
Distributed Recommendation Inference
on FPGA Clusters

Yu Zhu∗, Zhenhao He∗, Wenqi Jiang∗, Kai Zeng†, Jingren Zhou†, Gustavo Alonso∗

∗Systems Group, ETH Zurich †Alibaba Group

Abstract—Deep neural networks are widely used in per-
sonalized recommendation systems. Such models involve two
major components: the memory-bound embedding layer and the
computation-bound fully-connected layers. Existing solutions are
either slow on both stages or only optimize one of them. To
implement recommendation inference efficiently in the context of
a real deployment, we design and implement an FPGA cluster op-
timizing the performance of both stages. To remove the memory
bottleneck, we take advantage of the High-Bandwidth Memory
(HBM) available on the latest FPGAs for highly concurrent em-
bedding table lookups. To match the required DNN computation
throughput, we partition the workload across multiple FPGAs
interconnected via a 100 Gbps TCP/IP network. Compared to
an optimized CPU baseline (16 vCPU, AVX2-enabled) and a
one-node FPGA implementation, our system (four-node version)
achieves 28.95× and 7.68× speedup in terms of throughput
respectively. The proposed system also guarantees a latency of
tens of microseconds per single inference, significantly better than
CPU and GPU-based systems which take at least milliseconds.

I. INTRODUCTION

Personalized recommendation systems have widely adopted
deep neural networks to improve user experience and business
revenue. For example, Facebook feeds social media news
using DNN-based recommender models [1]; Google applies
both deep and linear models for Youtube and App Store
recommendations [2], [3]; and Alibaba employs several DNN
architectures for a wide range of e-commerce use cases [4].
Due to its popularity, DNN-based recommendation inference
may comprise up to 79% of the machine learning inference
workloads in some data centers [1]. As a result, it is crucial to
optimize its overall performance both in terms of data center
efficiency as well as from an application perspective.

Fig. 1 shows a typical recommendation model for Click-
Through Rate (CTR) prediction (how likely the user will
click on the recommended content), the type of system we
target in this paper. Unlike regular DNNs that usually take a
dense feature vector as input, recommendation models contain
both dense features (e.g., age or gender) as well as sparse
features (e.g., place of residence or user account ID). The
model regards each sparse feature as an entry index to retrieve
a dense embedding vector from an embedding table. The
retrieved embedding vectors are then concatenated with the
dense features and fed to several fully-connected (FC) layers
to predict the CTR.

The performance of recommendation inference is limited by
two main bottlenecks and constrained by strict service-level
agreements (SLA). First, the embedding table lookup process

Age Gender… Place of 
residence

Account ID…

Dense features Sparse features

Embedding 
Table 0 … Embedding 

Table N

Feature Concatenation

Fully-connected Layers

Click-Through Rate

Fig. 1. High-level architecture of a typical deep recommendation model.

significantly bounds the inference performance. These lookup
operations induce a massive number of random DRAM access
because there are many embedding tables (tens to hundreds),
and each lookup only retrieves a short embedding vector
(usually 4 to 64 dimensions). Such embedding lookups hamper
GPU acceleration. Second, the DNN computation performance
(fully-connected layers) is computationally heavy, which limits
what can be achieved with CPU-based systems. Finally, for
real-time recommendations, a strict SLA of latency of less
than tens of milliseconds must be met. As a result, the
Performance Metric of recommendation is throughput under a
given SLA. This has further implications, especially for CPU-
based systems, as small batches of inference requests must be
used to meet the latency requirements.

The existing FPGA designs for recommendation inference
are mainly optimized on one of the bottlenecks rather than
both. Centaur [5] is an FPGA accelerator for recommendations
based on Intel’s Xeon+FPGA platform. The speedup mainly
roots in the accelerated FC layer computation: due to the
limited number of CPU-side memory channels, the embedding
lookup bottleneck still exists. MicroRec [6] takes advantage
of the High-Bandwidth Memory (HBM) available on Xilinx’s
Alveo U280 to enable highly concurrent embedding table
lookups. Nevertheless, the computation significantly limits the
overall performance after the memory bottleneck is eliminated:
due to the hardware resource consumption of the lookup unit,
the resources left for the computation are limited, thereby
slowing down the second part of the inference process. As
a result, it is hard to achieve high throughput on both of the



stages in recommendations on a single FPGA.
Our approach. In this paper, we design and implement

an FPGA cluster for recommendation inference to achieve
high performance on both the embedding lookups and the FC
layer computation while guaranteeing low inference latency.
By using an FPGA cluster, we can still place the embedding
table lookup module on an FPGA equipped with HBM for
high-performance lookups. In the meanwhile, the extra FPGA
nodes provide sufficient hardware resources for FC layer
computation, such that the throughput of the computation
can match embedding table lookups. To enable reliable data
transmission, we adopt an open-source 100 Gbps TCP/IP
stack tailored for Vitis HLS [27]. Interconnecting FPGAs
via the network enables (a) low transmission with a latency
within several microseconds and (b) convenient deployment
of the proposed system in data centers where FPGAs mainly
communicate through the network [8]–[10].

Key results. To illustrate the effectiveness of our system, we
conduct experiments on a model used in production provided
by an anonymous company and evaluate the performance
of the proposed system using 2 and 4 FPGAs. Compared
with the CPU baseline (16 vCPU; 128 GB DRAM with 8
channels; AVX2-enabled), our system achieves 4.32× and
7.68× speedup in terms of throughput and an inference
latency of 12.06 and 20.05 microseconds. Because of (a) the
relatively balanced performance on the embedding layer and
the fully-connected layers, and (b) the low-latency and high-
throughput network interconnection, our design also shows
clear advantages over a single FPGA implementation: the
throughput per node in the FPGA cluster is 2.16× and 1.92×
that of a single FPGA, and the inference latency is also slightly
better thanks to the more hardware resources assigned for FC
layer computation and the low network latency.

Contributions. Our contributions in this paper include:
• We show how to build an FPGA cluster interconnected by

100 Gbps TCP/IP network for recommendation inference.
• We explore how to distribute the FC layers across several

FPGA nodes so that the computation performance is
comparable to the high-performance embedding lookup
enabled by HBM.

• We evaluate the system’s performance on a real-
world recommendation model. It achieves 16.31∼28.95×
throughput over CPU and an inference latency of
12.06∼20.05 microseconds.

II. BACKGROUND & MOTIVATION

A. Deep Recommendation Model

Fig. 1 shows the recommendation model we aim to accel-
erate. The input of the model contains both dense and sparse
features. During inference, the recommendation system first
translates each sparse feature to an entry index to retrieve a
dense vector from the corresponding embedding table. Then,
the retrieved vectors are concatenated with dense features
before they are fed to several fully-connected layers for CTR
prediction, i.e., calculating the probability the user will click

Fig. 2. Apart from DNN computation, recommendation inference in CPU-
based systems is also significantly bound by the embedding table lookups.

on the recommended item. Table I lists the parameters of the
model used in our experiment. The model extracts embedding
vectors from 98 embedding tables, concatenates them into an
876-dimensional dense vector and predicts CTR through a 3-
layer DNN. Although there are alternative DNN architecture
designs [1], [2], [4], [11], [12], these models are still composed
of the two major building blocks, i.e., the embedding tables
and the DNN classifier, thus sharing the inference bottlenecks
we describe below.

B. Bottlenecks and Challenges

There are two performance bottlenecks in recommendation
inference. While the first bottleneck is DNN computation as
in many other inference workloads, looking up embedding
vectors is a unique bottleneck in recommendation inference.
This is because each embedding vector is short (usually
containing between 4 and 64 elements) while the number
of tables is large (from tens to hundreds). Retrieving and
gathering short vectors from different memory addresses then
leads to many random DRAM accesses and low embedding
lookup performance.

Aside of these two performance bottlenecks, a recommen-
dation inference system must meet strict latency constraints
within tens of milliseconds in order to provide real-time
recommendation services. As a result, the performance metric
of recommendation inference is inference throughput under
SLA. Although large batch sizes are used for many inference
tasks to improve throughput for CPU and GPU-based systems,
the batch sizes are bound by the latency constraint as the larger
the batch, the higher the latency. Both the restricted throughput
due to using small batches and the irregular embedding
lookup operations hamper the use of GPUs as recommendation
inference accelerators in data centers.

To demonstrate the limitations of CPU-based deployments,
Fig. 2 shows the performance profile of recommendation
inference on a production model. We conduct the experiment
on a CPU server (16 vCPU; 128 GB DRAM; AVX2 enabled)
and use batch sizes that can meet the SLA. Even when
using a relatively large batch size (1024) given the latency
constraint, computation and embedding table lookup have a
similar share of the inference latency. Thus, to implement
a high-performance recommendation inference system, it is
important to significantly speedup both the embedding lookups
as well as the DNN computation.



TABLE I
PARAMETERS OF THE EXPERIMENTAL RECOMMENDATION MODEL.

Table Num Concat Feat Length Hidden Layers Size
98 876 (1024, 512, 256) 15.1GB

C. Existing FPGA Solutions

Although there have been some research exploring FPGA
designs for recommendation inference, existing work has
failed to eliminate both of these bottlenecks just described
(embedding lookups and DNN computation). We summarize
these efforts and point out the need for novel FPGA-based
recommendation inference systems.

• Centaur [5] is an FPGA accelerator for recommendation
inference. It employs an Intel’s Xeon+FPGA architec-
ture with shared memory space between the CPU and
the FPGA. Although the performance is better than a
CPU-based inference engine, the embedding table lookup
bottleneck still exists. The reason is that the FPGA needs
to access the CPU-side memory to retrieve embedding
vectors through the few memory channels available in
CPU-based systems. As a result, the speedup is mainly
achieved from the fast DNN computation on the FPGA.

• MicroRec [6] eliminates the memory bottleneck by tak-
ing advantage of the High-Bandwidth Memory (HBM)
recently available on FPGAs (Xilinx Alveo U280). How-
ever, the embedding lookup module interconnected with
HBM consumes a significant portion of the on-chip
resources, leaving fewer resources for the DNN computa-
tion. As a result, the computation becomes the bottleneck
after removing the memory bottleneck.

In this paper, we aim to design an FPGA-based recommen-
dation inference system that can tackle both the memory and
computation bottlenecks, thus achieving a significant speedup
compared with existing solutions.

D. Acceleration with FPGA Clusters

Work has been done exploring efficient DNN inference on
FPGAs, both on a single node and on FPGA clusters [13],
[14]. Most of the approaches use FPGA clusters connected
with point-to-point serial links and proprietary protocols [8],
[15]–[17], where the cost to build such a cluster is high and
the flexibility of the deployment is limited as the topology is
fixed. In contrast, we focus on FPGA clusters embedded on
the network data path and connected with the rest of the data
center infrastructure (e.g., high bandwidth links and network
switches), as indicated by Microsoft Brainwave [18], [19]. In
such a platform, FPGAs could be deployed with hardware
network stacks using protocols that are commonly available
in the data center, such as UDP [20], TCP/IP [21]–[24]
and RDMA [25], [26]. For industrial-level recommendation
systems that usually run on such data centers, these platforms
are very helpful since the inference of the recommender model,
which is one small step in the whole recommendation pipeline,

Node 
1

Node 
2

Node 
3

Node 
4

Network
100Gbps

PE
Layer 1

PE
Layer 1

PE
Layer 2

PE
Layer 2

PE
Layer 3

Output
Layer

Embedding

Lookup

Feature
Concatenation

PE
Layer 1

Embedding vector 
& partial 
results of
layer 1

Embedding vector & 
more partial 
results of 
layer 1

Full results of 
layer 1 & partial 
results of layer 2

Final
output

H
BM D
D

R

O
n-

ch
ip

Bu
ff

er

Fig. 3. Overall architecture of distributing the target inference model with
a four-node FPGA cluster. Each node is connected to other nodes via up to
100 Gbps network.

can be offloaded to the FPGA cluster without the need to build
a customized network.

III. DESIGN AND IMPLEMENTATION

In this section, we introduce how to design and implement
an FPGA cluster for recommendation inference. We start
by reviewing the system (Section III-A), then specify the
building blocks used for constructing the inference pipeline
(Section III-B), and finish by describing the principles to
partition the inference workload to multiple FPGA-nodes
(Section III-C).

A. Design Overview

We build an FPGA cluster for recommender model infer-
ence. FPGAs are connected to each other via an open-source
100 Gbps hardware network TCP/IP stack [27]. In the FPGA
cluster, we use one FPGA to store the embedding tables. The
computation of the neural network is distributed to several
FPGAs in a deeply pipelined fashion due to the feed-forward
property of the inference.

Fig. 3 shows an example of a design for partitioning the
model on four FPGAs. The model can also be partitioned to a
varying number of FPGAs following the partitioning principles
detailed in section III-C. In such a design, one FPGA takes
advantage of the FPGA HBM, DDR and on-chip memory to
store the embedding tables and serves recommendation system
inference queries. An embedding lookup module accesses the
embedding tables in parallel, and then all small feature vectors
are concatenated together to form the embedding vector. The
computation of the neural network is mainly performed by nu-
merous processing elements (PE), which are distributed across
several nodes. The total number of FPGAs assigned to a neural
network layer is related to the computation requirements of
each layer. The first layer is distributed across three nodes
in our design, including the node with the embedding table,
since it requires the most computation power. The second



Broad-
Cast

Features

In FIFO

In FIFO

PE 0

PE N

…

Out FIFO

Out FIFO

Gather
Results

Layer
Input

Layer
Output

Fig. 4. The parallelized computation flow in a single fully-connected layer.

layer is distributed across two nodes and the third layer only
requires part of a node since it consumes the least amount of
computation. The output layer operates on the output vector
from the third layer to a 32-bit result and finishes the process
for inference. Then the last node forwards the final result back
to the first node to complete a query. In such a setting, each
node relies on the hardware TCP/IP stack to pass embedding
vectors or the output of each layer.

B. Building Blocks

There are two major building blocks in an FPGA accelerator
for recommendation inference: the embedding lookup module
for embedding vector retrieval and PE for FC layer computa-
tion. We show how they are designed in this section and how
to build multi-node FPGA systems composed of these building
blocks later on.

1) Embedding Lookup Module: As suggested by related
work [6], we take advantage of the hybrid memory resources
available on the Xilinx’s Alveo U280 FPGA to enable highly
concurrent embedding table lookups. The embedding table
sizes are fairly unbalanced in real-world models, from KBs
to GBs, because the entry numbers needed to encode different
sparse features vary (e.g., there could be millions of users
while there are only hundreds of countries in the world).
As a result, we allocate tables to different types of memory
according to their sizes. The smallest tables are stored in on-
chip memory including BRAM and URAM, while the few
largest tables are allocated to the two DDR memory channels.
The remaining medium-sized tables are then assigned to the
32 HBM channels. We balance the number of tables stored in
every off-chip memory channels (DDR and HBM) so that the
embedding lookup workload is balanced for each of them.1

The lookup process is highly concurrent. The embedding
lookup module dispatches the sparse features as the lookup
indexes for respective memory channels. The embedding vec-
tors are then retrieved in parallel and concatenated before
they are sent to the FC layer computation module. Due to
the high embedding lookup throughput brought by the high
retrieval concurrency, the computation becomes the bottleneck
if only one FPGA is used to implement both the embedding
lookups and the computation [6]. As a result, we partition
the computation workload to multiple FPGA nodes while
assigning only one node for embedding lookups so as to
balance the performance of the two components.

1The memory controller generated by Vitis exhibits close access latency to
DDR and HBM.

2) DNN Computation Pipeline: Fig. 4 shows the computa-
tion flow for a single fully-connected layer. The PEs are the
basic building blocks for general matrix-matrix multiplications
(GEMM). Each PE holds a portion of the weights of a fully-
connected layer and is responsible for a partial matrix-matrix
multiplication through parallelized multiplications followed by
an add tree [28]. During inference, the input feature vectors
of the layer are broadcasted to all PEs, and the partial results
are gathered after the computation and forwarded to the next
layer. Although an alternative interconnects topology, i.e., a
systolic array [29], can be used to connect these PEs, the
data propagation scheme in the systolic arrays increases the
inference latency especially when the number of PE is large.
In this work, we aim to achieve ultra-low latency for real-
time recommendation serving, thus choose a broadcasting and
gathering design for the PE interconnection.

C. Partitioning the Computation

Partitioning the computation to an FPGA cluster needs to
follow some design principles and considering some con-
straints. We show an example of how to partition our target
model to an FPGA cluster containing 4 U280 FPGAs.

1) Balance Resource Utilization: We aim to achieve a
balanced design in resource utilization across FPGAs since
different components in the inference pipeline require different
resources. The design of a single FPGA implementation,
where the embedding lookup and the neural network inference
are performed in the same FPGA device, has an unbalanced
resource utilization. In such a design, because embedding
tables and the weights of FC layers require huge amount of on-
chip memory, the resource bottleneck is the BRAM, leading
to inefficient use of DSPs. By partitioning the inference to
multiple nodes, we could distribute the weights of FC layers
to multiple nodes, relieving the stress of BRAM requirement
on the node that stores embedding tables. With more PEs
partitioned evenly across nodes, we expect to achieve a better
overall performance by increasing the DSPs’ utilization rather
than being limited by the BRAM usage.

In both 2-node or 4-node implementations, each PE con-
sumes 18 DSPs. The difference is that we can control the
computation loop count in PE, for one or more columns. In
our four-node cluster design, one U280 FPGA board contains
9024 DSPs and this gives us a maximum of 2004 PEs with
4 FPGAs. To achieve a balanced design, we also need to
consider the computational requirements of each layer since
the minimum throughput of all layers determines the overall
inference throughput. Each layer requires a matrix multiplica-
tion of 876×1024, 1024×512, and 512×256, respectively. We
round the ratio of the computational requirement of each layer
to power of two and this yields 8:4:1. The PE numbers of each
layer should be proportional to this ratio and we assign 1024,
512 and 128 PEs for the three layers respectively. We distribute
these PEs evenly across 4 nodes and the total number of PEs
deployed on each node consumes about 83% of the total DSPs
available.



Network

PE Layer 1

Node 1

Network
Network

Embedding vector
Partial results of layer 1

PE Layer 1

PE Layer 1 PE Layer 2
Network

Network
PE Layer 2 PE Layer 3 Output

Node 2

Node 3

Node 4

More partial results of layer 1

Network
Network

Full results of layer 1
Partial results of layer 2
Final output, sent back to node 1, no overlap

Latency of DNN layer & network

Fig. 5. Overlapping computation and network in a pipelined and parallelized method.

2) Overlap of Computation & Communication: Fig. 5
shows how the computation and the network are overlapped
among 4 FPGAs, which is crucial to achieving low latency. For
each partial layer on different nodes, it requires the same input
vector. The network latency of forwarding the input vector
to the next partial layer in another node can be overlapped
with the computation of the current partial layer. For instance,
embedding vectors generated in node 1 are sent to node 2
via network while at the same time, node 1 also performs
computation over these embedding vectors. Once the node 1
has partial results, it sends them to node 2 and this process is
also partly overlapped with the computation of node 2.

3) Satisfy Network Bandwidth: The required network band-
width of this distributed design should not exceed the actual
network bandwidth. For instance, in the design depicted in
Fig. 3, the second node requires the most network load since
it needs to both receive and send the embedding vector and
the intermediate results of the first layer for a single inference.
Thus, to make sure the whole design is not bounded by the
network, we need to carefully adjust the network bandwidth
required by the second node.

IV. EVALUATION

We evaluate the performance of the FPGA cluster for
recommendation inference in terms of throughput and latency.
We deploy the industrial recommendation model detailed in
Table I. Our FPGA solution has a significant advantage in both
throughput and latency over the CPU baseline. Compared with
a single FPGA implementation, our design achieves a 4.32×
and 7.68× speedup on 2 nodes and 4 nodes, respectively, and
has lower latency.

A. Experiment Setup

We run the experiment on an FPGA cluster containing 4
Xilinx Alveo U280 FPGAs, each of which is equipped with
8GB HBM (32 channels) and 32GB DDR4 (2 channels).
Each node is connected to each other through a 100 Gbps
Cisco Nexus 9336C-FX2 network switch. Vivado HLS is
used to translate C++ code to hardware description language
(HDL) and program the FPGA for host-kernel interaction.
We evaluate our design in two configurations using 2 and 4
FPGAs. For the single node baseline, we refer to MicroRec [6],

a design optimized for the FPGA HBMs for parallel lookups
and performs DNN computation on a single device. For all
FPGA implementations, we have a clocking frequency of 135
MHz except in node 1 in a two-node design, where we have
to lower the frequency to 115MHz due to the high resource
utilization.

The CPU baseline is tested on an AWS server with Intel
Xeon E5-2686 v4 CPU@2.30GHz(16 vCPU, SIMD oper-
ations, i.e., AVX2 FMA, supported) and 128GB DRAM(8
channels). We apply an open-source solution on deep rec-
ommendation systems [30], where TensorFlow Serving [31]
supports a highly optimized model inference.

B. Throughput

Fig. 6 shows a significant speedup in our design in terms
of throughput in FPGA clusters over both a single FPGA
and the CPU-based system. The throughput of the CPU-
based system increases with the batch size but it can not
go beyond a batch size of 1024 since it would break the
inference latency constraint imposed by the SLA. Therefore,
we pick a batch size of 1024 and compare against it. In
a single FPGA implementation, by taking advantage of the
FPGA HBM for parallel embedding lookup and DSPs for FC
layer computation, the system can already achieve a 3.77×
speedup compared to CPU baseline. By using 4 FPGAs, we
achieve about 28.95× speedup compared to the CPU baseline.
Compared with a single FPGA implementation, our design
achieves a 2.16× and 1.92× speedup per FPGA node on 2
nodes and 4 nodes, respectively, due to better utilization of
resources. Fig. 6 also shows the throughput of the embedding
layer (dotted line to the right) for FPGA based solutions.
By using 4 FPGAs, we achieve a balanced design where
the computation is performed at almost the same rate as the
embedding lookup rate.

C. Latency

Our solution has a significant advantage in terms of latency
compared to CPU-based system, as shown in Fig. 7. The CPU-
based system has a latency ranging from 7.48 (batch size=1)
to 31.72 (batch size=1024) milliseconds. In such a system,
the embedding layer is the bottleneck. In contrast, an FPGA-
based design has a latency of less than 31.72 microseconds,



TABLE II
HARDWARE RESOURCE UTILIZATION(%) IN DIFFERENT FPGA DESIGNS FROM HLS SYNTHESIS REPORT

Single Cluster 2 Nodes Cluster 4 Nodes
Node 1 Node 2 Node 1 Node 2 Node 3 Node 4

BRAM 2516 (62.40%) 2465 (61.14%) 1686 (41.82%) 2122 (52.63%) 1557 (38.62%) 1193 (29.59%) 1933 (47.94%)
URAM 770 (80.21%) 446 (46.46%) 444 (46.25%) 414 (43.13%) 414 (43.13%) 444 (46.25%) 510 (53.13%)

DSP 5193 (57.55%) 8064 (89.36%) 8073 (89.46%) 7488 (82.98%) 7488 (82.98%) 7488 (82.98%) 7497 (83.08%)
LUT 452804 (34.73%) 559568 (42.92%) 500131 (38.36%) 521302 (39.99%) 461061 (35.37%) 463638 (35.56%) 506824 (38.88%)

Fig. 6. Comparison of CPU-based system with batch size 1024, single FPGA
design and FPGA cluster with 2 or 4 nodes in terms of throughput for
inference. The red dotted line is the throughput of embedding layer.

Fig. 7. Comparison in terms of latency in CPU-based system with different
batch sizes and different FPGA designs. The FPGA works in a highly
pipelined fashion, thus has a batch size of 1.

orders of magnitude lower than the CPU system. Thanks to
the low latency hardware network stack and the data center
infrastructure, the latency reduction due to partitioning of
the computation out-weights the latency introduced by the
network, such that our design with 4 nodes has lower latency
than a single FPGA implementation.

D. Resource Utilization

Table II shows the resource utilization for each configura-
tion. For a single FPGA, the usage of BRAM and URAM is
high due to the storage and embedding tables while the DSP
usage is less than 60 percent. By partitioning the design across
multiple nodes, we achieve more than 80 percent DSP usage
in every node while keeping the resource utilization of the
on-chip memory to a reasonable level.

V. RELATED WORK

To the best of our knowledge, this is the first paper accel-
erating recommendation inference on an FPGA cluster.

DNN for personalized recommendation. Neural Collabo-
rative Filtering introduces the embedding layer to DNN-
based recommendation models in order to encode the sparse
features more efficiently [12]. Google then proposed to add
a linear model in addition to the deep model to offer more

reliable predictions and deployed such models in YouTube
and the App Store [2], [3], [11]. Facebook’s social media
recommender models include extra fully-connected layers to
process the dense input features before they are concatenated
with the retrieved embedding vectors [1]. Alibaba employs the
attention mechanism on the DNN layer in order to interpret
time serial information more efficiently in their e-commerce
platforms [4].

Hardware solutions for recommendation inference. Accord-
ing to Facebook, deep recommendation inference comprises
up to 79% of AI inference cycles in their data centers [1].
Thus, a range of efforts has been invested in designing
specialized hardware for high-performance recommendation
inference. TensorDIMM [32] resorts to a specialized DRAM
micro-architecture by increasing the memory access paral-
lelism and adding near memory processing units for simple
gathering operations. RecNMP [33] extends the idea of near-
DRAM-processing by supporting more tensor operators in
DRAM. DeepRecSys [34] evaluates the performance of GPUs
in recommendation systems, but the inference throughput is
limited because small batches must be used to meet the strict
latency constraints. Centaur [5] implements an FPGA acceler-
ator for recommendation using Intel’s Xeon+FPGA platform
and achieves significant speedup on FC layer computations.
MicroRec [6] eliminates the memory bottleneck by taking
advantage of the HBM available on Xilinx’s U280 FPGA, but
the computation becomes a significant bottleneck afterwards.
FleetRec [7] expands this idea by resorting to hybrid GPU-
FPGA clusters, in which FPGAs with HBM are responsible
for embedding lookup and computation are offloaded to GPUs.

Distributed FPGA systems. Zhang [13] presents a multi-
FPGA system to accelerate CNNs. By carefully partitioning
the workload, it achieves linear speedup over a single FPGA
and outperforms multi-core CPUs and GPUs significantly.
Owaida [35] develops a datacenter-scale FPGA cluster to
support high-performance decision tree ensemble inference.
Super-LIP [36] implements an FPGA cluster to accelerate
DNN inference and achieves super-linear speedup in terms
of throughput against a single FPGA design while reducing
the overall inference latency.

ACKNOWLEDGEMENTS

Part of the work of Wenqi Jiang and Zhenhao He has been
funded by the Alibaba Group. We would like to thank Xilinx
for their generous donation of the XACC FPGA cluster at
ETH Zurich on which the experiments were conducted.



REFERENCES

[1] Gupta, U., et al. (2020). The architectural implications of facebook’s
dnn-based personalized recommendation. IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), IEEE.

[2] Covington, P., et al. (2016). Deep neural networks for youtube recom-
mendations. Proceedings of the 10th ACM Conference on Recommender
Systems, ACM.

[3] Zhao, Z., et al. (2019). Recommending what video to watch next.
Proceedings of the 13th ACM Conference on Recommender Systems,
ACM.

[4] Zhou, G., et al. (2019). Deep interest evolution network for click-through
rate prediction. Proceedings of the AAAI Conference on Artificial
Intelligence.

[5] Hwang, R., et al. (2020). Centaur: A chiplet-based, hybrid sparse-dense
accelerator for personalized recommendations. ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), IEEE.

[6] Jiang, W., et al. (2021). MicroRec: efficient recommendation inference
by hardware and data structure solutions. Proceedings of Machine
Learning and Systems (MLSys).

[7] Jiang, W., et al. (2021). FleetRec: Large-Scale Recommendation Infer-
ence on Hybrid GPU-FPGA Clusters. Proceedings of the 27th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), ACM.

[8] Putnam, A., et al. (2014). A reconfigurable fabric for accelerating large-
scale datacenter services. ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), IEEE.

[9] Caulfield, A. M., et al. (2016). A cloud-scale acceleration architecture.
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), IEEE.

[10] Firestone, D., et al. (2018). Azure accelerated networking: Smartnics
in the public cloud. 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18).

[11] Cheng, H.-T., et al. (2016). Wide & deep learning for recommender
systems. Proceedings of the 1st workshop on deep learning for recom-
mender systems.

[12] He, X., et al. (2017). Neural collaborative filtering. Proceedings of the
26th international conference on world wide web.

[13] Zhang, C., et al. (2016). Energy-efficient cnn implementation on a deeply
pipelined fpga cluster. Proceedings of the 2016 International Symposium
on Low Power Electronics and Design, ACM.

[14] Umuroglu, Y., et al. (2017) Finn: A framework for fast, scalable bina-
rized neural network inference. Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays.

[15] Jun, S.-W., et al. (2015). A transport-layer network for distributed fpga
platforms. 25th International Conference on Field Programmable Logic
and Applications (FPL), IEEE.

[16] Bunker, T. and S. Swanson (2013). Latency-optimized networks for
clustering fpgas. IEEE 21st Annual International Symposium on Field-
Programmable Custom Computing Machines, IEEE.

[17] Mencer, O., et al. (2009). Cube: A 512-fpga cluster. 5th Southern
Conference on Programmable Logic (SPL), IEEE.

[18] Chung, E., et al. (2018). Serving dnns in real time at datacenter scale
with project brainwave. IEEE Micro.

[19] Fowers, J., et al. (2018). A configurable cloud-scale dnn processor
for real-time AI. ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), IEEE.

[20] ”Xup vitis network example (vnx).” [Online]. Available:
https://github.com/Xilinx/xupvitisnetworkexample.

[21] Ding, L., et al. (2016). Hardware tcp offload engine based on 10-
gbps ethernet for low-latency network communication. International
Conference on Field-Programmable Technology (FPT), IEEE.

[22] Ji, Y. and Q.-S. Hu (2011). 40gbps multi-connection tcp/ip offload en-
gine. International Conference on Wireless Communications and Signal
Processing (WCSP), IEEE.

[23] Sidler, D., et al. (2015). Scalable 10gbps tcp/ip stack architecture for
reconfigurable hardware. IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, IEEE.

[24] Ruiz, M., et al. (2019). Limago: An fpga-based open-source 100 gbe
tcp/ip stack. 29th International Conference on Field Programmable Logic
and Applications (FPL), IEEE.

[25] Li, B., et al. (2017). Kv-direct: High-performance in-memory key-value
store with programmable nic. Proceedings of the 26th Symposium on
Operating Systems Principles.

[26] Sidler, D., et al. (2020). StRoM: smart remote memory. Proceedings of
the Fifteenth European Conference on Computer Systems.

[27] He, Z., et al. (2021). EasyNet: 100 Gbps Network for HLS. 31th
International Conference on Field Programmable Logic and Applications
(FPL), IEEE.

[28] Chen, Y., et al. (2014). Dadiannao: A machine-learning supercomputer.
47th Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE.

[29] Wei, X., et al. (2017). Automated systolic array architecture synthesis
for high throughput cnn inference on fpgas. Proceedings of the 54th
Annual Design Automation Conference.

[30] ”Lapis-hong/widedeep.” [Online]. Available: https://github.com/Lapis-
Hong/wide deep.

[31] Olston, C., et al. (2017). Tensorflow-serving: Flexible, high-performance
ml serving. arXiv preprint arXiv:1712.06139.

[32] Kwon, Y., et al. (2019). Tensordimm: A practical near-memory process-
ing architecture for embeddings and tensor operations in deep learning.
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture.

[33] Ke, L., et al. (2020). RecNMP: Accelerating personalized recommen-
dation with near-memory processing. ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), IEEE.

[34] Gupta, U., et al. (2020). DeepRecSys: A system for optimizing end-to-
end at-scale neural recommendation inference. ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), IEEE.

[35] Owaida, M. and G. Alonso (2018). Application partitioning on fpga
clusters: Inference over decision tree ensembles. 28th International
Conference on Field Programmable Logic and Applications (FPL),
IEEE.

[36] Jiang, W., et al. (2019). Achieving super-linear speedup across multi-
fpga for real-time dnn inference. ACM Transactions on Embedded
Computing Systems (TECS).


