
Automated Analysis of Security-Design Models

David Basin a,∗ Manuel Clavel b,c,1 Jürgen Doser a Marina Egea c,1

aInformation Security Group, ETH Zurich, Zürich (Switzerland)
bIMDEA Software Institute, Madrid (Spain)

cComputer Science Department, Universidad Complutense de Madrid, Madrid (Spain)

Abstract

We have previously proposed SecureUML, an expressive UML-based language for constructing security-design models, which are
models that combine design specifications for distributed systems with specifications of their security policies. Here we show how
to automate the analysis of such models in a semantically precise and meaningful way. In our approach, models are formalized
together with scenarios that represent possible run-time instances. Queries about properties of the security policy modeled are
expressed as formulas in UML’s Object Constraint Language. The policy may include both declarative aspects, i.e., static access-
control information such as the assignment of users and permissions to roles, and programmatic aspects, which depend on dynamic
information, namely the satisfaction of authorization constraints in a given scenario. We show how such properties can be evaluated,
completely automatically, in the context of the metamodel of the security-design language. We demonstrate, through examples,
that this approach can be used to formalize and check non-trivial security properties. The approach has been implemented in the
SecureMOVA tool and all of the examples presented have been checked using this tool.

Key words: UML, OCL, SecureUML, Access Control Policies, Security Policies, Formal Analysis, Metamodels

1. Introduction

Model driven development [11] holds the promise of re-
ducing system development time and improving the quality
of the resulting products. Recent investigations [4,8,9,10]
have shown that security policies can be integrated into
system design models and that the resulting security-
design models can be used as a basis for generating systems
along with their security infrastructures. Moreover, when
the models have a formal semantics, they can be reasoned
about: one can query properties of models and understand
potentially subtle consequences of the policies they define.

In previous work [4], we presented a security model-
ing language, called SecureUML, closely related to Role
Based Access Control (RBAC). We showed how to com-
bine this language (both syntactically and semantically)
with different design languages, thereby creating languages

∗ Corresponding Author. Ph.: +41 44 632 09 93; Fax: +41 44 632
11 72.

Email addresses: basin@inf.ethz.ch (David Basin),
clavel@sip.ucm.es (Manuel Clavel), doserj@inf.ethz.ch (Jürgen
Doser), marina egea@fdi.ucm.es (Marina Egea).
1 Research partially supported by Spanish MEC Projects TIN2005-
09207-C03-03 and TIN2006-15660-C02-01, and by Comunidad de
Madrid Program S-0505/TIC/0407.

for formalizing security-design models that specify system
designs together with their security requirements. Our fo-
cus in [4] was on the language definitions and generating
access-control infrastructure from security-design models.
Although we gave SecureUML a formal semantics, we did
not investigate methods for formalizing and mechanically
analyzing the security properties of security-design models.
This is our focus in the present paper.

Security-design models are formal objects with both a
concrete syntax (or notation) and an abstract syntax. The
modeling language for security-design models is described
by a metamodel that formalizes the structure of well-
formed models as well as scenarios, representing possible
run-time instances, i.e., concrete system states. We show
that, in this setting, security properties of security-design
models can be expressed as formulas in OCL [12], the Ob-
ject Constraint Language of UML, in the context of the
metamodel combining SecureUML with a design language.

Our use of OCL results in an expressive language for
formalizing queries, which utilizes the entire vocabulary
present in this metamodel. We can formalize queries about
the relationships between users, roles, permissions, actions,
and even system states. An example of a typical query
about a security policy is “are there two roles such that

Preprint submitted to Elsevier April 30, 2008



one includes the set of actions of the others, but the roles
are not related in the role hierarchy?” Another example,
but this time involving system state, is “which roles can
be assigned to a user so as to allow her to perform an ac-
tion on a concrete resource in the context of a given sce-
nario?” As we will see, we answer such queries by evaluat-
ing the corresponding OCL expression on the instances of
the metamodel that represent the security-design models
(or scenarios) under consideration.

The idea of formulating OCL queries on access control
policies is not new. Our work is inspired by [1,14], who first
explored the use of OCL for querying RBAC policies, and
we make comparisons in Section 8. Moreover, OCL is the
natural choice for querying UML models. It is part of the
UML standard and expressions written in OCL can be used
to constrain and query UML models. Given this previous
work, we see our contributions as follows.

First, we clarify the metatheory required to make query
evaluation formally well-defined. This requires, in particu-
lar, precise definitions of both the metamodel of the mod-
eling language and the mapping from models and scenar-
ios to the corresponding instances of this metamodel. As
we will see, being explicit about the metamodels and map-
pings used requires considerable attention to detail. But
the payoff is substantial: models and scenarios can then be
automatically analyzed in a semantically meaningful way.
Second, we show the feasibility of this approach by apply-
ing it to a nontrivial example: a security-design modeling
language from [4], which combines SecureUML with a com-
ponent modeling language named ComponentUML. Third,
we demonstrate that OCL expressions can be used to for-
malize and check non-trivial security properties of security-
design models. We provide a number of examples that il-
lustrate the expressiveness of this approach for reasoning
about properties depending on both the modeled access
control policy as well as a snapshot of the dynamic system
state. Finally, we provide a tool, SecureMOVA, that imple-
ments our approach. All of the examples presented in this
paper have been checked using this tool.

Outline. In Section 2, we describe the methodology un-
derlying our approach. Afterwards, in Sections 3 and 4,
we describe the different modeling languages employed and
their semantics. In Section 5, we explain how scenarios are
modeled and, in Section 6, we give examples that illustrate
how one can formalize and analyze a wide spectrum of au-
thorization queries using OCL. In Section 7, we present Se-
cureMOVA, a security-design modeling tool whose imple-
mentation is directly based on our metamodel-based ap-
proach for analyzing security-design models. We conclude
in Section 8 with a discussion of related and future work.

A preliminary version of this paper appeared in [2]. The
results reported on there were limited to security-design
models without scenarios and based on a more rudimentary
version of the SecureMOVA tool.

2. General Approach

Background on (meta)models. A modeling language pro-
vides a vocabulary (concepts and relations) for building
models, as well as a notation to graphically depict them as
diagrams. Often, the modeling language also provides a vo-
cabulary and notation for describing model instances, also
called scenarios. In the case of UML, for example, object
diagrams represent instances of class models.

Diagrams that depict models (or model instances) must
conform to the metamodel of the modeling language. A
metamodel is a diagram whose elements formalize the con-
cepts and relations provided by the modeling language and
whose invariants, usually written in OCL, specify addi-
tional well-formedness constraints on models and model in-
stances.

Problem statement: rigorously analyzing security models.
Some modeling languages explain the meaning of the dia-
grams using natural language. In this situation, analyzing
the models (or the model instances) depicted by the dia-
grams can only be done informally and no rigorous tool sup-
port can be expected. Other modeling languages explain
the meaning of the diagrams using a formal semantics: that
is, they define an interpretation function [·] that associates
mathematical structures [M ] to well-formed diagrams M .

In general, given a modeling language with a formal se-
mantics, one can reason about models by reasoning about
their semantics. In the case of a security modeling language
M, a security model (or a security model instance) M has
a property P (expressed as a formula in some logical lan-
guage) if and only if [M ] |= P . While this approach is stan-
dard, it either requires deductive machinery for reasoning
about the semantics of models (i.e., a semantic embedding
[5] and deduction within the relevant semantic domains,
which typically cannot be done automatically) or an ap-
propriate programming logic for reasoning at the level of
the models. These are strong requirements and a hurdle
for many practical applications. Hence, the question we ad-
dress is whether there are other ways of formally analyzing
security policies modeled by M (or implemented in M , if M
is a security model instance), but in a more familiar setting.

Approach taken. Our approach for analyzing properties
of security-design models and their instances reduces de-
duction to evaluation. In a nutshell, we express the desired
properties as OCL queries and evaluate these queries on the
models or model instances under consideration. 2 To give
a more detailed description of our approach, we first recall

2 A similar approach has been proposed for UML model metrica-
tion [6]: metrics are formalized as OCL queries on the UML meta-
model and are evaluated on the models under consideration. This
approach appears very general: it can be applied to analyze any
model property, independently of the modeling language, as long as
the property is expressible in OCL with the types and vocabulary
provided by the metamodel.

2



the elements involved in using OCL for analyzing model
properties. A brief review of OCL itself is provided in Ap-
pendix A.

Consider the UML four-layer metamodel hierarchy rep-
resented by the following diagram.

Class

Property Class InstanceSpecification

Person
name: String

Mike: Person
name = ’Mike’

Mike

+ownedAttribute

«snapshot»

«instanceOf»

«instanceOf»

«instanceOf»«instanceOf»

«instanceOf» «instanceOf» «instanceOf»

M3 (MOF)

M2 (UML)

M1 (User-model)

M0 (Run-time instances)

As a query language, OCL can be used to analyze an
instance of a model at level M0, using the types and vo-
cabulary introduced by the model at level M1. The types
correspond to the classes in the model and the vocabulary
corresponds to the properties (attributes, roles, and opera-
tions) declared for these classes. For example, in OCL one
can query the number of persons (Person.allInstances()−>size())
or the name of a person such as Mike (Mike.name). Interest-
ingly, since metamodels are themselves models, OCL can
also be used to query the models at level M1, using the
types and vocabulary introduced by the metamodel at level
M2. For example, in OCL one can query the number of
classes in the model (Class.allInstances()) or the number of
attributes possessed by a particular class such as Person
(Person.ownedAttribute−>size()).

A crucial observation is that, although OCL expressions
“talk about” instances of (meta)models, they are in fact
interpreted on representations of those instances for which
the meaning of the new types and vocabulary introduced
by the (meta)models is unambiguous. In our example, con-
sider the meaning of the property ownedAttribute: should the
attributes “owned” by a class (which is the intended mean-
ing of the property ownedAttribute) include those which are
inherited by the class or only those explicitly declared in
the class? 3 An adequate representation of UML models as
instances of the UML metamodel should provide an unam-
biguous interpretation for ownedAttribute as well as the rest
of the vocabulary introduced by the UML metamodel to
“talk about” models. In UML, the standard way of repre-
senting instances of (meta)models is through object dia-

3 In principle, both are possible definitions of the property
ownedAttribute. In fact, [13] must clarify that the reference of the
property ownedAttribute “does not include the inherited attributes.”

grams (also called “snapshots”). The object diagrams also
provide the information needed to unambiguously interpret
OCL expressions written in the context of (meta)models. In
what follows, we will denote by graphical models the models
M that the modeler sees and works with, and by abstract
models M we mean the object diagrams that represent the
models M as instances of the metamodel.

Now we can give a more precise description of our ap-
proach. Let a security-design modeling language M be
given. In order to analyze properties of security-design
models (and model instances) M , we first formalize the
desired properties as OCL queries using the types and vo-
cabulary provided by the metamodel of M, and we then
evaluate these queries on the corresponding snapshots M
of the metamodel ofM. For this approach to be meaning-
ful, we require that the mapping relating graphical models
M to abstract models M , along with the evaluation of OCL
expressions, correctly interacts with the interpretation
function [·]. The precise requirements are defined below. If
this mapping is not explicitly given, or the requirements
are not satisfied, the validity of the results returned may
be open (for examples, see the related work section), or
even wrong. Note that this is particularly prone to hap-
pen when one is using modeling languages loaded with
syntactic sugar.

Overall, our metamodel-based approach has a number
of advantages over more traditional deductive approaches.
First, the metamodel of a modeling language is always well-
defined and should be known by the modelers. Thus, when
analyzing their security-design models, the modelers need
not create from scratch, or learn, new (non-standard) con-
cepts and relations. Instead, they can use the same lan-
guage that they are using for modeling their system and its
security policy. Second, OCL is a formal language defined
as a standard add-on to UML. As noted in [16], “it should
be easily read and written by all practitioners of object
technology and by their customers, i.e., people who are not
mathematicians or computer scientists.” Thus, the analy-
sis of the models can be carried out by those building them,
rather than only by others (“verification engineers”) with
a strong logical and mathematical background. Last but
not least, there are many tools that support working with
UML and OCL. In particular, there are tools that can auto-
matically evaluate OCL expressions. Thus, the analysis of
the models need not be a time-consuming task, which may
require even more effort and ingenuity than the modeling
itself. Instead, the modelers can use push-button technolo-
gies that are already available in academia and industry.
The limitations of our approach are also clear: there are
properties that cannot be naturally expressed using OCL
or that cannot be proven by simply evaluating the expres-
sions on concrete security-design models and scenarios.

Correctness. Here we expand on the requirements of our
approach, in particular how OCL query evaluation must
be related to the semantics of the modeling language. Let

3



f be a function on the semantic domain and let expf be
an expression intended to formalize f in OCL. We require
that the following diagram commutes:

abstract graphical semantic
model model domain

M ← M → [M ]

↓ ↓

ev(expf ,M) −→ f([M ])

In this diagram, the downward arrow on the left side de-
notes the evaluation of the OCL expression expf , the result
of which is denoted by the function ev(·, ·). The downward
arrow on the right side corresponds to the evaluation of the
function f in the semantic domain, and the mapping to the
semantic domain is, as before, given by [·]. The requirement
says that the OCL expression expf can be used to analyze
the behavior of f if and only if [ev(expf ,M)] = f([M ]).
Roughly speaking, this means that an OCL expression can
be correctly used to check a property P if and only if, for
arbitrary models (or model instances) M , the result of eval-
uating this expression on M corresponds to the value of the
property P in [M ].

Rigorously proving this correspondence requires detailed
meta-reasoning that involves both the semantics of the un-
derlying formal system, the semantics of OCL, and the
translation scheme from terms in the semantic domain to
OCL expressions. This is a large undertaking and outside
the scope of this paper. In many practical cases however,
one may settle for the next best thing: it may be sufficient
to have a careful understanding of the metamodel of the
modeling languages and of the underlying mapping from
graphical models to abstract models. This is the approach
we have taken in this paper and hence we provide in the
following sections precise definitions of the metamodel of
our modeling language and of the mappings from graphical
models to abstract models. Note that, as explained above,
this is already a necessary condition for stating meaning-
ful OCL expressions on models and model instances in the
first place.

3. The SecureUML+ComponentUML Language

3.1. The SecureUML+ComponentUML Metamodel

SecureUML. SecureUML [4] is a modeling language for
formalizing access control requirements that is based on
RBAC [7]. In RBAC, permissions specify which roles are
allowed to perform given operations. These roles typically
represent job functions within an organization. Users are
granted permissions by being assigned to the appropriate
roles, based on their competencies and responsibilities in
the organization. RBAC additionally allows one to orga-
nize the roles in a hierarchy, where roles can inherit permis-
sions along the hierarchy. In this way, the security policy

can be described in terms of the hierarchical structure of an
organization. However, it is not possible to specify policies
that depend on dynamic properties of the system state, for
example, to allow an operation only during weekdays. Se-
cureUML extends RBAC with authorization constraints to
overcome this limitation. It formalizes access control deci-
sions that depend on two kinds of information:

(i) Declarative access control decisions that depend on
static information, namely the assignments of users
and permissions to roles, which we designate as an
RBAC configuration.

(ii) Programmatic access control decisions that depend
on dynamic information, namely the satisfaction of
authorization constraints in the current system state.

SecureUML provides a language for specifying access
control policies for actions on protected resources. How-
ever, it leaves open what the protected resources are and
which actions they offer to clients. These are specified in
a so-called dialect and depend on the primitives for con-
structing models in the system design modeling language.
Figure 1 shows the SecureUML metamodel. Essentially, it
provides a language for modeling Roles, Permissions, Ac-
tions, Resources, and Authorization Constraints, along with
their Assignments, i.e., which permissions are assigned to
which roles, which actions are assigned to which permis-
sions, which resources are assigned to which actions, and
which constraints are assigned to which permissions. No-
tice that actions can be either Atomic or Composite. The
atomic actions are intended to map directly onto actual op-
erations of the modeled system. The composite actions are
used to hierarchically group more lower-level ones and are
used to specify permissions for sets of actions.

ComponentUML. The system design modeling language
that we consider in this paper, ComponentUML, is a sim-
ple language for modeling component-based systems. Es-
sentially, it provides a subset of UML class models: Entities
can be related by Associations and may have Attributes
and Methods. The ComponentUML metamodel is depicted
in the (boxed) right-hand part of Figure 2.

Dialect Definition. The dialect metamodel provides the
connection between SecureUML and the system design
modeling language. The metamodel shown in Figure 2,
together with the complete SecureUML metamodel, con-
stitute the SecureUML+ComponentUML metamodel.

A dialect metamodel specifies:
(i) The model element types of the system design mod-

eling language that represent protected resources.
These element types are modeled as specializations
of the class Resource. Here, Entities, as well as their
Attributes, Methods, and AssociationEnds (but not
Associations as such) are protected resources.

(ii) The actions these resource types offer and the hierar-
chies classifying these actions. This is accomplished
in two steps. First, we introduce the different ac-

4



Role
default: Boolean

Permission
default: Boolean

Action Resource

User AuthorizationConstraint
body: String
language: String

CompositeAction AtomicAction

+hasrole

+includes

UserAssignment

*

*

+superrole

+subrole

RoleHierarchy

+givesaccess
+haspermission

PermissionAssignment

1
*

+isconstraintby

+constrains

ConstraintAssignment

1

0..1

+isassigned +accesses
ActionAssignment

*

1..*
+resource+action

ResourceAssignment

1..* 1+subordinatedactions

+compositeaction

ActionHierarchy

Figure 1. SecureUML Metamodel.

CompositeAction AtomicAction

Action

CompositeAction AtomicAction

Resource+resource+action ResourceAssignment
1..* 1

EntityMethod

isQuery(): Boolean

Attribute

AssociationEnd

Association ComponentUML
Metamodel

+hasmethod

EntityMethod
1*

+hasattribute

EntityAttribute
1 *

+hasassociationend
EntityAssociationEnd

1

*

EntityFullAccess EntityUpdate EntityRead

AttributeFullAccess AssociationEndFullAccess

AtomicUpdate AtomicRead

AtomicCreate AtomicDelete AtomicExecute

Figure 2. ComponentUML Dialect Metamodel.

tion types as specializations of the classes Composite-
Action and AtomicAction. Second, we use OCL meta-
model invariants to constrain which resources are ac-
cessible from the actions and which actions are subor-
dinated to the composite actions. The actions offered
here are shown in the following table, where under-
lined actions are composite actions.

Resource Actions

Entity create, read, update, delete,

full access

Attribute read, update, full access

Method execute

AssociationEnd read, update, full access

The complete list of OCL metamodel invariants is
given in Appendix B. The list includes, for exam-
ple, the following invariants, which guarantee that
AttributeFullAccess actions always act on Attributes
and that they contain both the read and the update
actions upon the corresponding attributes.

context AttributeFullAccess
inv targetsAnAttribute:

self.resource.oclIsTypeOf(Attribute)
inv containsSubactions:

self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicRead)))

(iii) The default access control policy for those actions
where no explicit permissions are defined (i.e.,
whether access is allowed or denied by default). This
is accomplished by specifying whether the default
role has the default permission, where the default
role and the default permission are distinguished by

having the default attribute set to true. OCL meta-
model invariants (given in Appendix B) therefore
include, for example, the following invariants, which
guarantee that security models contain a default per-
mission that can only be given to the default role and
whose authorization constraint is always satisfied.

context Permission
inv existsADefaultPermission:

self.allInstances()−>select(p|p.default)−>size() = 1
inv defaultPermissionAssignedToDefaultRole:

self.default implies
self.givesaccess−>forAll(r|r.default)

inv constraintByTrue:
self.default implies self.isconstraintby.body = ‘‘true’’

The default access policy is now specified by the fol-
lowing constraint, stating that the default role has the
default permission, i.e., access is allowed by default.

context Role
inv defaultAccess:

self.default implies
self.haspermission−>exists(p|p.default)

3.2. The SecureUML+ComponentUML Models

Concrete Syntax. We use Figure 3 as a running example
to illustrate the concrete syntax of SecureUML and Com-
ponentUML. In this example, the system should maintain
data on persons and records of meetings. A meeting has
an owner, a list of participants, a time, and a place. Users
may carry out standard operations on meetings, such as
creating, reading, editing, and deleting them. A user may
also cancel a meeting, which deletes the meeting and noti-
fies all participants by email. The system should obey the
following (here informally given) security policy:

5



«Role»

SystemUser

«Role»

Supervisor

«Role»

SystemAdministrator

«Permission»

UserMeeting
«entityaction» Meeting:create
«entityaction» Meeting:read

«Permission»

OwnerMeeting
«entityaction» Meeting:update
«entityaction» Meeting:delete

«Permission»

SupervisorCancel
«methodaction» Meeting.cancel: execute
«methodaction» Meeting.notify: execute

«Permission»

ReadMeeting
«entityaction» Meeting: read

caller = self.owner.name

«Permission»
UserManagement

«entityaction» Person:fullaccess

«Entity»

Meeting
start: Date
duration: Time
notify()
cancel()

«Entity»
Person

name: String

*

+owner1

*

+participants 2..*

Figure 3. Example Security Policy.

– All users of the system are allowed to create new meetings
and read all meeting entries.

– Only the owner of a meeting is allowed to change meeting
data and cancel or delete the meeting.

– A supervisor is allowed to cancel any meeting.
– A system administrator is allowed to read meeting data,

and administer the system’s users.
– A supervisor (but not a system administrator) is also a

user of the system.
Figure 3 formalizes this security policy using the UML pro-
file for SecureUML and ComponentUML defined in [4].

A role is represented by a UML class with the stereo-
type �Role� and an inheritance relationship between two
roles is defined using a UML generalization relationship.
The role referenced by the arrowhead of the generalization
relationship is considered to be the superrole of the role
referenced by the tail.

A permission, along with its relations to roles and ac-
tions, is defined in a single UML model element, namely an
association class with the stereotype �Permission�. The
association class connects a role with a UML class repre-
senting a protected resource, which is designated as the
root resource of the permission. The actions that such a
permission refers to may be actions on the root resource or
on subresources of the root resource. Each attribute of the
association class represents the assignment of an action to
the permission, where the action is identified by the name
and the type of the attribute. Stereotypes for these permis-
sion attributes specify how the attribute is mapped to an
action and are defined as part of the dialect. The stereo-
type �entityaction�, for example, specifies that a permis-
sion attribute refers to an action on an entity. The name
of the permission attribute specifies the name of the at-
tribute, method, or association end targeted by the permis-
sion. The type of the permission attribute specifies the ac-

tion (e.g., read, update, or full access) that is permitted by
the permission. The authorization constraint expressions
are attached to the permissions’ association classes.

ComponentUML entities are represented by UML classes
with the stereotype �Entity�. Every method, attribute,
or association end owned by such a class is automatically
considered to be a method, attribute, or association end of
the entity.

3.3. The Mapping From Models to Snapshots of the
Metamodel

Recall that, in our approach, the specification of security
properties using OCL depends on the mapping from mod-
els to snapshots of the metamodel. This is because the ex-
pressions formalizing the properties will not be evaluated
on the graphical models, but rather on the corresponding
abstract models. Of course, the mapping must satisfy the
following property: if M is a well-formed graphical model,
then M is an abstract model that satisfies all the invari-
ants of the metamodel. The complete definition of the map-
ping from SecureUML+ComponentUML graphical models
to abstract models is given in Appendix C. To a large ex-
tent, this mapping is straightforward: UML model elements
with appropriate stereotypes are mapped to snapshots of
the corresponding metamodel elements and associations
between UML model elements are mapped to links between
the snapshots of the corresponding metamodel elements.

In some cases, however, this mapping is less straightfor-
ward. In such cases, explicitly giving the mapping is es-
sential to avoid ambiguous or incorrect interpretations and
to guarantee that the resulting abstract models fulfill the
metamodel invariants. This is particularly important when
the notation provides the modeler with syntactic sugar. We
list below some examples of such subtleties. Let M be a

6



model, then the mapping constructs an M that contains
(among others) the following elements.
– The mapping creates default objects of type Role, Autho-

rizationConstraint, and Permission. Note that the de-
fault roles, authorization constraints, and permissions
are not depicted in M . A default role, for example, is
created by the mapping; it is assigned to every user de-
picted in M and it is declared a superrole of every role
depicted in M . As a result, the following metamodel in-
variants (which formalize part of the default access con-
trol policy defined in SecureUML+ComponentUML) are
guaranteed to be fulfilled in M :

context Role
inv existsADefaultRole:

self.allInstances()−>select(r|r.default)−>size() = 1
inv allRolesInheritFromDefaultRole:

self.superrolePlus()−>exists(r|r.default)

context User
inv allUsersAssignedDefaultRole:

self.hasrole−>exists(r|r.default)

Similarly, a default object of type AuthorizationCon-
straint is created by the mapping, with the string ’true’
as the value of its body attribute.

– The mapping creates links between the default objects
of type Role, AuthorizationConstraint, and Permission,
and between the default object of type Permission and
the objects of subtypes of Action. For example, the map-
ping creates a ConstraintAssignment-link between the
default authorization constraint and the default permis-
sion, as well as a PermissionAssignment-link between the
default permission and the default role. As a result, the
metamodel invariants defaultPermissionAssignedToDe-
faultRole and constraintByTrue (which, as explained in
the previous section, formalize part of the default access
control policy defined in SecureUML+ComponentUML)
are guaranteed to be (partially) fulfilled in M .

– The mapping creates objects of subtypes of Action that
correspond to the actions offered by the resources, and
links between these objects and the corresponding ob-
jects of subtypes of Resource. Note that objects for all
possible actions are created, not only for those mentioned
in the attributes of the permissions depicted in M . As
an illustration, consider the model in Figure 3. The ob-
jects representing the actions of reading or updating the
attribute name of the entity Person, as well as the com-
position of these two actions, are created by the map-
ping, although they are not explicitly referenced by any
permission. In addition, the mapping creates Resource-
Assignment-links between these objects and the object
representing the attribute name. As a result, the follow-
ing metamodel invariant, which formalizes the actions
defined in SecureUML+ComponentUML on entity at-
tributes, is guaranteed to be fulfilled in M for the at-
tribute name:

context Attribute inv areAccessedBy:
self.action−>size() = 3 and
self.action−>exists(a|

a.oclIsTypeOf(AttributeFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicUpdate))

– The mapping creates links between the objects of type
AtomicAction and the corresponding objects of type
CompositeAction. For example, the mapping for the
model in Figure 3 creates an ActionHierarchy-link be-
tween the object of type CompositeAction representing
the action of reading the entity Person and the object of
type AtomicAction representing the action of reading its
attribute name. As a result, the following metamodel in-
variant (which formalizes part of the hierarchy of actions
defined in SecureUML+ComponentUML) is guaranteed
to be (partially) fulfilled in M for the entity Person:

context EntityRead inv containsSubactions:
self.subordinatedactions =
self.resource.oclAsType(Entity).hasattribute.action
−>select(a|a.oclIsTypeOf(AtomicRead))
−>union(self.resource.oclAsType(Entity)

.hasassociationend.action
−>select(a|a.oclIsTypeOf(AtomicRead)))

−>union(self.resource.oclAsType(Entity).hasmethod
−>select(me|me.isQuery).action
−>select(a|a.oclIsTypeOf(AtomicExecute)))

Notice that the abstract models contain objects (and
links between these objects) that are created by our map-
ping and therefore do not appear (or have names) in the
graphical model. To denote these objects, we use the fol-
lowing conventions.
– Objects representing users, roles, permissions, and enti-

ties are named by their name in the graphical model. For
example, the object representing the role SystemUser as
a snapshot of the class Role is named SystemUser in the
abstract model.

– Objects representing actions are named by the name of
the resource they act upon, followed by their types. For
example, the object representing an atomic update ac-
tion that acts upon the attribute start of the entity Meet-
ing is named MeetingstartAtomicUpdate.

4. Analyzing SecureUML+ComponentUML
Models

In this section, we define OCL operators in the context of
the metamodel of SecureUML+ComponentUML that for-
malize different aspects of the access control information
contained in the models. We will use these operators as part
of an OCL-based language for analyzing access control de-
cisions that depend on static information, namely the as-
signment of users and permissions to roles. Programmatic

7



access control decisions can also be analyzed using these
operators as we will discuss in Section 5. The approach we
take not only allows us to formalize desired properties of
models, but also to automatically analyze models by evalu-
ating the corresponding OCL expressions on the snapshots
of the metamodel corresponding to the models.

To illustrate our approach, we include examples that
show the result of evaluating our OCL operators on the se-
curity policy modeled in Figure 3. All the examples have
been checked with the SecureMOVA tool. In what follows,
let SCHEDULER be the snapshot of the metamodel of Se-
cureUML+ComponentUML that corresponds to the model
depicted in Figure 3.

4.1. Semantics

We recall the semantics of SecureUML+ComponentUML
models [4], with respect to which we claim that our OCL-
operations correctly capture access control information.
Let ΣRBAC = (SRBAC ,≥RBAC ,FRBAC ,PRBAC ) be the
order-sorted signature that defines the type of structures
specifying role-based access control configurations. Here
SRBAC is a set of sorts, ≥RBAC is a partial order on
SRBAC , FRBAC is a sorted set of function symbols, and
PRBAC is a sorted set of predicate symbols. In detail,

SRBAC =

 Users,Roles,Permissions,

AtomicActions,Actions

 ,

where Actions ≥RBAC AtomicActions. Also, FRBAC = ∅
and

PRBAC =



≥Roles : Roles × Roles ,

≥Actions : Actions ×Actions,

UA : Users × Roles ,

PA : Roles × Permissions ,

AA : Permissions ×Actions


.

Given a SecureUML+ComponentUML model M , one
defines a ΣRBAC -structure =RBAC in the obvious way: the
sets Users, Roles, Permissions, AtomicActions, and Ac-
tions each contain entries for every model element of the
corresponding metamodel types User, Role, Permission,
AtomicAction, and Action. Also, the relations UA, PA, and
AA contain tuples for each instance of the corresponding
metamodel associations UserAsssignment, PermissionAs-
signment, and ActionAssignment. Additionally, we define
the partial orders ≥Roles and ≥Actions on the sets of roles
and actions, respectively. ≥Roles is given by the reflexive-
transitive closure of the metamodel aggregation RoleHier-
archy on Role, and we write subroles (roles with additional
privileges) on the left (larger) side of the≥-symbol.≥Actions

is given by the transitive closure of the composition hierar-
chy on actions, defined by the metamodel aggregation Ac-
tionHierarchy. We write a1 ≥Actions a2, if a2 is a subordi-

nated action of a1. These relations are partial orders since
aggregations in UML are antisymmetric by definition.

Remark: Let =RBAC be the ΣRBAC structure defined by
a model M . Then, for any u in Users, r in Roles, p in Per-
missions, and a in Actions, the following table shows the
correspondence between satisfaction in =RBAC and evalu-
ation of OCL expressions in M .

is satisfied in =RBAC evaluates to true over M

UA(u, r) u.hasrole−>includes(r)

PA(r, p) r.haspermission−>includes(p)

AA(p, a) p.accesses−>includes(a)

Next, we introduce the formulas

φUser (u, p) :=
∃r, r′ ∈ Roles : UA(u, r) ∧ r ≥Roles r′ ∧ PA(r′, p) ,

and

φAction(p, a) :=
∃a′ ∈ Actions : AA(p, a′) ∧ a′ ≥Actions a .

Here, φUser (u, p) denotes that u has permission p and
φAction(p, a) denotes that p is a permission for action a.

The access control semantics is now given by the formula
φRBAC (u, a), which expresses that a user u has a permission
to perform the action a.

φRBAC (u, a) :=
∃p ∈ Permissions : φUser (u, p) ∧ φAction(p, a) .

4.2. Analysis Operations

In this section, we define different OCL query operations
that are useful for analyzing security properties of models
formalized using SecureUML+ComponentUML.

To analyze the relation ≥Roles in the ΣRBAC -structure
=RBAC defined by a model M , we define the operation
Role::superrolePlus():Set(Role) that returns the collection of
roles (directly or indirectly) above a given role in the role
hierarchy.

context Role::superrolePlus():Set(Role) body:
self.superrolePlusOnSet(self.superrole)

context Role::superrolePlusOnSet(rs:Set(Role)):Set(Role)
body:

if rs.superrole−>exists(r|rs−>excludes(r))
then self.superrolePlusOnSet(rs

−>union(rs.superrole)−>asSet())
else rs−>including(self)
endif

In our example, Supervisor.superrolePlus() evaluates to Set{de-

faultRole, SystemUser, Supervisor} on SCHEDULER.
Similarly, we define the operation Role::subrolePlus():Set(Role)

returning the roles (directly or indirectly) below a given

8



role in the role hierarchy. Also, we use these operations to
define the operation Role::allPermissions():Set(Permission) that
returns the collection of permissions (directly or indirectly)
assigned to a role.

context Role::allPermissions():Set(Permission) body:
self.superrolePlus().haspermission−>asSet()

In our example, Supervisor.allPermissions() evaluates to Set{de-

faultPermission, OwnerMeeting, UserMeeting, SupervisorCancel} on
SCHEDULER.

Conversely, we define the operation Permission::allRoles():

Set(Role), returning the collection of roles that are (directly
or indirectly) assigned to the given permission.

To analyze the relation ≥Actions in the ΣRBAC -structure
=RBAC defined by a model M , we define the operation
Action::subactionPlus():Set(AtomicAction) that returns the collec-
tion of atomic actions (directly or indirectly) subordinated
to an action.

context Action::subactionPlus():Set(AtomicAction) body:
if self.oclIsKindOf(AtomicAction)
then Set{self}
else self.oclAsType(CompositeAction)

.subordinatedactions.subactionPlus()
endif

In our example, MeetingEntityUpdate.subactionPlus() evalu-
ates to Set{MeetingstartAtomicUpdate, MeetingdurationAtomicUp-

date, MeetingcancelAtomicExecute, MeetingnotifyAtomicExecute,

MeetingownerAtomicUpdate, MeetingparticipantsAtomicUpdate} on
SCHEDULER.

Similarly, we define Action::compactionPlus():Set(Action) re-
turning the collection of actions to which an action is (di-
rectly or indirectly) subordinated. In addition, we define
the operation Permission::allActions():Set(AtomicAction) that re-
turns the collection of atomic actions whose access is (di-
rectly or indirectly) granted by a permission.

context Permission::allActions():Set(AtomicAction) body:
self.accesses.subactionPlus()−>asSet()

In our example, OwnerMeeting.allActions() evaluates to
Set{MeetingAtomicDelete, MeetingstartAtomicUpdate, Meeting-

durationAtomicUpdate, MeetingcancelAtomicExecute, Meetingno-

tifyAtomicExecute, MeetingownerAtomicUpdate, Meetingpartici-

pantsAtomicUpdate} on SCHEDULER.
Conversely, we define Action::allAssignedPermissions():

Set(Permission), returning the collection of permissions that
(directly or indirectly) grant access to an action.

Finally, we define the operation User::allAllowedActions():

Set(AtomicAction) that returns the collection of atomic ac-
tions that are permitted for the given user, subject to the
satisfaction of the associated constraints in each concrete
scenario.

context User::allAllowedActions():Set(AtomicAction) body:
self.hasrole.allPermissions().allActions()−>asSet()

Remark: Let =RBAC be the ΣRBAC structure defined
by a model M . Then, for any u in Users, r, r1, and r2 in
Roles, p in Permissions, a1 in Actions, and a and a2 in
AtomicActions, Table 1 shows the correspondence between
satisfaction in =RBAC and evaluation of OCL expressions
in M .

is satisfied in =RBAC evaluates to true in M

r1 ≥Roles r2 r1.superrolePlus()−>includes(r2)

r2.subrolePlus()−>includes(r1)

∃r2 ∈ Roles. r1.allPermissions()−>includes(p)

r1 ≥Roles r2 ∧ PA(r2, p) p.allRoles()−>includes(r1)

a1 ≥Actions a2 a1.subactionPlus()−>includes(a2)

a2.compactionPlus()−>includes(a1)

φUser (u, p) u.hasrole.allPermissions()−>includes(p)

p.allRoles().includes−>includes(u)

φAction (p, a) p.allActions()−>includes(a)

a.allAssignedPermisssions()−>includes(p)

φRBAC (u, a) u.allAllowedActions()−>includes(a)

Table 1
Correspondence between Semantics and OCL Evaluation.

5. Analyzing Scenarios

To analyze the effect of authorization constraints on a
SecureUML policy, we must be able to formalize and reason
about instances of the ComponentUML model. Hence, one
must be able to specify system states, which we will call
security scenarios in the following.

In a security scenario, one specifies both the instance
of the ComponentUML part of the security-design model
(in the manner of a UML object diagram), as well as role
assignments for the users in the scenario. We assume here
that SecureUML users are represented as ComponentUML
entities. The example scenario in Figure 4 contains two
users, Bob and Alice, with roles SystemUser and Supervisor
respectively. It also contains one meeting, Kick-off, whose
owner is Alice.

Recall that our general approach for analyzing models
is based on evaluating OCL expressions on snapshots of
the metamodel. This means, we first must define the meta-
model that formalizes the concepts and relations which are
modeled by the security scenarios of security-design mod-
els. Afterwards, we must define how to map the security-
design model together with the security scenario to a snap-
shot of this new metamodel.

5.1. Metamodel Combination

Our goal is to reason about the static RBAC config-
uration given in the security-design model together with

9



«Role»

SystemUser

«Role»

Supervisor
Alice: Person

name = ’Alice’

Bob: Person
name = ’Bob’

Kick-Off: Meeting
start = ...
duration = ...

owner

participant

participant

Figure 4. Example Scenario

the effects of authorization constraints in the given secu-
rity scenario. Hence, the metamodel in which our analysis
questions can be formalized as OCL expressions must pro-
vide the vocabulary for both. The idea thus is to merge the
SecureUML metamodel with the ComponentUML model
that is part of the security-design model (i.e., the design
model) so that queries involving the validity of authoriza-
tion constraints can be formulated using OCL expressions
on snapshots of this combined metamodel.

This merging is more than a simple union of both mod-
els (the SecureUML metamodel and the ComponentUML
model). Connections between them must be made in order
to formulate queries involving, for example, both role as-
signments and system state. To illustrate this metamodel
combination, Figure 5 shows the result of the merging for
the case of the security-design model in Figure 3 and the
scenario in Figure 4. In particular:

(i) The ComponentUML entities are added to the Se-
cureUML+ComponentUML metamodel and are
given a common supertype EntityInstance, which is
associated to Entity. This reflects that, in a scenario,
a person Alice is an instance of the class Person
but, as a concrete resource, she also has a type Per-
son, which is an instance of Entity. This is similar
to how the relationship between objects and classes
is modeled in the UML metamodel. Only here, the
metamodel is not fixed, but is extended by the en-
tities depicted in the security design model (in our
example, Person and Meeting).

To ensure that entity instances are associated
to their corresponding entities, for each pair of
distinct entities A and B depicted in the security-
design model (in our example, Person and Meet-
ing) the following invariants are added to the Se-
cureUML+ComponentUML metamodel:

context A inv:
A.allInstances()−>forall(x,y| x.entity = y.entity)

context A inv:
B.allInstances()−>forall(b| b.entity <> self.entity)

(ii) An inheritance relationship from the Compo-
nentUML entity representing users to the class User
is added to the SecureUML+ComponentUML meta-
model. This reflects the fact that, in a scenario, a
person Alice is an instance of the class Person but,
as a user, she can also be a caller in an authorization
constraint. In general, this user-entity will be im-

plicitly defined by the actual role-assignments in the
scenario: The entity whose instances are associated
to roles obviously represents users (in our example,
the entity Person).

(iii) A class ActionInstance, with associations both to
Action and EntityInstance, is added to the Se-
cureUML+ComponentUML metamodel. This re-
flects the fact that, in a scenario, the action of read-
ing Alice’s name has a type, namely, the type rep-
resented by the atomic action PersonnameAtomic-
Read and it also refers to an instance of an entity,
namely, the person Alice. To guarantee that action
instances are created for each pair of compatible
atomic action and entity instance, and that they are
associated to their corresponding action and entity
instances, the following invariants are added to the
SecureUML+ComponentUML metamodel:

context Resource::root():Entity post:
if self.oclIsTypeOf(Entity) then self
else if self.oclIsTypeOf(Method) then self.entity
else if self.oclIsTypeOf(Attribute) then self.entity
else if self.oclIsTypeOf(AssociationEnd)

then self.entity
else OclUndefined
endif endif endif endif

context AtomicAction
inv: self.actionInstance−>size() =

self.resource.root().entityInstance−>size()
inv: self.resource.root().entityInstance−>forall(ei|

self.actionInstance−>exists(ai|
ai.resourceInstance = ei))

context ActionInstance inv:
self.action.resource.root() =
self.resourceInstance.entity

(iv) Finally, a method

AuthorizationConstraint::evaluate(caller:User,
self:EntityInstance):Boolean

is added to AuthorizationConstraint in the Se-
cureUML+ComponentUML metamodel, with the
following semantics: it evaluates the constraint on
the given scenario, using the arguments caller and
self to instantiate the parameters caller and self in the
constraint.

10



Role
default: Boolean

Permission
default: Boolean

Action Resource

User AuthorizationConstraint
body: String
language: String
evaluate(caller:User, self:EntityInstance):Boolean

CompositeAction AtomicAction
Entity

ActionInstance EntityInstance
+actionInstance*

+action1

+resourceInstance
1+actionInstance

*

+entity
1

+entityInstance
*

Meeting
start: Date
duration: Time
notify()
cancel()

Person
name: String

*
+owner1

*

+participants 2..*

+hasrole

+includes

UserAssignment

*

*

+superrole

+subrole

RoleHierarchy

+givesaccess
+haspermission

PermissionAssignment

1
*

+isconstraintby

+constrains

ConstraintAssignment

1

1

+isassigned +accesses
ActionAssignment* 1..*

+resource+action
ResourceAssignment1..* 1

+subordinatedactions

+compositeaction

ActionHierarchy

Figure 5. Combined Metamodel

5.2. Scenario Mapping

Given the combined metamodel, a security-design model
together with a security scenario can be mapped to a snap-
shot of this metamodel. The complete definition is given in
Appendix C. For the most part, this mapping is straightfor-
ward: the SecureUML policy in the security-design model
is mapped as described in Section 3.3 and the object dia-
gram in the security scenario (i.e., the instance of the Com-
ponentUML part in the security-design model) is mapped
as expected. There are, however, some subtleties that we
list below. We use as an example the security-design model
in Figure 3 together with the scenario in Figure 4.
– Links are created to connect each instance of EntityIn-

stance with the corresponding instance of Entity. In our
example, the mapping creates a link between the object
Alice of the class EntityInstance (that represents the per-
son Alice depicted in the security scenario) and the ob-
ject Person of the class Entity (that represents the entity
Person). This link reflects the type of Alice as a resource,
namely, a Person.

– Objects of the type ActionInstance are created for each
instance of AtomicAction and each instance of Entity
such that the latter is the (root) resource for the former
in the security-design model. Also, links are created to
connect these instances of ActionInstance with the corre-
sponding instances of AtomicAction and EntityInstance.
In our example, an object Kick-OffstartAtomicRead of
the class ActionInstance is created and is linked both to
the object MeetingstartAtomicRead of the class Atomi-
cRead (that represents the action of reading the value
of the attribute start of the entity Meeting) and to
the object Kick-Off of the class Meeting (that repre-
sents the meeting Kick-Off depicted in the security
scenario). These links reflect, respectively, the type of
Kick-OffstartAtomicRead as an action, namely, the ac-
tion MeetingstartAtomicRead, and the resource upon
which it acts, namely, the meeting Kick-Off.

5.3. Scenario Analysis Operations

Let us first recall here the semantics of programmatic
access control decisions in SecureUML+ComponentUML
models, with respect to which we claim that our OCL-
operations are correct. Let ΣST be the order-sorted signa-
ture corresponding to the ComponentUML model and let
SST be the ΣST -structure defined by the security scenario.
For the formal definition of ΣST and SST , we refer to [4].
Basically, ΣST contains a sort for each entity and a func-
tion symbol for each attribute or association end of an en-
tity in the ComponentUML model. The definition of SST

from the security scenario is the straightforward one. Let
ΣAC = ΣRBAC ∪ ΣST and SAC = 〈SST ,=RBAC〉.

Given the above, a user u is allowed to perform the action
a if and only if

SAC |=
∨

p∈Permissions

φUser (u, p) ∧ φAction(p, a) ∧ φp
ST (u) ,

where φp
ST (u) denotes the authorization constraint at-

tached to permission p.
Equivalently, a user u is allowed to perform the action a

if and only if

SST |=
∨

p∈UAP(u,a)

φp
ST (u) .

Here, UAP(u, a) is a function returning the set of permis-
sions that u has for the action a:

UAP(u, a) :=
{p ∈ Permissions | φUser (u, p) ∧ φAction(p, a)} .

Thus, access is granted if and only if the user u has a per-
mission p for which the corresponding authorization con-
straint is valid in SST .

In what follows, let SCHEDULER+ be the snapshot of
the metamodel that corresponds to the scenario de-
picted in Figure 4. We start by defining an operation
User::allAuthConstUser(a:Action):Set(AuthorizationConstraint) that
returns the list of authorization constraints for a given
user-action pair.

11



context User::allAuthConstUser(a:Action)
:Set(AuthorizationConstraint) body:

self.hasrole.superrolePlus().allAuthConstRole(a)

context Role::allAuthConstRole(a:Action)
:Set(AuthorizationConstraint) body:

self.permissionPlus(a).isconstraintby

Given this, we can now define the most basic analy-
sis operation: can a given user perform a given action
instance in the current scenario? This is the operation
User::isAllowed(a:ActionInstance):Boolean defined below.

context User::isAllowed(a:ActionInstance):Boolean body:
self.allAuthConstUser(a.action)−>exists(au|

au.evaluate(self,a.resourceInstance))

In our example, Alice.isAllowed(Kick-OffAtomicDelete) evaluates
to true on SCHEDULER+. We can also calculate the allowed
action instances for a given user and the set of users that
are allowed to perform a given action instance.

context User::allAllowedActionInstances()
:Set(ActionInstance) body:

self.allAllowedActions().actionInstance
−>select(ai|(self.isAllowed(ai))

In our example, Bob.allAllowedActionInstances() evaluates
to Set{Kick-OffAtomicCreate, Kick-OffstartAtomicRead, Kick-

OffdurationAtomicRead, Kick-OffownerAtomicRead, Kick-Offparti-

cipantsAtomicRead} on SCHEDULER+.

context ActionInstance::allUsers():Set(User) body:
self.action.allAssignedUsers−>select(u|u.isAllowed(self))

context Action::allAssignedUsers():Set(User) body:
self.allAssignedRoles.includes

In our example, Kick-OffAtomicDelete.allUsers() evaluates to
Set{Alice} on SCHEDULER+.

Remark: Let SAC be the ΣST -structure defined by a
model M together with a security scenario. Then, for any
u in Users and a in AtomicActions, and for any action
instance ai of a, Table 2 shows the correspondence between
satisfaction in SAC and evaluation of OCL expressions in
M .

is satisfied in SAC evaluates to true in M

∃p ∈ Permissions. u.allAuthConstUser(a)−>includes(φp
ST )

p ∈ UAP(u, a)

∃p ∈ Permissions. u.isAllowed(ai)

p ∈ UAP(u, a) ∧ φp
ST u.allAllowedActionInstances()−>includes(ai)

ai.allUsers()−>includes(u)

Table 2
Correspondence between Semantics and OCL Evaluation.

6. Analysis Examples

In this section, we give examples that illustrate how one
can analyze SecureUML+ComponentUML models or sce-
narios M using the OCL operations defined in the previous
sections. The properties to be analyzed are formalized as
queries on objects in M , possibly with additional arguments
referring to the objects in M . We also show the results of
the queries on the security policy modeled in Figure 3 and
the scenario modeled in Figure 4. All the examples have
been checked with the SecureMOVA tool.

6.1. Security policies

Example: Given a role, what are the atomic actions that
a user in this role can perform?

context Role::allAtomics():Set(AtomicAction) body:
self.allPermissions().allActions()−>asSet()

In our example, SystemAdministrator.allAtomics() evalu-
ates to Set{MeetingstartAtomicRead, MeetingdurationAtomi-

cRead, MeetingownerAtomicRead, MeetingparticipantsAtomicRead,

PersonnameAtomicUpdate, PersonmeetingAtomicUpdate, Person-

eventsAtomicUpdate, PersonnameAtomicRead, PersonmeetingAtomi-

cRead, PersoneventsAtomicRead, PersonAtomicCreate, Person-

AtomicDelete} on SCHEDULER.
Example: Given an atomic action, which roles can per-

form this action?

context AtomicAction::allAssignedRoles():Set(Roles) body:
self.compactionPlus().isassigned.allRoles()−>asSet()

In our example, MeetingAtomicDelete.allAssignedRoles() evalu-
ates to Set{Supervisor, SystemUser} on SCHEDULER.

Example: Given a role and an atomic action, under which
circumstances can a user in this role perform this action?

context Role::allAuthConst(a:Action):Set(String) body:
self.permissionPlus(a).isconstraintby.body−>asSet()

context Role::permissionPlus(a:Action):Set(Permission)
body: self.allPermissions()

−>select(p|p.allActions()−>includes(a))

In our example, Supervisor.allAuthConst(MeetingCancelAtomic-

Execute) evaluates to Set{”self.name.owner = caller.name”, ”true”}
on SCHEDULER.

Example: Are there two roles with the same set of atomic
actions?

context Role::duplicateRoles():Boolean body:
Role.allInstances()
−>exists(r1, r2| r1.allAtomics() = r2.allAtomics())

In our example, duplicateRoles() evaluates to true on SCHED-

ULER.

12



Example: Given an atomic action, which roles allow the
least set of actions, including the atomic action? This re-
quires a suitable definition of “least” and we use here the
smallest number of atomic actions.

context AtomicAction::minimumRole():Set(Role) body:
self.allAssignedRoles()−>select(r1|self.allAssignedRoles()
−>forAll(r2| r1.allAtomics()−>size()

<= r2.allAtomics()−>size()))

In our example, PersoneventsAtomicRead.minimumRole() evalu-
ates to Set{SystemAdministrator} on SCHEDULER.

Example: Do two permissions overlap?

context Permission::overlapsWith(p:Permission):Boolean
body: self.allActions()

−>intersection(p.allActions())−>notEmpty()

In our example, OwnerMeeting.overlapsWith(SupervisorCancel)

evaluates to true on SCHEDULER.
Example: Are there overlapping permissions for different

roles?

context Permission::existOverlapping():Boolean body:
Permission.allInstances()−>exists(p1,p2|

p1 <> p2 and p1.overlapsWith(p2)
and not(p1.allRoles()−>includesAll(p2.allRoles())))

In our example, existOverlapping() evaluates to true on SCHED-

ULER.
Example: Are there atomic actions that every role, except

the default role, may perform?

context AtomicAction::accessAll():Boolean body:
AtomicAction.allInstances()−>exists(a|

Role.allInstances()−>forAll(r|
not(r.default) implies

r.allAtomics()−>includes(a)))

In our example, accessAll() evaluates to true on SCHEDULER.

6.2. Security Scenarios

Many of the analysis examples above can be expressed
in terms of action instances instead of actions. In the fol-
lowing, we provide several examples of this.

Example: Given an action on a concrete resource, which
roles are to be assigned to a given user so as to allow her
to perform the action in the given scenario?

context User::allRolesToPerform(ai:ActionInstance)
:Set(Role) body:

Role.allInstances()−>select(r|
r.allAuthConstRole(ai.action)−>exists(au|

au.evaluate(self, ai.resourceInstance)))

In our example, Bob.allRolesToPerform(Kick-OffstartAtomicUpdate)

and Bob.allRolesToPerform(Kick-OffcancelAtomicExecute) evaluate,

respectively, to Set{} and Set{Supervisor} on SCHEDULER+.
Example: Are there actions on concrete resources that

every user can perform in the given scenario?

context ActionInstance::accessAllUsers():Boolean body:
ActionInstance.allInstances()−>exists(ai|
User.allInstances()−>forAll(u|u.isAllowed(ai)))

In our example, accessAllUsers() evaluates to true on SCHED-

ULER+.

7. The SecureMOVA Tool

As [14] observed, although there are different proposals
for specifying role-based authorization constraints, there is
a lack of appropriate tool support for the validation, en-
forcement, and testing of role-based access control poli-
cies. In particular, tools are needed that can be easily ap-
plied by policy designers without much additional train-
ing. In response to this need, [14] shows how to employ
the USE system to validate and test access control poli-
cies formulated in UML and OCL. We comment on this
work in Section 8. As part of our work, we have imple-
mented SecureMOVA, a modeling and analysis tool for Se-
cureUML+ComponentUML that is directly based on the
results presented in this paper.

The SecureMOVA tool is an extension of the MOVA tool.
MOVA itself is a modeling and validation tool for UML and
OCL. MOVA provides facilities for drawing UML class and
object diagrams, entering and evaluating OCL constraints
and queries, defining new OCL operations, and evaluat-
ing OCL metrics. The OCL editor includes a model-based
syntax-guided facility where, to write an expression, the
user selects patterns from lists, generated at runtime. The
patterns presented to the user depend on the type of the
expression and the types and vocabulary introduced in the
model under consideration.

SecureMOVA extends MOVA to support the automated
analysis of security-design models. In particular, it allow
users to draw SecureUML+ComponentUML models and
scenarios, to write OCL authorization constraints and as-
sign them to permissions, and to enter and evaluate OCL
queries on security-design models and scenarios. It shares
with MOVA its model-based, syntax-guided, OCL editor.

Figures 6 and 7 show three screenshots of the Secure-
MOVA tool. First, Figure 6 shows how the security policy
in Figure 3 can be modeled in SecureMOVA. Second, Fig-
ure 7 (left) illustrates the use of the OCL editor for query-
ing the example scenario in Figure 4 with one of the queries
introduced in Section 6, namely, Bob.AllRolesToPerform(Kick-

OffCancelAtomicExecute). Finally, Figure 7 (right) shows the
answer to this query after evaluating it on the given sce-
nario. The tool is publicly available at maude.sip.ucm.es/
mova, along with a tutorial and the security-design model
and scenario presented in this paper.

13



Figure 6. A SecureMOVA security-design model.

Figure 7. A SecureMOVA OCL pattern-selection (left) and OCL evaluation (right).

8. Conclusion

Related Work. As mentioned in the introduction, our
work was inspired by [1], who first explored the use of
OCL for querying RBAC policies (see also [14,15]). We
discuss two of the main differences here. First, a distinct
characteristic of our work is that we spell out and follow
a precise methodology that guarantees that query evalu-
ation is formally meaningful. This methodology requires,
in particular, precise definitions of both the metamodel
of the modeling language and the mapping from models
and scenarios to the corresponding snapshots of this meta-
model. These definitions make it possible to rigorously
reason about the meaning of the OCL expressions used in
specifying and analyzing security policies.

To underscore the importance of such a methodology,
consider a simple example: specifying two mutually exclu-
sive roles such as “accounts payable manager” and “pur-

chasing manager”. Mutual exclusion means that no indi-
vidual can be assigned to both roles. In [1,14,15] this con-
straint is specified using OCL as follows:

context User inv:
let M : Set = {{accounts payable manager,

purchasing manager}, ...} in
M−>select(m | self.role−>intersection(m)−>size > 1)
−>isEmpty()

This constraint correctly specifies mutual exclusion only if
the association-end role returns all the roles assigned to
a user. This should include all role assignments explicitly
depicted as well as those implicitly assigned to users via
the role hierarchy. The actual meaning of the association-
end role depends, of course, on the mapping between mod-
els and the corresponding snapshots of the metamodel.
Since the precise definition of this mapping is not given
in [1,14,15], readers (and tool users) must speculate on

14



the meaning of such expressions. (Note that if the map-
ping used in [1,14,15] is the “straightforward” one, then
the association-end role will only return the roles explicitly
assigned to a user.)

In our setting, mutual exclusion can be specified using
OCL as follows:

context User inv:
let M : Set = {{accounts payable manager,

purchasing manager}, ...}
in M−>select(m | self.hasrole.superrolePlus()

−>intersection(m)−>size > 1)
−>isEmpty()

From our definition of superrolePlus() in Section 4.2, it is clear
that this expression denotes all the roles assigned to a user,
including those implicitly assigned under the specified role
hierarchy.

A second difference concerns the fact that the Se-
cureUML modeling language includes the possibility of
constraining permissions with authorization constraints,
given by OCL formulas. These constraints restrict the per-
missions to those system states satisfying the constraints.
In our approach, these states can be formalized within
models as (security) scenarios and we can automatically
determine the satisfaction of authorization constraints
with respect to given scenarios. As explained in Section 5,
this allows us to go beyond querying properties about a
system’s static RBAC configuration by allowing queries
to refer to, and answers to depend on, the system state,
i.e., the current instance of the design model (the Com-
ponentUML part of the security-design model). We have
given examples of this in Section 6, where queries combine
aspects of both declarative and programmatic access con-
trol. For example, “are there actions on concrete resources
that every user can perform in a given scenario?”

Generality of Approach. We comment now on the gen-
erality of our approach and the effort needed to use it in
other settings, for example, when employing other (domain-
specific) design modeling languages. Consider, for example,
the metamodel constraints shown in Appendix B. Some of
these constraints only depend on the fact that the under-
lying access control model is a variant of RBAC, for ex-
ample, constraints describing the general structure of role
hierarchies. The majority, however, explicitly concern the
structure of the design modeling language, for example, the
action hierarchy. Transferring our approach to another de-
sign modeling language requires that we also define the cor-
responding metamodel constraints for the new language.
Analogous considerations hold for the mapping from graph-
ical to abstract models, described in Appendix C. This is
not, however, a peculiarity of our approach. The defini-
tion of the dialect for the design-modeling language must
include this information anyway so that the meaning of
the language can be understood. Note that the metamodel
constraints in Section 5.1 not only depend on the design

modeling language, but also on the design model. However,
these constraints are automatically generated from the de-
sign model. This generation scheme again only depends on
the design modeling language. Interestingly, the analysis
examples given in Section 6 do not depend on the design
modeling language or on the design model. One could there-
fore imagine a library of such constraints that could, for
example, be used to automatically suggest possible flaws in
the modeled security policy.

Future Work. The use of scenarios provides support for
handling queries involving system state, where we can eval-
uate queries with respect to a given scenario. Nevertheless,
it would be attractive to support queries about the exis-
tence of states satisfying constraints or queries where the
states themselves are existentially quantified. An example
of the latter for a design metamodel that includes access to
the system date is “which operations are possible on week
days that are impossible on weekends?” Alternatively, in
a banking model, we might ask “which actions are pos-
sible on overdrawn bank accounts?” Such queries cannot
currently be evaluated as they require reasoning about the
consequences of OCL formulas and this involves theorem
proving as opposed to determining the satisfiability of for-
mulas in a concrete model.

Another interesting direction would be to use our ap-
proach to analyze the consistency of different system views.
We showed in [4] how one can combine SecureUML with dif-
ferent modeling languages (i.e., ComponentUML and Con-
trollerUML [3]) to formalize different views of multi-tier ar-
chitectures. In this setting, access control might be imple-
mented at both the middle tier (implementing a controller
for, say, a web-based application) and a back-end persis-
tence tier. If the policies for both of these tiers are formally
modeled, we can potentially answer question like “will the
controller ever enter a state in which the persistence tier
throws a security exception?” This is a query about the
existence (reachability) of states and answering it would
again require support for theorem proving or other forms
of deduction such as constraint solving or state search.

References

[1] G. J. Ahn, M. E. Shin, Role-based authorization constraints
specification using Object Constraint Language, in: WETICE
’01: Proceedings of the 10th IEEE International Workshops on
Enabling Technologies, IEEE Computer Society, Washington,
DC, USA, 2001.

[2] D. Basin, M. Clavel, J. Doser, M. Egea, A metamodel-based
approach for analyzing security-design models, in: Proceedings of
the 10th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2007), vol. 4735 of Lecture
Notes in Computer Science, Springer-Verlag, 2007.

[3] D. Basin, J. Doser, T. Lodderstedt, Model driven security
for process-oriented systems, in: Proceedings of the Eighth
ACM Symposium on Access Control Models and Technologies
(SACMAT 2003), ACM Press, 2003.

15



[4] D. A. Basin, J. Doser, T. Lodderstedt, Model driven security:
From UML models to access control infrastructures., ACM
Transactions on Software Engineering and Methodology 15 (1)
(2006) 39–91.

[5] R. J. Boulton, A. Gordon, M. J. C. Gordon, J. Harrison,
J. Herbert, J. V. Tassel, Experience with Embedding Hardware
Description Languages in HOL, in: Proceedings of the IFIP
TC10/WG 10.2 International Conference on Theorem Provers
in Circuit Design, North-Holland, 1992.

[6] F. B. e Abreu, Using OCL to formalize object oriented
metrics definitions, Tech. Rep. ES007/2001, FCT/UNL and
INESC, Portugal, available at http://ctp.di.fct.unl.pt/

QUASAR/Resources/Papers/others/MOOD OCL.pdf (June 2001).
[7] D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn,

R. Chandramouli, Proposed NIST standard for Role-Based
Access Control, ACM Transactions on Information and System
Security 4 (3) (2001) 224–274.

[8] G. Georg, I. Ray, R. France, Using aspects to design a secure
system, in: ICECCS ’02: Proceedings of the Eighth International
Conference on Engineering of Complex Computer Systems,
IEEE Computer Society, Washington, DC, USA, 2002.

[9] J. Jürjens, Towards development of secure systems using
UMLsec, in: H. Hussmann (ed.), Fundamental Approaches to
Software Engineering (FASE/ETAPS 2001), vol. 2029 of Lecture
Notes in Computer Science, Springer-Verlag, 2001.

[10] J. Jürjens, UMLsec: Extending UML for secure systems
development, in: J.-M. Jézéquel, H. Hussmann, S. Cook (eds.),
UML 2002 — The Unified Modeling Language, vol. 2460 of
Lecture Notes in Computer Science, Springer-Verlag, 2002.

[11] A. Kleppe, W. Bast, J. B. Warmer, A. Watson, MDA Explained:
The Model Driven Architecture–Practice and Promise, Addison-
Wesley, 2003.

[12] Object Management Group, UML 2.0 OCL Specification, OMG
document available at http://www.omg.org/cgi-bin/doc?ptc/

2003-10-14 (2003).
[13] Object Management Group, Unified Modeling Language:

Infrastracture, Version 2.1.1, OMG document available at http:
//www.omg.org/cgi-bin/doc?formal/07-02-04 (2007).

[14] K. Sohr, G. J. Ahn, M. Gogolla, L. Migge, Specification and
validation of authorisation constraints using UML and OCL.,
in: Proceedings of the 10th European Symposium on Research
in Computer Security (ESORICS 2005), vol. 3679 of Lecture
Notes in Computer Science, Springer-Verlag, 2005.

[15] H. Wang, Y. Zhang, J. Cao, J. Yang, Specifying Role-Based
Access Constraints with Object Constraint Language, in:
Proceedings of the 6th Asia-Pacific Web Conference (APWeb
2004), vol. 3007 of Lecture Notes in Computer Science, Springer-
Verlag, 2004.

[16] J. Warmer, A. Kleppe, The Object Constraint Language:
Getting Your Models Ready for MDA, 2nd ed., Addison-Wesley,
2003.

Appendix A. Background on OCL

OCL has played a central role in our work for formalizing
both constraints and queries on models. In this section, we
briefly summarize relevant aspects of OCL.

The Object Constraint Language (OCL) [12] is a typed
language, with an object-oriented, textual notation for
writing constraints within, or queries on, UML models.
The language includes predefined types like Boolean, Integer,
and String, with standard operators like not and or over
Boolean, +, and ∗ over Integer, and substr and concat over String.
For example, 2 + 5 and not(2 + 5 = 6) are OCL expressions
of type Integer and Boolean, respectively. The language also

provides operators for generating collection types from
more basic types, along with standard operations on col-
lections like union, includes, or size. For example, Set(Integer)

is the type of sets of integers and Set{1, 4, 6}−>union(Set{3})
is an expression of type Set(Integer) that denotes the union
of the sets {1, 4, 6} and {3}. Iterator operators like forAll,
select, or collect, operate on collection types. Each takes an
OCL expression as an argument and specifies an operation
computed over the elements of a collection. For example,
Set{1, 4, 6}−>forAll(i|i > 7) is an expression of type Boolean

that evaluates to true if and only if each element of the set
{1, 4, 6} is greater than 7. As another example, collect applies
an OCL expression to each element in the collection and re-
turns the union of these results: Set{1, 4, 6}−>collect(i|i + 1)

is an expression of type Set(Integer) that denotes the set of
integers that result from adding 1 to each of the elements
of the set {1, 4, 6}.

The OCL language is open in the sense that it is paramet-
ric. Expressions are written in the context of a UML model,
using the types and vocabulary provided by the model. The
new types correspond to the classes in the model and the
new vocabulary correspond to the properties (attributes,
roles, and operations) declared for these classes. For exam-
ple, consider a class diagram M containing a class A. Sup-
pose too that this class has an attribute x of type String.
Now, x can appear in OCL expressions, using dot notation:
for an object o of the class A, the expression o.x denotes
the value of its attribute x.

OCL provides a convenient shorthand notation for nav-
igating over multiple association ends: Whenever a prop-
erty call (attribute, operation, or association end call) is
applied to a collection, it will be interpreted as a collect over
the members of the collection with the specified property.
In the context of Meeting for example, self.participants.name is
shorthand for self.participants−>collect(p|p.name) and refers to
the collection of the names of the participants of the meet-
ing.

OCL also provides access to the value of certain proper-
ties of the classes themselves using the dot notation. For
example, the expression A.allInstances() denotes the set of all
objects of the class A.

Appendix B. The SecureUML+ComponentUML
Metamodel Constraints

Default role The following invariants guarantee that mod-
els contain a default role with the desired semantics; in par-
ticular, any user is assigned, at least, the default role.

context Role
inv existsADefaultRole:

self.allInstances()−>select(r|r.default)−>size() = 1
inv allRolesInheritFromDefaultRole:

self.superrolePlus()−>exists(r|r.default)

context User
inv allUsersAssignedDefaultRole:

16



self.hasrole−>exists(r|r.default)

Role hierarchy. The following invariant guarantees that
the role hierarchy is acyclic.

context Role inv noCyclesinRoleHierarchy:
self.superrole−>forAll(r|r.superrolePlus()−>excludes(self))

Default permission. The following invariants guarantee
that models contain a default permission with the desired
semantics. In particular, the default permission may only
be given to the default role and may contain only atomic
actions. Also, atomic actions are assigned at least one per-
mission and, if they are assigned more than one, then none
of them can be the default permission.

context Permission
inv existsADefaultPermission:

self.allInstances()−>select(p|p.default)−>size() = 1
inv defaultPermissionAssignedToDefaultRole:

self.default implies self.givesaccess−>forAll(r|r.default)
inv constraintByTrue:

self.default implies self.isconstraintby.body = ‘‘true’’

context CompositeAction inv nonDefaultPermission:
self.allAssignedPermission−>forAll(p|not(p.default))

context AtomicAction
inv existsAPermission:

self.allAssignedPermission()−>notEmpty()
inv overridingDefaultPermission:

self.allAssignedPermission()
−>forAll(p1, p2| p1<>p2 implies not(p1.default))

Resource action association. The following invariants
guarantee that actions refer to the correct resource.

context AtomicCreate inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context AtomicDelete inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context AtomicUpdate inv targets:
self.resource.oclIsTypeOf(Attribute)
or self.resource.oclIsTypeOf(AssociationEnd)

context AtomicRead inv targets:
self.resource.oclIsTypeOf(Attribute)
or self.resource.oclIsTypeOf(AssociationEnd)

context AtomicExecute inv targetsAMethod:
self.resource.oclIsTypeOf(Method)

context EntityFullAccess inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context EntityRead inv targetsAnEntity:
self.resource.oclIsTypeOf(Entity)

context EntityUpdate inv targetsAnEntity:

self.resource.oclIsTypeOf(Entity)
context AttributeFullAccess inv targetsAnAttribute:

self.resource.oclIsTypeOf(Attribute)
context AssociationEndFullAccess
inv targetsAnAssociationEnd:

self.resource.oclIsTypeOf(AssociationEnd)

The following constraints ensure that resources have the
correct actions defined on them.

context Entity inv areAccessedBy:
self.action−>size() = 5 and
self.action−>exists(a|a.oclIsTypeOf(EntityFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(EntityUpdate)) and
self.action−>exists(a|a.oclIsTypeOf(EntityRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicCreate)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicDelete))

context Attribute inv areAccessedBy:
self.action−>size() = 3 and
self.action−>exists(a|

a.oclIsTypeOf(AttributeFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicUpdate))

context Method inv areAccessedBy:
self.action−>size() = 1 and
self.action−>exists(a|a.oclIsTypeOf(AtomicExecute))

context Association−end inv areAccessedBy:
self.action−>size() = 3 and
self.action−>exists(a|

a.oclIsTypeOf(AssociationEndFullAccess)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicRead)) and
self.action−>exists(a|a.oclIsTypeOf(AtomicUpdate))

Action Hierarchy. The following invariants guarantee
that composite actions are composed of the correct subor-
dinated actions.

context EntityFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(EntityUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(EntityRead)))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicCreate)))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicDelete)))

context EntityRead inv containsSubactions:
self.subordinatedactions =
self.resource.oclAsType(Entity).hasattribute.action
−>select(a|a.oclIsTypeOf(AtomicRead))
−>union(self.resource.oclAsType(Entity)

.hasassociationend.action

17



−>select(a|a.oclIsTypeOf(AtomicRead)))
−>union(self.resource.oclAsType(Entity).hasmethod

−>select(me|me.isQuery).action
−>select(a|a.oclIsTypeOf(AtomicExecute)))

context EntityUpdate inv containsSubactions:
self.subordinatedactions =
self.resource.oclAsType(Entity).hasattribute.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.oclAsType(Entity)

.hasassociationend.action
−>select(a|a.oclIsTypeOf(AtomicUpdate)))

−>union(self.resource.oclAsType(Entity).hasmethod
−>select(me|not(me.isQuery)).action
−>select(a|a.oclIsTypeOf(AtomicExecute)))

context AttributeFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicRead)))

context AssociationEndFullAccess inv containsSubactions:
self.subordinatedactions = self.resource.action
−>select(a|a.oclIsTypeOf(AtomicUpdate))
−>union(self.resource.action

−>select(a|a.oclIsTypeOf(AtomicRead)))

Appendix C. The Mapping from Graphical to
Abstract Models

In the following, we give a complete, albeit informal, def-
inition of the mapping from SecureUML+ComponentUML
graphical models and scenarios to the corresponding ab-
stract models.

From security-policy models to abstract models.
– Insert an object “default” of the class Role, with the value

true for its default-attribute.
– For each role r, insert (i) an object r of the class Role,

with the value false for its default-attribute, and (ii) a
RoleHierarchy-link between r (subrole) and “default”.

– For each inheritance relationship between two roles r1

(subrole) and r2, insert a RoleHierarchy-link between r1

(subrole) and r2.
– For each user u, insert (i) an object u of the class User,

and (ii) a UserAssignment-link between u and the object
“default” of the class Role.

– For each assignment of a user u to a role r, insert a
UserAssignment-link between u and r.

– For each entity e, insert (i) an object e of the class Entity;
(ii) an object efa(e) of the class EntityFullAccess; (iii) an
object eu(e) of the class EntityUpdate; (iii) an object er(e)
of the class EntityRead; (iii) an object ac(e) of the class
AtomicCreate; (iv) an object ad(e) of the class AtomicDelete;

(v) ResourceAssignment-links between e and efa(e), e and
eu(e), e and er(e), e and ac(e), and e and ad(e); (vi)
ActionHierarchy-links between eu(e) (subordinatedAction) and
efa(e), er(e) (subordinatedAction) and efa(e), ac(e) (subordi-

natedAction) and efa(e), and ad(e) (subordinatedAction) and
efa(e); and (vii) ActionAssignment-links between ac(e) and
ad(e) and the object “default” of the class Permission.

– For each attribute a of an entity e, insert (i) an ob-
ject a of the class Attribute; (ii) an object afa(a) of the
class AttributeFullAccess; (iii) an object au(a) of the class
AtomicUpdate; (iii) an object ar(a) of the class AtomicRead;
(vi) ResourceAssignment-links between a and afa(a), a and
au(a), and a and ar(a); (iv) ActionHierarchy-links between
au(a) (subordinatedAction) and afa(e), ar(a) (subordinatedAc-

tion) and afa(e), au(a) (subordinatedAction) and eu(e), and
ar(a) (subordinatedAction) and er(e); (v) an EntityAttibute-
link between e and a; and (vi) ActionAssignment-links be-
tween au(a) and ar(a) and the object “default” of the
class Permission.

– For each query method m of an entity e, insert (i) an
object m of the class Method, with value true for its isQuery-
attribute; (ii) an object ae(m) of the class AtomicExecute;
(iii) a ResourceAssignment-link between m and ae(m); (iv)
an ActionHierarchy-link between ae(m) (subordinatedAction)
and er(e); (v) an EntityMethod-link between e and m; and
(vi) an ActionAssignment-link between ae(m) and the object
“default” of the class Permission.

– For each non-query method m of an entity e, insert (i) an
object m of the class Method, with value false for its isQuery-
attribute; (ii) an object ae(m) of the class AtomicExecute;
(iii) a ResourceAssignment-link between m and ae(m); (iv)
an ActionHierarchy-link between ae(m) (subordinatedAction)
and eu(e); (v) an EntityMethod-link between e and m; and
(vi) an ActionAssignment-link between ae(m) and the object
“default” of the class Permission.

– For each association-end d of an entity e, insert (i) an
object d of the class AssociationEnd; (ii) an object dfa(d)
of the class AssociationEndFullAccess; (iii) an object au(d)
of the class AtomicUpdate; (iii) an object ar(d) of the class
AtomicRead; (v) ResourceAssignment-links between d and
dfa(d), d and au(d), and d and ar(d); (iv) ActionHierarchy-
links between au(d) (subordinatedAction) and dfa(d), ar(a)
(subordinatedAction) and dfa(d), au(d) (subordinatedAction)
and eu(e), and ar(d) (subordinatedAction) and er(e); (v)
an EntityAssociationEnd-link between e and d; and (vi)
ActionAssignment-links between au(d) and ar(d) and the
object “default” of the class Permission.

– Insert an object “default” of the class AuthorizationCon-

straint, with values “OCL” and “true”, respectively, for its
language and body attributes.

– For each authorization constraint ath, insert an object
ath, with values “OCL” and “ath” for its language and body

attributes, respectively.
– Insert an object “default” of the class Permission, with the

value true for its default-attribute.
– Insert a ConstraintAssignment-link between the “default” ob-

ject of the class Permission and the “default” object of the

18



class AuthorizationConstraint.
– Insert a PermissionAssignment-link between the “default”

object of the class Permission and the “default” object of
the class Role.

– For each permission p, insert an object p of the class
Permission, with the value false for its default-attribute.

– For each assignment of a permission p to a role r, insert
a PermissionAssignment-link between r and p.

– For each assignment of a constraint ath to a permission
p, insert a ConstraintAssignment-link between p and ath.

– For each entity e and each permission p that grants “en-
tity full access” to e, insert an ActionAssignment-link be-
tween efa(e) and p. Delete any ActionAssignment-link be-
tween the “default” object of the class Permission and
ac(e) or ad(e). For each attribute a, method m, and
association-end d of e, delete any ActionAssignment-link
between the “default” object of the class Permission and
au(a), ar(a), au(d), ar(d), or ae(m).

– For each entity e and each permission p that grants “en-
tity read access” to e, insert an ActionAssignment-link be-
tween er(e) and p. For each attribute a, query method
m, and association-end d of e, delete any ActionAssignment-
link between the “default” object of the class Permission

and ar(a), ar(d), or ae(m).
– For each entity e and each permission p that grants

“entity update access” to e, insert an ActionAssignment-
link between eu(e) and p. For each attribute a, non-
query method m, and association-end d of e, delete any
ActionAssignment-link between the “default” object of the
class Permission and au(a), au(d), or ae(m).

– For each entity e and each permission p that grants
“atomic create access” to e, insert an ActionAssignment-
link between ac(e) and p. Delete any ActionAssignment-link
between the “default” object of the class Permission and
ac(e).

– For each entity e and each permission p that grants
“atomic delete access” to e, insert an ActionAssignment-
link between ad(e) and p. Delete any ActionAssignment-link
between the “default” object of the class Permission and
ad(e).

– For each attribute a and each permission p that grants
“attribute full access” to a, insert an ActionAssignment-link
between afa(a) and p. Delete any ActionAssignment-link
between the “default” object of the class Permission and
au(a) or ar(a).

– For each attribute a and each permission p that grants
“atomic update access” to a, insert an ActionAssignment-
link between au(a) and p. Delete any ActionAssignment-link
between the “default” object of the class Permission and
au(a).

– For each attribute a and each permission p that grants
“atomic read access” to a, insert an ActionAssignment-link
between ar(a) and p. Delete any ActionAssignment-link be-
tween the “default” object of the class Permission and
ar(a).

– For each association-end d and each permission p that
grants “association-end full access” to d, insert an

ActionAssignment-link between dfa(d) and p. Delete any
ActionAssignment-link between the “default” object of the
class Permission and au(d) or ar(d).

– For each association-end d and each permission p
that grants “atomic update access” to d, insert an
ActionAssignment-link between au(d) and p. Delete any
ActionAssignment-link between the “default” object of the
class Permission and au(d).

– For each association-end d and each permission p
that grants “atomic read access” to d, insert and
ActionAssignment-link between ar(d) and p. Delete any
ActionAssignment-link between the “default” object of the
class Permission and ar(d).

– For each method m and each permission p that grants
“atomic execute access” to m, insert an ActionAssignment-
link between ae(m) and p. Delete any ActionAssignment-
link between the “default” object of the class Permission

and ae(m).

From security-policy scenarios to abstract models.
– For each object ei of an entity e, insert (i) an object ei of

the class e; (ii) an Entity−EntityInstance link between e and
ei; (iii) an object aci(ei) of the class AtomicActionInstance;
(iv) an object adi(ei) of the class AtomicActionInstance; (v)
EntityInstance−ActionInstance links between ei and aci(ei),
and ei and adi(ei); and (vi) Action−ActionInstance links be-
tween ac(e) and aci(ei), and ad(e) and adi(ei).

– For each attribute a of an entity e, and each object
ei of this entity, insert (i) an object ari(a) of the
class ActionInstance; (ii) an object aui(a) of the class
ActionInstance; (iii) Action−ActionInstance links between
ar(a) and ari(a), and au(a) and aui(a); and (iv)
ActionInstance−EntityInstance links between ari(a) and ei,
and aui(a) and ei.

– For each method m of an entity e and each object ei
of this entity, insert (i) an object aei(m) of the class
ActionInstance; (ii) an Action−ActionInstance link between
ae(m) and aei(m); and (iii) an ActionInstance−EntityInstance

link between aei(m) and ei.
– For each association-end d of an entity e, and for each

object ei of this entity, insert (i) an object ari(d)
of the class ActionInstance; (ii) an object aui(d) of the
class ActionInstance; (iii) Action−ActionInstance links be-
tween ar(d) and ari(d), and au(d) and aui(d); and (iv)
ActionInstance−EntityInstance links between ari(d) and ei,
and aui(d) and ei.

19


