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A Triptychon of Digital Circuits 
Niklaus Wirth, August 2005 

Here we describe an experiment and tutorial about various ways to implement digital 
circuits. Our example is a binary counter and a shifter, implemented once by ordinary 
TTL MSI chips, once by a PLD, and once by a microcontroller. They represent the 
technologies that emerged between 1975 and 1995. 

The three versions were built on printed circuit boards with counter and shifter driving 
light emitting diodes (LED). Put side by side in a frame, they look like a triptychon (see 
Fig. 1). 

 
Fig.1. The triptychon of circuits 

1. The Circuit 
The circuit chosen as a sample to illustrate the three technologies consists of an 8-bit 
synchronous binary counter and an 8-bit shifter, each driving 8 LEDs. Let sequences of 8 
ones followed by 8 zeroes be rippling through the shifter. 

An n-bit counter can be described by the following diagram for each cell. All 16 registers 
are driven by the same clock. All three versions of the circuit require a single 5V power 
supply. 
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The combinational functions for i = 1 … n are 

xi  =  qi xor ci-1 
ci  =  qi and ci-1 c0 = 1 

The shifter consists of n registers with xi = qi-1. 

2. The TTL version 
Our TTL version consists of 2 MSI (medium scale integration) chips, namely an F579 8-
bit counter and an LS299 8-bit shifter We use a simple RC-oscillator based on a N555 
timer chip, and a frequency of about 8 Hz. The circuit is shown in Fig. 3. The 
requirement of shifting sequences of 8 ones followed by 8 zeroes is met by using q3 of 
the counter as serial input to the shifter. 

The circuit consumes about 200mA current. This is high, because of the use of a fast chip 
of the F class (Signetics). 

 

3. The PLD version 
It is possible to construct a counter and a shifter together on a single, programmable chip, 
on a programmable logic device. These devices were first produced around 1975. They 
typically contain a matrix of and-gates followed by a matrix of or-gates, which in 
principle allow the design of an arbitrary logic function of a number of inputs. These 
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Fig. 3. Shifter and counter with 3 TTL chips
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were called programmable logic arrays (PLA). The addition of a row of registers to the 
outputs of the or-matrix led to the possibility to construct arbitrary finite state machines 
(FSM), and the combination of gate matrices and a register row was called 
programmable logic device (PLD). 

Since both counters and shifters are intrinsically finite state machines, they can obviously 
be implemented using a PLD by mapping their logic functions onto the two matrices. The 
one technical question is, whether the chosen chip contains gate matrices that are large 
enough to represent both circuits. For our purpose we chose AMD’s MACH 211SP chip. 
Even by 1996, and much more so 10 years later, PLDs contain very large gate arrays, and 
they are much more than large enough for our modest task. The circuit now consists of a 
single PLD plus the clock generator, as shown in Fig. 4. The circuit draws 50mA at 5V. 

 
What determined the choice of the MACH 211SP was the fact that its configuration, i.e. 
the data that render the gate arrays into the desired circuit, is held in an erasable memory. 
In early PLDs, this configuration data were burnt into “fuses”, thus confining the chip to 
the one chosen purpose once and forever. Here, however, the information is held in an 
EEPROM, an electrically erasable programmed read-only memory. This makes this chip 
particularly suitable for experimentation. The configuration data are computed by a 
program and loaded via the chip’s configuration pins. The input of said program is 
typically a set of logic equations written in a certain hardware description language 
(HDL). 

We specify the desired circuit in the simple hardware description language Lola as 
follows. The variables q0, q1, etc. are represented by the mentioned registers of the PLD. 

module ShiftCount; 
 out q0, q1, q2, q3, q4, q5, q6, q7, s0, s1, s2, s3, s4, s5, s6, s7: bit; 
begin 
 s0 := reg(q3); q0 := reg(~q0); 
 s1 := reg(s0); q1 := reg(q1 - q0); 
 s2 := reg(s1); q2 := reg(q2 - q1*q0); 
 s3 := reg(s2); q3 := reg(q3 - q2*q1*q0); 
 s4 := reg(s3); q4 := reg(q4 - q3*q2*q1*q0); 
 s5 := reg(s4); q5 := reg(q5 - q4 *q3*q2*q1*q0); 
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Fig. 4. Shifter and counter with PLD 
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 s6 := reg(s5); q6 := reg(q6 - q5*q4*q3*q2*q1*q0); 
 s7 := reg(s6); q7 := reg(q7 - q6*q5*q4*q3*q2*q1*q0) 
end ShiftCount. 

4. The micro-controller version 
The third and last of our implementation of the shifter-counter pair is based on a micro-
controller. For this purpose, we chose Microchip’s PIC16F84. This represents a 
complete, programmable computer with 13 input/output ports (pins). It even contains its 
own oscillator circuit (with external R/C), and thus reduces our implementation to one 
single chip. The circuit is shown in Fig. 5. 

The following program contains variables sh and cnt representing the values to be shifted 
and counted. In each step, which is artificially prolonged by a delay loop, the values are 
output to the ports A and B driving LEDs. (S is the PIC’s status register). 

module ShiftAndCount; 
 int sh, cnt, x; 
begin !S.5; A := $F0; B := 0; !~S.5;  (*configure ports to output*) 
 sh := 0; cnt := 0; 
 repeat A := cnt; B := sh; x := 255; 
  repeat x := x-1 until x = 0;   (*delay*) 
  cnt := cnt - 1; sh := sh + sh;   (*shift left sh*) 
  if cnt.3 then !sh.0 end 
 end 
end ShiftAndCount. 

 
5. Analysis and Discussion 
Well, what is the point in these three circuits? After all, they show exactly the same 
pattern of changing lights representing shifts and counts. Would not one circuit be quite 
enough? 

One possible answer is that the circuits demonstrate in a nutshell that the same effect can 
be obtained in many different ways, even with vastly different means. A further answer is 
that they show in an exemplary way the reduction of the number of components (chips) 
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Fig. 5. Shifter and counter using micro-controller 
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in the past decades due to technological progress. Whereas in 1950 hundreds of vacuum 
tubes were requested for this task, and in 1960 many hundreds of transistors, in 1970 only 
3 chips fulfilled the same task; in 1980 there were 2, and in 1990 a single one would do. 

However, our essay may also show that the popular measure of chip count does no longer 
serve as a measure of complexity, and in fact is misleading. Our solution based on the 
PLD actually features a much more complex circuit with many more transistors (many of 
which remain unused). The PLD has a very regular structure, allowing for high density of 
circuit elements, whereas the solution with the micro-controller is even more complex 
and less regular. Semiconductor technology has made tremendous advances, with the 
effect of obscuring relationships in logical complexity. While miniaturization has made 
many things technically feasible which were impossible earlier, it has also encouraged 
waste of things having become abundant. Thereby it has often led to sloppy design, and 
to unnecessary features and facilities, just to make some use of otherwise unused 
resources. 

The most fundamental difference, however, is not only a matter of technology, but of 
principle. The third version uses what we call software, whereas the first is a pure 
hardware solution. It is a digital circuit, and nothing else. The micro-processor, on the 
other hand, is executing a program. So far, so good. But what about the PLD-solution? 
There is no processor running a program, but the circuit is said to be programmed or, if 
you wish, configured. Is this also software? And if so, what is software? 

One is tempted to offer the easy answer that hardware is what you can see and touch, that 
has to be fabricated, while software is what is stored in memory, and therefore is volatile 
and can (too) easily be changed. But there are two arguments which debunk this answer 
as being too simplicistic. What about the software being stored in a read-only memory, or 
perhaps a Flash memory? Here storing, writing, is called programming. In early ROMs 
this implied the burning of “fuses”, thus establishing the actual circuit. Second, PLDs 
store their configuration also in a memory, but still what is loaded is not called a 
program. There have been attempts to design dynamically reconfigurable PLDs (or 
FPGAs), letting the configuration, i.e. the circuit change while in use. Software changing 
the circuit, or the circuit changing software? A confusing and risky business! 

Perhaps the one truly concrete answer is that hardware requires materials and a 
fabrication, whereas software is just “written”. However, modern methods of design also 
obscure this distinction. Both software and hardware are specified by texts in a formal 
notation, called language. They undergo a translation or process yielding machine code 
or a layout obeying certain design rules. Attempts have been made to translate programs 
into circuits directly, without involving their execution on a computer. 

Perhaps it is the design process and the dominant consideration of the designer that may 
help us to find a genuine difference between hardware and software, perhaps causing us 
to look at them from a different perspective. 

The computer as we know it today, has its origin in the idea of breaking up a complex 
task into smaller tasks. Subtasks are further broken up until they are reduced to a 
computer’s instructions. The gain is that with a relatively small set of instruction one may 
compose solutions to very complex computations. This was mandatory, because circuits 
were very expensive, and because a very large number would have reduced reliability and 
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mean time between failures. The price was time, because the instructions are performed 
purely sequentially, always using the same circuit elements. Even the simplest computers 
are able to perform any task, given enough time. The key idea is sequentiality. 

With hardware becoming cheaper, computers were designed with more complex 
instructions in the hope of reducing the break up process. This proved to be unsuccessful. 
Modern computers use very simple, elementary instructions. The computer designers’ 
cleverness is directed purely at making them execute faster and faster. 

Designers of circuits also have an execution process in mind. Its steps are called clock 
cycles. Committing a slight simplification, we may say that all elements of their circuit 
coexist and perform concurrently. The designer concentrates on having as many elements 
as possible actively contributing to progress in as many cycles as possible. The key idea 
is concurrency. 

At this point we must be aware that concurrency in software, without being backed up by 
concurrent hardware, is always an illusion. Systems featuring so-called threads 
(coroutines) do not perform concurrent processes, unless they are based on hardware 
containing multiple processors. At best, they perform quasi-concurrent processes, they 
give the illusion of concurrency, switching the processor from one thread to another, 
sequentially. 

Does then, perhaps, concurrency vs. sequentiality mark the key difference between 
hardware and software? This idea gains plausibility, if we realize that both are essentially 
specified by sets of logical expressions and assignments. Even a static circuit description 
looks remarkably similar to a program. 

This suggests that the traditional dividing line perhaps ought to be drawn at a different 
level: Hardware has substance, hence obeys the laws of physics, the laws of electricity. 
Hardware is not (only) described by logical expressions, but (also) by physical devices. 
Intrinsically involved are current, voltage, charge, capacitance, conductivity, and even the 
laws of quantum physics. We should be fully aware that digital circuits are an abstraction. 
In reality they are always “analog”. The circumstance that transistors are typically either 
shut off or driven into saturation does not contradict their “analog” nature. And dynamic 
memory cell are anything but digital! Modern ones even store not only one, but several 
bits, represented by distinct ranges of voltage levels. 

It is time to rethink our traditional, hazy distinction between hardware and software. But 
perhaps this is quite irrelevant.  


