity, robustness, and decentralization that an Internet-
scale architecture requires, but at the same time, ensure
that the evolution of the architecture is driven by the
requirements of the running system rather some ideal-
ized vision.

3. TERMINOLOGY

The design principles guiding the evolution of Plan-
etLab as a platform have been formulated at the same
time as the architecture itself has crystallized. Conse-
quently, while nominally independent of the current ar-
chitecture of PlanetLab, it is convenient to describe and
illustrate the design principles in the context of Planet-
Lab as it currently exists. For that reason, we describe
briefly here how PlanetLab’s architecture looks today;
readers familiar with PlanetLab internals may observe
that the current architecture does not always adhere to
the principles we describe here.

PlanetLab users who wish to deploy applications ac-
quire a slice, which is a collection of virtual machines
(VMs) spread around the world. The VMs are imple-
mented on physical machines by some OS mechanism or
virtual machine monitor (VMM), and controlled by an-
other entity, the node manager, which is responsible for
creating and destroying slices. We sometimes call use
the term sliver to refer to the instantiation of a slice on
a give node. There are also special infrastructure slices
which perform essential functions on each node (such
as providing a local site administrator’s interface to the
node).

Collectively, the node managers and infrastructure
services, together with the (currently centralized) ac-
count management and node installation functions, form
the control plane of PlanetLab.

Of course, PlanetLab is at least two things: the entire
ensemble of contributed services and running applica-
tions on the platform, and the narrower set of main-
tained facilities that support the entire ensemble. By
“architecture” in this paper we mean the structure of
the core subset, maintained by the PlanetLab support
team. However, we feel the design principles we outline
here are applicable to other services above this layer in
the platform.

4. DISTRIBUTED VIRTUALIZATION

PlanetLab services and applications run in a slice of
the platform: a set of nodes on which the service re-
ceives a fraction of each node’s resources, in the form of
a virtual machine (VM). Virtualization and virtual ma-
chines are, of course, well-established concepts. What
is new in PlanetLab is distributed virtualization: the
acquisition of a distributed set of VMs that are treated
as a single, compound entity by the system.

Slices are underspecified. While Plan-
etLab must prescribe low-level facilities for
creating, manipulating, and destroying slices,
much of the process is left unspecified, and
can be performed by a variety of other ser-
vices.

By giving slices as much flexibility as possible in defin-
ing a suitable environment for a service, as well as the
process by which that environment is instantiated, we
minimize the extent to which future users are constrained
in what they do with the platform. We also hopefully
encourage users to implement functions useful to other
slices. For example, PlanetLab does not provide tunnels
that connect a slice’s constituent VMs into an overlay,
but allows a slice-specific overlay to be created, either
by the slice itself, or by another service which creates
and populates the slice in the first place.

Similarly, the actual contents of a sliver—within the
“box” of the VM—are of little concern to the Planet-
Lab. For example, it should not matter whether a sliver
is running in a Java virtual machine (JVM) or is writ-
ten in assembly language, and if it is a JVM, it is up to
the slice to decide whether it uses version 1.5.0 or 1.4.2.
The platform provides the means by which slices can
install whatever software they need, but little more.

PlanetLab aims to isolate services and applications
from each other, thereby maintaining the illusion that
each service runs on a distributed set of private ma-
chines. The slice, or strictly speaking the sliver, is the
basic abstraction for this.

The unit of isolation is the sliver. What-
ever base functionality the platform provides,
it must be possible for the platform to iso-
late slices from each other as they invoke this
functionality. The platform must strive to
minimize the effect one slice can have on an-
other.

This principle has three corollaries. First, the plat-
form must deliver isolation of slivers, by allocating and
scheduling node resources, partitioning or contextualiz-
ing system namespaces, and enforcing stability and se-
curity, between slivers sharing a node. Early methods
for achieving this in PlanetLab are discussed in [1].

Second, care must be exercised when multiplexing
any VMM-provided resources between slices, not only
low-level resource abstractions like CPU time. It is
most straightforward to achieve isolation by keeping
the underlying VMM as “thin” as possible, and pro-
viding most of the system functionality within a slice;
for example, using Xen [?] as a virtual machine moni-
tor and running a complete operating system kernel in
each slice. Where an implementation uses a more high-
level VMM, such as the Linux/VServer kernel [1], it is



important to avoid as far as possible crosstalk between
applications competing for kernel resources (such as the
protocol stack, routing tables, filing system datastruc-
tures, open file descriptors, and so on.).

Third, it should not concern the platform how re-
sources allocated to a sliver are multiplexed among the
various activities of the sliver, for example by intra-slice
thread scheduling policies. It is, however, desirable that
the platform provide in the “execution environment” it
presents to each virtual machine, the mechanisms to
allow a slice to perform this internal multiplexing effec-
tively.

5. UNBUNDLED MANAGEMENT

Planetary-scale services are a relatively recent and
ongoing subject of research; in particular, this includes
the services required to manage a global platform such
as PlanetLab. Moreover, it is an explicit goal of Plan-
etLab to allow independent organizations (in this case,
research groups) to deploy alternative services in paral-
lel, allowing users to pick which ones to use. This ap-
plies to application-level services targeted at end-users,
as well as infrastructure services used to manage and
control PlanetLab itself (e.g., slice creation, resource
and topology discovery, performance monitoring, and
software distribution). The key to unbundled manage-
ment is to allow parallel infrastructure services to run
in their own slices of PlanetLab and evolve over time.

This is a new twist on the traditional problem of
how to evolve a system, where one generally wants to
try a new version of some service in parallel with an
existing version, and roll back and forth between the
two versions. In our case, multiple competing services
are simultaneously evolving. The desire to support un-
bundled management leads to two requirements for the
PlanetLab architecture.

Support only local abstractions directly
in the OS. In other words, the only abstrac-
tions that the low-level VMM should deal
with are local to the node. Implement all
global (network-wide) abstractions by infras-
tructure services.

Perhaps the most notable example of this principle
is slices themselves: they are a global abstraction, and
neither the VMM on a PlanetLab node nor the node
manager on the node deal with anything other than
single virtual machines. The slice abstraction itself (as
a distributed collection of VMs) is implemented by slice
creation services.

We want to maximize the opportunity for services to
compete with each other on a level playing field. In
other words, rather than have a single privileged ap-
plication controlling a particular aspect of the OS, the

PlanetLab OS potentially supports many such manage-
ment services. One implication of this interface being
sharable is that it must be well-defined, explicitly ex-
posing the state of the underlying OS. In contrast, the
interface between an OS and a privileged control pro-
gram running in user space is often ad hoc since the
control program is, in effect, an extension of the OS
that happens to run in user space.

Make all interfaces exported by the OS
or control plane sharable. Any function-
ality which has to be implemented by a unique
piece of code should be accessible by multiple
infrastructure services, none of which should
require unique privilege.

Again, this principle applies to slice creation as much
as to other infrastructure services. While the low-level
mechanism for creating VMs on a node resides in the
node manager, there can be (and are) multiple slice
creation services that can instantiate slivers on a node.

The bottom line is that OS design often faces a ten-
sion between implementing functionality in the kernel
and running it in user space, the objective often being to
minimize kernel code. Like many VMM architectures,
the PlanetLab OS faces an additional, but analogous,
tension between what can run in a slice or VM, and
functionality (such as slice user authentication) that re-
quires extra privilege or access but is not part of the ker-
nel. In addition, there is a third aspect to the problem
that is peculiar to PlanetLab: functionality that can be
implemented by parallel, competing subsystems, versus
mechanisms which by their very nature can only be im-
plemented once (such as bootstrapping slice creation).
The PlanetLab OS strives to minimize the latter, but
there remains a small core of non-kernel functionality
that has to be unique on a node.

6. CHAIN OF RESPONSIBILITY

The way slices interact with the rest of the world has
has turned out to be important factor in PlanetLab’s
design, much more so than we thought at the incep-
tion of the project. It is also a novel requirement, a
consequence of PlanetLab’s giving applications so many
points-of-presence on the network.

Each interaction between PlanetLab and
the rest of the network must be at-
tributable to a PlanetLab user. We must
always consider PlanetLab’s interaction with
the rest of the network: unlike many sys-
tems projects, PlanetLab is and has always
been inextricably embedded in the “real” In-
ternet, and its behavior has consequently of-
ten been felt in the Internet. Moreover, each
such interaction with the real Internet can,



and should be attributed to the responsible
user.

Effectively limiting and auditing legitimate users has
been as significant an issue as securing the PlanetLab to
prevent malicious users from hijacking machines. Expe-
rience shows that the Internet, and the design of intru-
sion detection systems in particular, is highly sensitive
to the kinds of traffic that experimental planetary-scale
services tend to generate, and this has had to be re-
flected in the design of PlanetLab’s filtering, rate limit-
ing, and packet auditing functionality.

However, our experience is that that simply limiting
slices is not sufficient since even a single unexpected or
unwanted packet can trigger an incident report. Thus,
an important responsibility of PlanetLab is to preserve
the chain of responsibility among all the relevant prin-
cipals. That is, it must be possible to map externally
visible activity (e.g., a transmitted packet) to the users
responsible for that packet. Note that PlanetLab does
not attempt to eliminate the possibility that bad things
might happen, it just requires that the system be able
to identify the responsible party when something does
go wrong,.

Preserving the chain of responsibility is not just a
matter of being able to respond to security complaints;
it is also essential to preserving the implicit trust rela-
tionships. Consider that on the one hand, nearly 300
autonomous organizations have contributed nodes to
PlanetLab. They each require autonomous control over
the nodes they own. On the other hand, 375 research
groups want to deploy their services across PlanetLab.
The node owners need assurances that these services
will not be disruptive. Clearly, establishing 300x375
pairwise trust relationships is an unmanageable task:
a researcher would have to obtain permission to cre-
ate VMs on nodes owned by 300 organizations, while a
hosting site would need to approve requests for use of
its nodes from 375 independent research groups [5].

A well-understood way to reduce such a N x N prob-
lem into a N + N problem is to use a trusted interme-
diary. The PlanetLab Consortium (PLC) is one such
trusted intermediary: Node owners trust PLC to man-
age the behavior of slivers that run on their nodes while
preserving their autonomy, and researchers (slice users)
trust it to provide access to a set of nodes that are ca-
pable of hosting their services. In general, we observe:

Keep explicit the trust relationships be-
tween node owners, authorities, and slice
users. PlanetLab is a decentralized system
that spans multiple autonomous organizations.
To have long-term viability, it must identify
the critical trust relationships among the prin-
cipals, and provide mechanisms that give these
principals the control and assurances they re-

quire.

For example, as described elsewhere [3], PlanetLab pro-
vides an auditing mechanism that ensures that the chain
of responsibility is preserved. It also provides mecha-
nisms that allows principals the ability to dictate how
their resources are used.

7. EVOLUTION VS.CLEAN SLATES

PlanetLab has never aimed to start from a “clean
slate”. Moreover, architectural features of PlanetLab
have always been designed with a view to their eventual
replacement.

This is partly because the research community was
ready to use PlanetLab the moment the first nodes were
deployed; the lengthy process of designing a completely
new architecture from scratch was never an option. As
a result, the first version of PlanetLab had to be built
quickly from preexisting ideas and technologies. We
had a strong intuition that much of what we originally
designed would have to be reworked as we gained ex-
perience with the system, since for for the first version
there was very little usage data or requirements data
available.

The approach of evolving preexisting technology as
opposed to pursuing a clean slate design is also mo-
tivated by our experience with previous testbeds, in
which application writers exhibited two strong biases:
(1) they are seldom willing to port their applications to
a new API and (2) they expect a full-featured system
rather than a minimalist API tuned for someone else’s
OS research agenda. Again, since PlanetLab’s value is
defined by the applications that run on it, a clean slate
design was simply not an option.

While the concept of built-in obsolescence of building
blocks has been explicit in PlanetLab from the very
beginning, it is only recently that the consequences of
these decisions have been codified as design principles:

Avoid “clean slate” designs. When de-
signing a large piece of infrastructure that
is closely related to existing technology (in
the way PlanetLab is deeply embedded in
the current Internet and commodity operat-
ing systems), a clean slate, top-down archi-
tecture cannot be developed in the time avail-
able, once the need for the infrastructure is
recognized. In contrast, a bottom-up, evolu-
tionary design will immediately gain momen-
tum.

However, any new architecture, whether bottom-up
or top-down, is always in danger of atrophy, particularly
if it is not designed with the evolutionary process in
mind.



Design the architecture with an open-
ended view of future evolution. Design
decisions must always be taken with a view
to the future evolution of the architecture,
in possibly unforeseen ways. Architectural
options should be kept as open as possible.

This second principle is subtle, in that it goes beyond
mere extensibility of interfaces. We expect few current
features of PlanetLab’s architecture to be recognizable
in a few years time. Above all, PlanetLab has been
designed to efficiently evolve.

Two other principles follow from these in the specific
context of PlanetLab’s evolution. They are not orthog-
onal, but rather overlap and mutually reinforce each
other. The first is a direct consequence of eschewing
the “clean slate” approach in favor of producing a us-
able but highly evolvable system as soon as possible.

Leverage existing software and hard-
ware infrastructure. Wherever possible,
avoid modifying existing packages (and there-
after having to track changes) if they can be
used as-is.

Adapting rather than simply using an off-the-shelf
software package takes time, and raises the question
of who now supports the modified package. Typically,
the PlanetLab development team has to track changes
to the mainstream package, and keep their own mod-
ified version in sync. This can result in considerable
extra work, on an ongoing basis, and is to be avoided if
possible.

For example, PlanetLab makes use of standard, read-
ily available software such as OpenSSH, Linux, XML-
RPC libraries and bindings, and a variety of Unix utili-
ties. When PlanetLab does modify existing software,
such as patching the Linux kernel, this leads to an
increased maintenance burden as we must then track
changes in the kernel more closely and port our modifi-
cations. However, we mitigate this burden somewhat by
using patches which are themselves maintained by other
groups wherever possible (most notably the Vservers
patch), and by using loadable kernel modules (VNET).

When adding new functionality to a PlanetLab node
over and above that provided by the node operating
system, the question inevitably arises as to where the
functionality should be implemented: as a service, in
the control plane, or as a kernel extension.

Implement any new system function at
the “highest” level possible. Running a
service in a slice with limited privileged capa-
bilities is preferred to a slice with widespread
privileges, which in turn is preferred to aug-
menting the node manager, all of which are
preferable to adding the function to the VMM

or operating system. This leads to a Planet-
Lab version of the principle of least privilege:
Privileged slices should be granted the min-
imal privileges necessary to support the de-
sired behavior. They should not be granted
blanket superuser privileges.

8. OSAND CONTROL PLANE

Maintaining a split between the operating system and
the control plane enables us to separate the execution
environment of an application, which we keep as non-
PlanetLab-specific as possible, from the interface to Plan-
etLab itself.

Keep the Control Plane and the Oper-
ating System orthogonal. Don’t pollute
the OS interface by adding new functionality
to it, when this can be added to the out-of-
band control plane interface instead.

The control plane (essentially, the node manager and
associated services) appears to a VM to be separate
from the OS proper. Adding functionality to the control
plane interface means that new features or capabilities
are added to a PlanetLab node in an OS-independent
way. A good example of this is the use of PlanetLab
sensors to obtain information about node status.

This also means that the operating system interface
changes little, facilitating cross-development and test-
ing between PlanetLab nodes, clusters, and users’ devel-
opment machines. We can extend this principle further
to a version of the traditional idea of “least surprise”:

Use existing interface semantics as far
as possible: Any OS operation, initiated in
a VM, should have an effect that is as close
as possible to the effect it would have on the
corresponding dedicate machine, subject to
the external policies limiting the capabilities
of the slice. No operations should be added to
the PlanetLab control plane or OS interfaces
if the desired functionality can already be ac-
cessed through the existing OS interfaces.

For example, access to raw sockets on PlanetLab was
originally restricted to administrative programs. Nor-
mal slices used a new, PlanetLab-specific address fam-
ily to open “safe raw sockets”, which could only send or
receive packets that might have been sent or received
on an existing socket owned by the slice. A better ap-
proach has now been implemented: safe raw sockets are
accessed in exactly the same away as “real” raw sockets
are. Whether the client program receives all packets
depends on the privileges granted to the slice.

A final principle, closely related to those above, has
been identified as PlanetLab begins to consider both



a transition to a more heterogeneous deployment (in [5] L. Peterson, A. Bavier, M. Fiuczynski, S. Muir,

OS and processor terms), and the federation issues that and T. Roscoe. Towards a Comprehensive
arise when a slice can span multiple PlanetLab-like plat- PlanetLab Architecture. Technical Report
forms. PDN-05-030, PlanetLab Consortium, June 2005.

Don’t tackle porting issues. Use the or-
thogonality of control plane and OS to ensure
that the overhead of porting an application is
the same when running on PlanetLab or on
a native operating system.

This captures PlanetLab’s position on portability of
applications and support for heterogeneity moving for-
ward, even though at present PlanetLab provides a sin-
gle OS/instruction set environment. Specifically, the
cost of porting an application from one operating sys-
tem or processor architecture to another should be the
same on PlanetLab as it would be in a conventional
environment.

Put another way, we deliberately hide nothing of the
operating system or processor architecture under a layer
of abstractions. Porting between environments is or-
thogonal to porting to or from PlanetLab, since features
specific to PlanetLab are added in an OS-neutral way
to the control plane interface. Our goal is to decouple
those aspects of the PlanetLab API that are unique to
PlanetLab from the underlying execution environment.

9. ACKNOWLEDGEMENTS

The development of PlanetLab, and of these princi-
ples, has been a highly communal effort. We would like
to acknowledge the contribution of the large number of
people (too many to mention here) who have shaped
our way of thinking about PlanetLab and continue to
do so as the platform evolves.

10. REFERENCES

[1] A. Bavier, M. Bowman, D. Culler, B. Chun,
S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating System
Support for Planetary-Scale Network Services. In
Proc. 1st NSDI, San Francisco, California, Mar.
2004.

[2] D. D. Clark. The Design Philosophy of the
DARPA Internet Protocols. In Proceedings of the
SIGCOMM 88 Symposium, pages 106-114,
Stanford, 1988.

[3] M. Huang, A. Bavier, and L. Peterson. PlanetFlow:
Maintaining Accountability for Network Services.
In Operating Systems Review, Jan. 2006.

[4] L. Peterson, T. Anderson, D. Culler, and
T. Roscoe. A Blueprint for Introducing Disruptive
Technology into the Internet. In Proc. of ACM
HotNets-1, Princeton, New Jersey, Oct. 2002.



