
C L A N G E R " an interpreted systems programming
language

T i m o t h y R o s c o e

C o m p u t e r L a b o r a t o r y ,

U n i v e r s i t y o f C a m b r i d g e .

(tr@cl. cam. ac. uk)

O c t o b e r 14, 1994

A b s t r a c t

CLANGER is a powerful, yet simple, command language for the Neme-
sis operating system. It uses runtime type information to interface di-
rectly with operating system components. CLANGER is a combination of
command-line interpreter, scripting language, debugger and prototyping
tool. This paper describes why such a language is possible, how it is being
implemented, and outlines the language as it currently stands.

1 Background

Nemesis is the operating system being developed as part of the Pegasus ESPRIT
Project [3]. It is based on a Quality of Service (QOS) paradigm for resource
management which locates as much operating system functionality as possible in
the application, thereby reducing QOS crosstalk between application domains.

This is achieved using a structure and linkage mechanism based on the notion
of interfaces, described in [8]. An interface is the point at which a service is
offered. It is implemented as a closure, i.e. a pair of pointers: one to a state
record opaque to the client, and one to an array of function pointers called a
method suite. The number and signatures of the functions in the method suite
make up the type of the interface, and interface types are defined in an interface
definition language (IDL) called MIDDL. Invocation between protection domains
and between address spaces is performed through surrogate interfaces.

Interfaces are the basic linkage mechanism in Nemesis. The operating system
code is composed of a set of modules, whose only externally visible symbols are
a small number of closure addresses. To give an idea of the size of modules

13

(and thus the granularity of linkage units), the system as it stands for Digital
Alpha/AXP machines comprises about 25 modules, with sizes ranging from
about 100 to 2,500 lines of C source. Most modules are about 300-400 lines
long.

At a level above virtual addresses, all computational objects in Nemesis can
be named in a way modelled on [9]. An interface of type Context provides a
flat name space in which textual strings can be bound to objects of arbitrary
types. Naming graphs can be built by binding names in One Context to other
Contexts. Name spaces can also be composed in an ordered way in the manner
of Plan 9's "union directories" [7]. Interfaces conforming to type Context are
used extensively within Nemesis.

Nemesis also provides a module called TypeSystem. This component of the
system encapsulates data structures representing every interface type known to
the system together with all operation signatures and concrete types defined
within each interface. The information is presented as a collection of inter-
faces. The Type System is analogous to the Cedar Abstract Machine [10] or
the CORBA Interface Repository [4]. In addition, the Type System provides a
tagged Any type plus associated runtime type checking and narrowing. It is this
Any type to which textual names are mapped by Context'interfaces.

These two facilties make CLANGER possible: ubiquitous typing within the
operating system (coupled with a means to interrogate the type system at run-
time), and a uniform naming model based on pathnames, ~tat name spaces and
runtime typing. Given an object and its type, an instance of the interpreter
can perform any legal operation on it in a typesafe manner without any prior
knowledge of its structure. Any linkage-level interface in the operating system
can potentially be manipulated from the command line. CLANGER can perform
any non-time-critical operation that a piece of C code can.

2 Variables in CLANGER

All variable names in CLANGER are Nemesis pathnames, and all values axe Anys.
An instance of the interpreter is associated with a root naming context. This
context is used to resolve any variable name. It is also the context in which
a new name is bound when a variable is encountered for the first time. New
variables are created simply by assigning to them, and their type is inferred
from the type of the value they receive. Since variables are nothing more than
entries in some naming Context, any value in any name space reachable by a
pathname from the interpreter's root is a CLANGER variable.

For manipulating instances of MIDDL'S concrete types (integers, records,
etc.) CLANGER has a full set of operators modelled on C and providing essen-
tially the same functionality. Since each variable carries its own type around

14

with it as part of its value, any operation on a concrete type can be typechecked
at invocation time.

Similarly, a CLANGER value which is a pointer to an interface closure (also
known as an interface reference) can have any valid method invoked on it (see
section 3 below).

This embedding of the command language within the operating system's
linkage structures gives the language its expressiveness and power. It also re-
sults in a very simple base language. For instance, unlike many embedded
interpreters, CLANGER does not provide an associative array type. There are
plenty of these in the operating system, indeed the most commonly used one is
Context , which is the very mechanism used for variable binding anyway. Using
associative arrays in CLANGER is just like using any other part of the operating
system.

This also permits an interpreter to be embedded in almost any application
with next to no effort--certainly without the need for the ad-hoc C wrappers
required for languages such as Python [11] or Tcl [5]. ~ r t h e r m o r e , when a new
type is introduced to the system, CLANGER will be able to manipulate its values
with no new code whatsoever.

3 M e t h o d I n v o c a t i o n

CLANGER'S integration with the operating system is achieved through the ability
to invoke methods on interfaces. A full method invocation is a statement a bit
like this 1:

[r e s l , r e s 2 , r e s3] <- i r e f $ m e t h o d [a r g l , a rg2 , arg3] ;

On parsing this statement, the interpreter finds the variable whose name is
i r e f and checks that it is an interface reference whose type has an operation
called method. It then checks that the operation has three arguments, that the
types of arguments a rg l , arg2 and arg3 can be narrowed to the appropriate
argument types, and that the operation returns at least three results.

The interpreter then actually synthesizes a Nemesis method invocation on
the interface and binds to the names r e s l , r e s 2 and r e s3 the first three results,
changing the types of r e s l etc. in the process to reflect their new values. Ext ra
results are discarded.

Various shorthands exist. Intermediate results from the call can also be
discarded, for example in the statement:

1the syntax is somewhat influenced by Cedar and CLU.

15

[r e s l , , , res4] <- iref$method2[a rg l , arg2, argS] ;

All results (if they exist) can be ignored with a statement like:

iref$method3[a rg l , arg2, arg3] ;

A single result can be extracted. The value of the expression:

i ref$method4[a rg l , arg2] . r e s u l t 3

is the result whose formal parameter name is r e su l t3 .

Finally, to invoke a method with no arguments and discard all its results,
one can just use the syntax:

iref $method4 ;

Exceptions raised by method invocation calls are caught and translated into
CLANGER exceptions.

4 Funct ion Definit ion

One can define functions in CLANGER. A function definition looks like this:

d e f myFunction[a rg l , arg2, arg3]
r e tu rns [r e s l , res2, res3]
(. . . }

This statement defines a new function with three formal parameters called argl ,
arg2 and arg3, and which executes the code inside the curly brackets in an
environment almost identical to the caller's except with the actual arguments
bound to the names of the formal parameters. The function .itself is an Nemesis
interface of type ClangerFtmction and is inserted into the name space when it
is defined. Thus it can be passed around and manipulated in much the same
way as anything else.

A function thus defined can be invoked in a similar way to a MIDDL method
invocation, for example:

[r e s l , res2 , res3] <- myFunction[a rg l , arg2, arg3] ;

The body of the function is just plain CLANGER code. The function must
return by using the r e tu rn statement:

16

r e t u r n [1, 4, "He l lo"] ;

The r e t u r n statement must include the right number of return values. As with
normal assignment, the types of values returned will be deduced at run time.

It should be noted that invoking a function call in CLANGER is simply a
mat ter of creating a suitable name space and passing it to the C l a n g e r F u n c t i o n
interface. The name space (in effect the scope for the function) can trivially be
constructed by creating a new Context for the variables, and then creating a
union of it and the current root. This operation is sumciently lightweight to
allow functions to be used as syntactic sugar for commonly-used invocations.

A possible future extension would allow the user to define complete imple-
mentations of MIDDL interfaces, rather than isolated functions not belonging to
any interface. While aesthetically appealing, it is unclear how useful this facility
would be.

5 Control Flow

As well as function and method invocation, CLANGER provides the usual rich
set of control flow structures:

• whi le loops

• f o r loops

• i f statements

• case statements

• exceptions with r a i s e , t r y , ca tch , c a t c h a l l and f i n a l l y .

A block is delimited by curly brackets ("{" and "}") and can be used in place
of a statement.

6 Implementat ion

The basic interpreter for CLANGER is very simple. It consists of a parser which
generates a syntax tree, and code which takes a syntax tree and a Contex t
interface and executes the code. This is the same mechanism as that used for
function invocation. Indeed, the parser returns a Nemesis interface of type
C lange rFunc t i on just like the def statement.

The interface type C lange rFunc t i on provides a method called Execute ,
which takes as its sole argument a Context interface which provides the name
space and execution environment of the call.

17

7 Examples

The provision of associative arrays in CLANGER has already been mentioned.
In addition, all the modules providing language run-timei support in Nemesis
have interfaces specified in MIDDL and so are usable by CLANGER. Here we give
three examples of further facilities to which an interpreter has access:

7 . 1 F i l i n g S y s t e m s

Directory services of filing systems in Nemesis are just another part of the name
space. Implementing an l s command in CLANGER is a mat ter of calling the
L i s t method on a name space, then printing the list of results by calls on the
P r i n t method of a Console. If the notion of a "current working directory" is
required, it is simple to have a variable in the root name space called cwd or
somesuch. Its type is, of course, Context .

7.2 Inter-domain communicat ion

Some command languages have extensions to provide inter-process communi-
cation via RPC, but require the programmer to create stubs for each RPC
interface. The Nemesis inter-domain communication mechanism uses surrogate
interfaces and dynamically creates such surrogates at bind time. The interface
to the binding mechanism is (naturally) defined in MIDDL~ Thus RPC support
in CLANGER is already there.

7 . 3 T h r e a d s

Support for concurrency is becoming more widespread ifi programming lan-
guages and operating systems, but shells are some way behind. Access to the
thread primitives and synchronisation mechanisms of Nemesis user-level sched-
ulers is via interface calls and is therefore trivially easy from CLANGER, regard-
less of which particular abstraction is provided by the current domain. Many
interfaces in a Nemesis system have concurrency control; those that do not can
be protected in the command language.

8 Related Work

CLANGER is, we believe, unique. We do not know of any interpreted language
which lives sufficiently low in the system to be able to do anything that can be
done in C and still be usable as a general command line interpreter.

18

Plan 9 [6] allows similar interaction with anything in the machine that im-
plements a filing system. However, it requires that all interfaces in the system
are untyped and use a command language. By contrast in CLANGER typed
interfaces are down at the linkage level and the command language can use all
interfaces. Nemesis interfaces can be (and usually are) much more fine-grained
than Plan 9's filing systems.

Software development environments often implement similar functionality:
XDE [14], Cedar [10], SmallTalk [2] and Oberon [13] are all examples. However,
they tend to be quite specialised. None provide both the power to interactively
invoke any system interface together with the tight integration with a true
general-purpose operating system supporting many programming languages.

General-purpose scripting languages such as Python [11], Perl [12] and Tcl
[5] can only be extended by writing compiled code as a wrapper around some
operating system functionality. Furthermore, they are geared towards usage
in an environment with poor definition of interfaces and almost no modularity
(though this is less true of Python). For our requirements, namely a command
line interpreter for a new operating system very different from Unix, implement-
ing CLANGER is much less work than porting one of these languages.

9 Conclus ion

CLANGER is the "shell from hell". It allows arbitrary bits of the system to be
tweaked from the command line. A CLANGER interpreter running as a privileged
Nemesis domain with a full root name space has immense power over every
component in the operating system. It can be used to prototype quite low-level
system components.

By contrast, by restricting the interfaces available to an interpreter at startup,
the same implementation can function as a safe command-line interpreter. Since
the interpreter need not understand system interface types a priori , it does not
need to be changed as new components are added or as interfaces change.

This flexibility extends to embedding the interpreter in applications, by
means of specialised name spaces. It fits in naturally with the "build pack-
ages, then tools" philosophy of application building [10]: with CLANGER, the
easiest way to build a tool is to provide code with well defined linkage-level
interfaces in the first place. Once a programmer has done this, the command
language really does come for free.

19

References

[1] BAYER, R., GRAHAM, R. M., AND SEEGMULLER, G., Eds. Operating
Systems: an Advanced Course, vol. 60 of LNCS. Springer-Verlag, 1979.

[2] GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

[3] LESLIE, I. M., MCAULEY, D. R., AND MULLENDER, S. J. Pegasus--
Operating System Support for Distributed Multimedia Systems. ACM Op-
erating Systems Review 27, 1 (January 1993), 69-78.

[4] OBJECT MANAGEMENT GROUP. The Common Object Request Broker:
Architecture and Specification, Draft 10th December 1991. OMG Document
Number 91.12.1, revision 1.1.

[5] OUSTERHOUT, J. K. Tcl and the Tk toolkit. Addison-Wesley, 1994.

[6] PIKE, R., PRESOTTO, D., THOMPSON, K., TRICKEY, H., AND WINTER-
BOTTOM, P. The Use of Name Spaces in Plan 9. Tech. rep., AT&T Bell
Laboratories, Murray Hill, New Jersey 07974, 1992.

[7] PRESOTTO, D., PIKE, R., THOMPSON, K., AND TRICKEY, H. Plan 9, a
Distributed System. In Proceedings of the Spring 1991 EurOpen Confer-
ence, Tromsoe (May 1991), pp. 43-50.

[8] ROSCOE, T. Linkage in the Nemesis Single Address Space Operating Sys-
tem. ACM Operating Systems Review 28, 4 (October 1994), 48-55.

[9] SALTZER, J. H. Naming and Binding of Objects. In Bayer et al. [1], ch. 3.A,
pp. 100-208.

il0] SWINEHART, D., ZELLWEGER, P., BEACH, R., AND HAGEMANN, a . A
Structural View of the Cedar Programming Environment. Tech. Rep. CSL-
86-1, Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill
Road, Palo Alto, California 94304, June 1986. (published in ACM Trans-
actions on Computing Systems 8(4), October 1986).

[11] VAN ROSSUM, G. Python Tutorial. Dept. CST, CWI~ Kruislaan 413, 1098
SJ Amsterdam, The Netherlands, July 1993.

[12] WALL, L. Perl Man Page.

[13] WIRTH, N. From Modula To Oberon and The Programming Language
Oberon. Tech. rep., Instiut fiir Informatik Fachgruppe Computer-Systeme,
EidgenSssische Technische Hochschule, Ziirich, September 1987.

[14] XEROX CORPORATION INFORMATION SYSTEMS DIVISION. XDE User
Guide, December 1986.

20

