
MODEL DRIVEN SECURITY

David Basin,1 Jürgen Doser,1 and Torsten Lodderstedt2

1ETH Zürich, Switzerland∗

2Interactive Objects Software GmbH, Germany

Abstract We present a new approach to building secure systems. In our approach,
which we call Model Driven Security, designers specify system models
along with their security requirements and use tools to automatically
generate system architectures from the models including complete, con-
figured security infrastructures. Rather than fixing one particular mod-
eling language for this process, we propose a general schema for con-
structing such languages that combines languages for modeling systems
with languages for modeling security. We present several instances of
this schema that combine (both syntactically and semantically) different
UML modeling languages with a security modeling language for formal-
izing access control requirements. From models in the combined lan-
guages, we automatically generate security architectures for distributed
applications, built from declarative and programmatic access control
mechanisms. We have implemented this approach and report on a case-
study with the resulting tool.

1. Introduction

Model building is standard practice in software engineering. The con-
struction of models during requirements analysis and system design can
improve the quality of the resulting systems by providing a foundation
for early analysis and fault detection. The models also serve as spec-
ifications for the later development phases and, when the models are
sufficiently formal, they can provide a basis for refinement down to code.

Model building is also carried out in security modeling and policy
specification. However, its integration into the overall development pro-
cess is problematic and suffers from two gaps. First, security models

∗This work has been partially supported by the Swiss “Federal Office for Education and
Science” in the context of the EU-funded Integrated Project TrustCoM (IST-2002-2.3.1.9
Contract-No. 1945). The authors are responsible for the content of this publication.

2

and system design models are typically disjoint and expressed in differ-
ent ways (e.g., security models as structured text versus graphical design
models in languages like UML). In general, the integration of system de-
sign models with security models is poorly understood and inadequately
supported by modern software development processes and tools. Sec-
ond, although security requirements and threats are often considered
during the early development phases (requirements analysis), and se-
curity mechanisms are later employed in the final development phases
(system integration and test), there is a gap in the middle. As a result,
security is typically integrated into systems in a post-hoc manner, which
degrades the security and maintainability of the resulting systems.

In this paper, we take up the challenge of providing languages, meth-
ods, and tools for bridging these gaps. Our starting point is the concept
of Model Driven Architecture (MDA) [Frankel, 2003], which has been
proposed as model-centric and generative approach to software develop-
ment. Conceptually, the MDA approach has three parts: (1) developers
create system models in high-level modeling languages like UML; (2)
tools are used to perform automatic model transformation; and the re-
sult is (3) a target (system) architecture. Whereas the generation of
simple kinds of code skeletons by CASE-tools is now standard (e.g.,
generating class hierarchies from class diagrams), Model Driven Archi-
tecture is more ambitious and aims at generating nontrivial kinds of
system infrastructure from models.

Our main contribution is to show how the Model Driven Architecture
approach can be specialized to what we call Model Driven Security by
extending its three parts: system design models are extended with se-
curity requirements and model transformation is extended to generate
security infrastructure for the target system. The most difficult part of
this specialization is the first, concerning the models themselves, and
here we propose a general schema for combining languages for security
modeling with those for design modeling. Our schema provides a recipe
for language combination at the level of both syntax and semantics, for
example providing sufficient conditions for the combination to be se-
mantically well-defined. The main idea is to define security modeling
languages that are general in that they leave open the nature of the pro-
tected resources, i.e., whether these resources are data, business objects,
processes, states in a controller, etc. Such a security modeling language
can then be combined with a system design modeling language by defin-
ing a dialect, which identifies elements of the design language as the
protected resources of the security language. In this way, we can define
families of languages that flexibly combine design modeling languages

Model Driven Security 3

and security modeling languages, and are capable of formulating system
designs along with their security requirements.

To show the feasibility of this approach and to illustrate some of the
design issues, we present several detailed examples. First, we specify a
security modeling language for modeling access control requirements that
generalizes Role-Based Access Control (RBAC) [Ferraiolo et al., 2001].
To support visual modeling, we embed this language within an extension
of UML and hence we call the result SecureUML. Afterwards, we give
two examples of design modeling languages, one based on class diagrams
and the other based on statecharts. We then combine each of these with
SecureUML by defining dialects that identify particular elements of each
design modeling language as protected SecureUML resources.

In each case, we define model transformations for the combined mod-
eling language by augmenting model transformations for the UML-based
modeling languages with the additional functionality necessary for trans-
lating our security modeling constructs. The first dialect provides a lan-
guage for modeling access control in a distributed object setting and
we define a transformation function that produces security infrastruc-
tures for distributed systems conforming to the Enterprise JavaBeans
(EJB) standard. The second dialect provides a language for modeling
security requirements for controllers for multi-tier architectures and the
transformation function generates access control infrastructures for web
applications.

As a proof of concept, within the MDA-tool ArcStyler [Hubert, 2001]
we have built a prototypical generator that implements the above men-
tioned transformation functions for both dialects. We report on this, as
well as on experience with our approach. Overall, we view the result as a
large step towards integrating security engineering into a model-driven
software development process. This bridges the gap between security
analysis and the integration of security mechanisms into end systems.
Moreover, it integrates security models with system design models and
thus yields a new kind of model, security design models.

2. Background

We first introduce a design problem along with its security require-
ments that will serve as a running example throughout this paper. After-
wards, we introduce the modeling and technological foundations that we
build upon: the Unified Modeling Language, Model Driven Architecture,
Role-based Access Control, and several security architectures.

4

Meeting

-duration : time
-start : date

+cancel() : void
+notify() : void

Person

-e-mail : string
-name : string

Room

-number : int
-floor : int

0..*

+participants

0..*

0..*
+owner

1

0..*

+location

0..1

Figure 1. Scheduler Application Class Diagram

2.1 A Design Problem

As a running example, we will consider developing a simplified version
of a system for administrating meetings. The system should maintain
a list of users (we will ignore issues such as user administration) and
records of meetings. A meeting has an owner, a list of participants, a
time, and a place. Users may carry out standard operations on meetings
such as creating, reading, editing, and deleting them. A user may also
cancel a meeting, which deletes the meeting and notifies all participants
by email.

As the paper proceeds, we will see how to formalize a design model
for this system along with the following security policy.

1 All users can create new meetings and read all meeting entries.

2 Only the owner of a meeting may change meeting data and cancel
or delete the meeting.

3 A supervisor can cancel any meeting.

2.2 The Unified Modeling Language

The Unified Modeling Language (UML) [Rumbaugh et al., 1998] is
a widely used graphical language for modeling object-oriented systems.
The language specification differentiates between abstract syntax and
notation (also called concrete syntax). The abstract syntax defines the
language primitives used to build models, whereas the notation defines
the graphical representation of these primitives as icons, strings, or fig-
ures. UML supports the description of the structure and behavior of
systems using different model element types and corresponding diagram
types. In this paper, we focus on the model element types comprising
class and statechart diagrams.

The structural aspects of systems are defined using classes, e.g., as
in Figure 1, which models the structure of our scheduling application.

Model Driven Security 5

ListMeetings

EditMeeting

CreateMeeting
insert

update

delete / deleteMeeting

cancel / cancelMeeting

edit

create

Figure 2. Scheduler Application Statechart

This model consists of three classes: Meeting, Person, and Room. A
Meeting has attributes for storing the start date and the planned duration.
The participants and the location of the meeting are specified using the
association ends participants and location. The method notify notifies
the participants of changes to the schedule. The method cancel cancels
the meeting, which includes notifying the participants and canceling the
room reservation.

In contrast, state machines describe the behavior of a system or a class
in terms of states and events that cause a transition between states. Fig-
ure 2 shows the statechart diagram for our scheduling application. In
the state ListMeetings, a user can browse the scheduled meetings and can
initiate (e.g., by clicking a button in a graphical user interface) the edit-
ing, creation, deletion, and cancellation of meetings. An event of type
edit causes a transition to the state EditMeeting, where the currently se-
lected meeting (stored in ListMeetings) is edited. An event of type create
causes a transition to the state CreateMeeting, where a new meeting is
created from data entered by the user. An event of type delete in state
ListMeetings triggers a transition that executes the action deleteMeet-
ing, where the currently selected meeting is deleted from the database.
Similarly, an event of type cancel causes the execution of cancelMeeting,
which calls the method cancel on the selected meeting.

UML also provides a specification language called OCL, the Object
Constraint Language. OCL expressions are used to formalize invariants
for classes, preconditions and postconditions for methods, and guards for
enabling transitions in a state machine. As an example, we can add to
the class Meeting in Figure 1 the following OCL constraint, stating that
the participants of a meeting must always include the meeting’s owner.

context Meeting inv:

self.participants ->includes(self.owner)

6

2.3 Model Driven Architecture

Model Driven Architecture (MDA) has been proposed as an approach
to specifying and developing applications where systems are represented
as models and transformation functions are used to map between models
as well as to automatically generate executable code [Frankel, 2003]. Of
course, the fully automatic synthesis of complex systems from high-level
descriptions is unobtainable in its full generality. We cannot, in gen-
eral, automatically generate the functions implementing a specification
of a system’s functional behavior, i.e., its “business logic”. But what
is possible is to automate the generation of platform-specific support
for different kinds of non-functional system concerns, such as support
for persistence, logging, and the like, i.e., system aspects, in the aspect-
oriented programming sense [Kiczales et al., 1997], that cut across dif-
ferent system components. Our work shows that security, in particular
access control, is one such aspect that can be automatically generated
and that this brings with it many advantages.

The starting point of MDA is the use of domain-specific languages
to formalize models for different application domains or system aspects.
In our work, we define modeling languages by directly formalizing their
metamodels. As a metalanguage, we use the Meta-Object Facility (MOF),
which is essentially a subset of UML that is well-suited for formalizing
metamodels using standard object-oriented concepts like class and in-
heritance. MOF provides a more expressive formalism for defining mod-
eling languages than other alternatives, e.g., the use of UML profiles
or conventional definition techniques like the Backus-Naur Form (BNF).
For example, in MOF, we can directly formalize relations between model
primitives, which is one of the key ideas we use when combining modeling
languages (see, for example, the discussion on subtyping in Section 5.1).
MOF also offers advantages for building MDA tools. There is tool sup-
port for automatically creating repositories and maintaining metadata
based on MOF, e.g. [Akehurst and Kent, 2002]. Moreover, by separating
the abstract syntax of languages from their UML-based concrete syntax
(defined by UML profiles), we can concisely define modeling languages
and directly use UML CASE-tools for building models.

2.4 RBAC

Mathematically, access control expresses a relation AC between a set
of Users and a set of Permissions:

AC ⊆ Users× Permissions .

User u is granted permission p if and only if (u, p) ∈ AC. Aside from the
technical question of how to integrate this relation into systems so that

Model Driven Security 7

granting permissions respects this relation, a major challenge concerns
how to effectively represent this information since directly storing all the
(u, p) pairs scales poorly. Moreover, this view is rather “flat” and does
not support natural abstractions like sets of permissions.

Role-Based Access Control, or RBAC, addresses both of the above
limitations. The core idea of RBAC is to introduce a set of roles and to
decompose the relation AC into two relations: user assignment UA and
permission assignment PA, i.e.,

UA ⊆ Users× Roles, PA ⊆ Roles× Permissions .

The access control relation is then simply the composition of these rela-
tions:

AC = PA ◦UA .

To further reduce the size of these relations and support additional
abstraction, RBAC also has a notion of hierarchy on roles. Mathemat-
ically, this is a partial order ≥ on the set of roles, with the meaning
that larger roles inherit permissions from all smaller roles. Formally,
this means that the access control relation is now given by the equation

AC = PA ◦ ≥ ◦UA ,

where the role hierarchy relation≥ is also part of the composition. To ex-
press the same access control relation without a role hierarchy, one must,
for example, assign each user additional roles, i.e., a user is then not just
assigned his original roles, but also all smaller roles. The introduction of
a hierarchy, like the decomposition of relations, leads to a more expres-
sive formalism in the sense that one can express access control relations
more concisely. Role hierarchies also simplify the administration of ac-
cess control since they provide a convenient and intuitive abstraction
that can correspond to the actual organizational structure of companies.

We have chosen RBAC as a foundation of our security modeling lan-
guage because it is well-established and it is supported by many existing
technology platforms, which simplifies the subsequent definition of the
transformation functions. However, RBAC also has limitations. For ex-
ample, it is difficult to formalize access control policies that depend on
dynamic aspects of the system, like the date or the values of system or
method parameters. We have extended RBAC with authorization con-
straints to overcome this limitation. Furthermore, although many tech-
nologies support RBAC, they differ in details, like the degree of support
for role-hierarchies and the types of protected resources. As we will see
later, our approach of generating architectures from models provides a
means to overcome such limitations and differences in technologies.

8

2.5 Security Architectures

We make use of two different security architectures in this paper. We
provide an overview of them here, focusing on their support for access
control.

Enterprise JavaBeans Enterprise JavaBeans (EJBs) is a component
architecture standard [Monson-Haefel, 2001] for developing server-side
components in Java. These components usually form the business logic
of multi-tier applications and run on application servers. The standard
specifies infrastructures for system-level aspects such as transactions,
persistence, and security. To use these, an EJB developer declares prop-
erties for these aspects, which are managed by the application server.
This configuration information is stored in deployment descriptors, which
are XML documents that are installed together with the components.

The access control model of EJB is based on RBAC, where the pro-
tected resources are the methods accessed using the interfaces of an EJB.
This provides a mechanism for declarative access control where the ac-
cess control policy is configured in the deployment descriptors of an EJB
component. The security subsystem of the EJB application server is then
responsible for enforcing this policy on behalf of the components. The
following example shows a permission definition that authorizes the role
Supervisor to execute the method cancel on the component Meeting.

<method -permission >

<role -name >Supervisor</role -name >

<method >

<ejb -name >Meeting</ejb -name >

<method -intf >Remote</method -intf >

<method -name >cancel</method -name >

<method -params/>

</method >

</method -permission >

As this example illustrates, permissions are defined at the level of
individual methods. A method-permission element lists one or more
roles using elements of type role-name and one or more EJB methods
using elements of type method. An EJB method is identified by the
name of its component (ejb-name), the interface it implements (method-
intf), and the method signature (method-name and method-params).
The listed roles are granted the right to execute the listed methods.

EJB offers the additional possibility of enforcing access control within
the business logic of components. This mechanism is called programmatic
access control and is based on inserting Java assertions in the methods

Model Driven Security 9

of the bean class. To support this, EJB provides interfaces for retrieving
security relevant data of a caller, like his name or roles.

Java Servlets The Java Servlet Specification [Hunter, 2001] specifies an
execution environment for web components, called servlets. A servlet
is basically a Java class running in a web server that processes http
requests and creates http responses. Servlets can be used to dynamically
create HTML pages or to control the processing of requests in large web
applications.

The execution environment, called the servlet container, supports
both declarative and programmatic access control. For declarative ac-
cess control, permissions are defined at the level of uniform resource
locators (URLs) in XML deployment descriptors. Programmatic access
control is used to determine the identity and the roles of a caller and to
implement decisions within a servlet.

3. Model Driven Security: an Overview

At the heart of Model Driven Security are security design models,
which combine security and design requirements. Rather than present-
ing one particular modeling language for constructing these models, we
propose a schema for building such languages in a modular way. The
overall form of our schema is depicted in Figure 3. The schema is pa-
rameterized by three languages:

1 a security modeling language for expressing security policies;

2 a system design modeling language for constructing design models;
and

3 a dialect, which provides a bridge by defining the connection points
for integrating (1) with (2), e.g., model elements of (2) are classified
as protected resources of (1).

This schema defines a family of security design languages. By different
instantiations of the three parameters, we can build different languages,
tailored for expressing different kinds of designs and security policies.

To automate our approach to Model Driven Security, for each schema
instance, we define transformation functions that map models to security
infrastructures. This must be done on a case-by-case basis, but, like with
compilers, the implementation is just a one-time cost and the result is a
general tool.

Below we discuss these aspects in more detail. However, due to space
limitations, we will focus on one particular security modeling language,
which we call SecureUML, that is based on an extension of Role-Based

10

Modeling Language

RBAC + class diagrams
Class diagrams

RBAC

Statecharts
Sequence diagrams

Information flow
Privacy

Modeling language based on

Security

System Design

Security Design Language

Modeling Language

Dialect

Figure 3. Security Design Language Schema

Access Control. We will present this language in detail, emphasizing the
general metamodeling ideas behind it. We will later present two different
system design modeling languages and different dialects.

3.1 Security Modeling Languages

A security modeling language is a formal language in that it has a
well-defined syntax and semantics. As we intend these languages to
be used for creating intuitive, readable models (e.g., visual models, like
in UML), they will also be employed with a notation. To distinguish
these two kinds of syntax, and following UML (cf. Section 2.2), we call
the underlying syntax the abstract syntax and the notation the concrete
syntax. In general, the abstract syntax is defined formally, e.g., by a
grammar, whereas the notation is defined informally. The translation
between notation and abstract syntax is generally straightforward; we
give examples in Section 4.2.

Designing modeling languages is a creative and nontrivial task, in
particular when it comes to their semantics and developing (semantics-
preserving) transformation functions. However, it is not our expectation
that each application developer must also be a language designer. This
task will be done once and for all for a large class of applications by
security and system architects. We will use SecureUML to illustrate
that it is possible to design security modeling languages that are general,
usable with different design modeling languages, and applicable to a wide
scope of problems.

The definition of a language’s abstract syntax will be based on MOF
and the concrete syntax will be defined by a UML profile. In Section 4
we explain this in detail as well as the semantics of SecureUML and
language combination. Note that the abstract syntax and semantics
of SecureUML define a modeling language for access control policies
that is independent of UML and which could be combined with design

Model Driven Security 11

modeling languages different from those of UML. However, we do make
a commitment to UML when defining notation, and our use of a UML
profile to define a UML notation motivates the name SecureUML.

3.2 System Design Languages and Dialects

In our approach, a system design modeling language is merged with a
security modeling language by merging their vocabularies at the levels of
notation and abstract syntax. But more is required: it must be possible
to build expressions in the combined language that combine subexpres-
sions from the different languages. That is, security policies expressed in
the security modeling language must be able to make statements about
system resources or attributes specified in the design modeling language.
It is the role of the dialect to make this connection. We will show one
way of doing this using subtyping (in the object-oriented sense) to clas-
sify constructs in one language as belonging to subtypes in the other. We
will provide examples of such combinations in Section 5 and Section 7.

These ideas are best understood on an example. Our security model-
ing language SecureUML provides a language for specifying access con-
trol policies for actions on protected resources. However, it leaves open
what the protected resources are and which actions they offer to clients.
These depend on the primitives for constructing models in the system
design modeling language. For example, in a component-oriented mod-
eling language, the resources might be methods that can be executed.
Alternatively, in a process-oriented language, the resources might be
processes with actions reflecting the ability to activate, deactivate, ter-
minate, or resume the processes. Or, if we are modeling file systems,
the protected resources might correspond to files that can be read, writ-
ten, or executed. The dialect specifies how the modeling primitives of
SecureUML are integrated with the primitives of the design modeling
language in a way that allows the direct annotation of model elements
representing protected resources with access control information. Hence
it provides the missing vocabulary to formulate security policies involv-
ing these resources by defining:

the model element types of the system design modeling language
that represent protected resources;

the actions these resource types offer and hierarchies classifying
these actions; and

the default access control policy for actions where no explicit per-
mission is defined (i.e., whether access is allowed or denied).

12

We give examples of integrating SecureUML into different system
modeling languages in Sections 5.1 and 7.1.

3.3 Model Transformation

Given a language that is an instance of the schema in Figure 3, we
must define a transformation function operating on models constructed
in the language. As our focus in this paper is on security, we shall assume
that the system design modeling language used is already equipped with
a transformation function, consisting of transformation rules that define
how model elements are transformed into code or system infrastructure.
Our task then is to define how the additional modeling constructs, from
the security modeling language, are translated into system constructs.
Our aim here is neither to develop nor to generate new kinds of security
architectures, but rather to capitalize on the existing security mecha-
nisms of the target component architecture and generate appropriate
instances of these mechanisms. Of course, for this to be successful, the
modeling constructs in the security modeling language and their seman-
tics should be designed with an eye open to the class of architectures
and security mechanisms that will later be part of the target platforms.
This requires care during the language design phase.

We will illustrate the transformation process using SecureUML and
its combination with two different design languages. In one case, we
define a transformation function that translates component models into
secure systems based on the component platform EJB (Section 6). In
the other case, our transformation function maps controller models into
secure web applications based on the Java Servlet standard (Section 7).

4. SecureUML

We now define the abstract syntax, concrete syntax, and semantics
of SecureUML. While we will later give examples of how to combine
SecureUML syntactically with different design modeling languages, we
describe here the semantic foundations for this combination.

4.1 Abstract Syntax

Figure 4 presents the metamodel that defines the abstract syntax of
SecureUML. The left-hand part of the diagram basically formalizes an
extension of RBAC, where we extend Users (defined in Section 2.4) by
Groups and formalize the assignment of users and groups to roles by us-
ing their common supertype Subject. The right-hand part of the diagram
factors permissions into the ability to carry out actions on resources.
Permissions may be constrained to hold only in certain system states

Model Driven Security 13

AuthorizationConstraint CompositeActionAtomicAction

Permission Resource

Subject

Action

GroupUser

Role
ResourceAction

+resource

1

+action

0..*

PermissionAssignment
1..* 0..*

ActionHierarchy
0..*

+subordinatedActions
0..*

ActionAssignment
0..* 1..*

ConstraintAssignment

0..*

0..1

SubjectGroup
0..*

0..*

SubjectAssignment
0..*

0..*

RoleHierarchy

0..*

0..*

Figure 4. SecureUML Metamodel

by authorization constraints. Additionally, we introduce hierarchies not
only on roles (which is standard for RBAC), but also on actions.

Let us now examine these types and associations in more detail. Sub-
ject is the base type of all users and groups in a system. It is an ab-
stract type (type names in italic font in class diagrams represent abstract
types), which means that it cannot be instantiated directly: each sub-
ject is either a user or a group. A User represents a system entity, like a
person or a process, whereas a Group names a set of users and groups.
Subjects are assigned to groups by the aggregation SubjectGroup, which
represents an ordering relation over subjects. Subjects are assigned to
roles by the association SubjectAssignment.

A Role represents a job and bundles all privileges needed to carry
out the job. A Permission grants roles access to one or more actions,
where the actions are assigned by the association ActionAssignment and
the entitled roles are denoted by the association PermissionAssignment.
Due to the cardinality constraints on these associations, a permission
must be assigned to at least one role and action. Roles can be ordered
hierarchically, which is denoted by the aggregation RoleHierarchy, with
the intuition that the role at the part end of the association inherits all
the privileges of the aggregate.

An AuthorizationConstraint is a logical predicate that is attached to a
permission by the association ConstraintAssignment and makes the per-
mission’s validity a function of the system state. Consider a policy stat-
ing that an employee is allowed to withdraw money from a company
account provided the amount is less than $5,000. Such a policy could be
formalized by giving a permission to a role Employee for the method with-
draw, restricted by an authorization constraint on the parameter amount
of this method. Such constraints are given by OCL expressions, where

14

the system model determines the vocabulary (classes and methods) that
can be used, extended by the additional symbol caller, which represents
the name of the user on whose behalf an action is performed.

Resource is the base class of all model elements in the system modeling
language that represent protected resources. The possible operations on
these resources are represented by the class Action. Each resource offers
one or more actions and each action belongs to exactly one resource,
which is denoted by the composite aggregation ResourceAction. We dif-
ferentiate between two categories of actions formalized by the action sub-
types AtomicAction and CompositeAction. Atomic actions are low-level
actions that can be directly mapped to actions of the target platform,
e.g., the action execute of a method. In contrast, composite actions are
high-level actions that may not have direct counterparts on the target
platform. Composite actions are ordered in an ActionHierarchy.

As we will see, the semantics of a permission defined on a composite
action is that the right to perform the action implies the right to per-
form any one of the (transitively) contained subordinated actions. This
semantics yields a simple basis for defining high-level actions. Suppose
that a security policy grants a role the permission to “read” an entity.
Using an action hierarchy, we can formalize this by stating that such a
permission includes the permission to read the value of every entity at-
tribute and to execute every side-effect free method of the entity. Action
hierarchies also simplify the development of generation rules since it is
sufficient to define these rules only for the atomic actions.

Together, the types Resource and Action formalize a generic resource
model that serves as a foundation for combining SecureUML with dif-
ferent system modeling languages. The concrete resource types, their
actions, the action hierarchy, and the rules for deriving resources along
an inheritance hierarchy are defined as part of a SecureUML dialect.

4.2 Concrete Syntax

SecureUML’s concrete syntax is based on UML. To achieve this, we de-
fine a UML profile that formalizes the modeling notation of SecureUML
using stereotypes and tagged values. In this section, we introduce the
modeling notation and explain how models in concrete syntax are trans-
formed into abstract syntax.

Table 1 gives an overview of the mapping between elements of the
SecureUML metamodel and UML types. Note that a permission, its
associations to other elements, and its optional authorization constraint
are represented by a single UML association class. Also note that the
profile does not define an encoding for all SecureUML elements. For

Model Driven Security 15

UML metamodel type and stereotype SecureUML metamodel type

Class «User» User
Class «Group» Group
Dependency «SubjectGroup» SubjectGroup
Dependency «SubjectAssignment» SubjectAssignment
Class «Role» Role
Generalization between classes

with stereotype «Role» RoleHierarchy
AssociationClass «Permission» Permission, PermissionAssignment, Ac-

tionAssignment, AuthorizationConstraint,
and ConstraintAssignment

Table 1. Mapping Between SecureUML Concrete and Abstract Syntax

example, the notation for defining resources is left open and must be de-
fined by the dialect. Also, no representation for subjects is given because
Subject is an abstract type.

We now illustrate the concrete syntax and the mapping to abstract
syntax with the example given in Figure 5, which formalizes the second
part of the security policy introduced in Section 2.1: only the owner of
a meeting may change meeting data and cancel or delete the meeting.

In the SecureUML profile, a role is represented by a UML class with
the stereotype «Role» and an inheritance relationship between two roles
is defined using a UML generalization relationship. The role referenced
by the arrowhead of the generalization relationship is considered to be
the superrole of the role referenced by the tail, and the subrole inherits
all access rights of the superrole. In our example, we define the two roles
User and Supervisor. Moreover, we define Supervisor as a subrole of User.

Users are defined as UML classes with the stereotype «User». The
assignment of a subject to a role is defined as a dependency with the
stereotype «SubjectAssignment», where the role is associated with the
arrowhead of the dependency. In our example, we define the users Alice
and Bob, and formalize that Alice is assigned to the role Supervisor,
whereas Bob has the role User.1

The right-hand part of Figure 5 specifies a permission on a protected
resource. Specifying this is only possible after having combined Se-
cureUML with an appropriate design modeling language. The concrete
syntax of SecureUML is generic in that every UML model element type
can represent a protected resource. Examples are classes, attributes, and
methods, as well as state machines and states. A SecureUML dialect
specializes the base syntax by stipulating which elements of the system
design language represent protected resource and defines the mapping

16

OwnerMeeting

<<EntityAction>>-Meeting : update
<<EntityAction>>-Meeting : delete

caller.name = self.owner.name

<<Entity>>
Meeting

-duration : time
-start : date

+cancel() : void
+notify() : void

<<User>>
Bob

<<User>>
Alice

<<Role>>
Supervisor

<<Role>>
User

<<SubjectAssignment>>

<<SubjectAssignment>>

<<Permission>>

Figure 5. Example of the Concrete Syntax of SecureUML

between the UML representation of these elements and the resource
types in the abstract syntax of the dialect. For this example, we employ
a dialect (explained in Section 5.1) that formalizes that UML classes with
the stereotype «Entity» are protected resources possessing the actions
update and delete, i.e., the class Meeting is a protected resource.

A permission, along with its relations to roles (PermissionAssignment)
and actions (ActionAssignment), is defined in a single UML model el-
ement, namely an association class with the stereotype «Permission».
The association class connects a role with a UML class representing a
protected resource, which is designated as the root resource of the per-
mission. The actions such a permission refers to may be actions on the
root resource or on subresources of the root resource. In our example,
the class Meeting is the root resource of the permission OwnerMeeting
granted to the role User.

Each attribute of the association class represents the assignment of an
action to the permission (ActionAssignment), where the action is identi-
fied by the name of its resource and the action name. The action name is
given as the attribute’s type, e.g. “update”. The resource name is stored
in the tagged value identifier and references the root resource or one of
its subresources. The format of the identifier depends on the type of the
referenced resource and is determined by the stereotype of the attribute.

The stereotypes for action references and the naming conventions for
identifiers are defined as part of the dialect. As a general rule, the re-
source identifier is always specified relative to the root resource. This
prevents redundant information in the model and inconsistencies when
the root resource’s name is changed. For example, the attribute start
would be referenced by the string “start” and the root resource itself
would be referenced by an empty string. Note that the name of the

Model Driven Security 17

action reference attribute has only an illustrative meaning. We gener-
ally use names that provide information about the referenced resource.
In our example, the attribute of type “update” with the stereotype
«EntityAction» and the name “Meeting” denotes the action update on
the class Meeting. As we will later see in Table 2, the permission to
update an Entity also comprises the permission to execute any non-side-
effect free method of the Entity, for example the method cancel() of the
class Meeting. The second attribute in our example denotes the action
delete on the class Meeting. Together, these two attributes specify the
permission to update (which includes canceling) and delete a meeting.

Each authorization constraint is stored as an OCL expression in the
tagged value constraint of the permission that it constrains. To improve
the readability of a model, we attach a text note with the constraint
expression to the permission’s association class. In our example, the
permission UserMeeting is constrained by the authorization constraint
caller.name = self.owner.name, which restricts the permission to update
and delete a meeting to the owner of the meeting.

4.3 Semantics

The General Idea SecureUML formalizes access control decisions that
depend on two kinds of information.

1 Declarative access control decisions that depend on static infor-
mation, namely the assignments of users and permissions to roles,
which we designate as a RBAC configuration.

2 Programmatic access control decisions that depend on dynamic
information, namely the satisfaction of authorization constraints
in the current system state.

While formalizing the semantics of RBAC configurations is straightfor-
ward, formalizing the satisfaction of authorization constraints in system
states is not. This is mainly because what constitutes a system state is
defined by the design modeling language, and not by SecureUML. Since
the semantics of SecureUML depends on the set of states, we parame-
terize the SecureUML semantics by this set. Also, we have to define the
semantics of RBAC configurations in a way that supports its combina-
tion with the semantics of authorization constraints.

The basic ideas are as follows. To formalize 1, declarative access
control decisions, we represent a RBAC configuration as a first-order
structure SRBAC , and we define the semantics of declarative access con-
trol decisions by SRBAC |= φRBAC(u, a), where φRBAC(u, a) formalizes
that the user u is “in the right role” to perform the action a.

18

To formalize 2, we represent system states st by (corresponding) first-
order structures Sst, and authorization constraints as first-order formu-
las φp

ST (u) (independent of the state st). In accordance with the Se-
cureUML metamodel, constraints are associated with permissions (not
actions), and this formula formalizes under which condition the user u
has the permission p. Whether this condition holds or not in the state
st is then cast as the logical decision problem Sst |= φp

ST (u).
To combine both RBAC configurations and authorization constraints,

we combine the first-order structures Sst and SRBAC , as well as the first-
order formulas φp

ST (u) and φRBAC(u, a), and use this to formalize the
semantics of individual access control decisions. Since the addition of
access control changes the run-time behavior of a system, we must also
define how the semantics of SecureUML changes the behavior specified
by the design modeling language. To accomplish this, we require that
the system behavior can be defined by a transition system and we inter-
pret the addition of access control as restricting the system behavior by
removing transitions from this transition system. In what follows, we
formalize these ideas more precisely.

Declarative Access Control First, we define an order-sorted signature
ΣRBAC = (SRBAC ,≤RBAC ,FRBAC ,PRBAC) that defines the type of
structures that specify role-based access control configurations.2 Here
SRBAC is a set of sorts, ≤RBAC is a partial order on SRBAC , FRBAC is
a sorted set of function symbols, and PRBAC is a sorted set of predicate
symbols. In detail, we define

SRBAC = {Users,Subjects,Roles,Permissions,AtomicActions,Actions} ,

where Users ≤RBAC Subjects, and AtomicActions ≤RBAC Actions,

FRBAC = ∅ ,

PRBAC =

≥Subjects:Subjects× Subjects, UA:Subjects× Roles,
≥Roles :Roles× Roles, PA :Roles× Permissions,
≥Actions :Actions×Actions, AA:Permissions×Actions

 .

The subsort relation ≤RBAC is used here to formalize that Users is a
subsort of Subjects and AtomicActions is a subsort of Actions.

The predicate symbols UA, PA, and AA denote assignment relations,
corresponding in the SecureUML metamodel to the associations Subject-
Assignment, PermissionAssignment, and ActionAssignment respectively.
The predicate symbols ≥Subjects, ≥Roles, and ≥Actions denote hierarchies
on the respective sets and correspond to the aggregation associations
SubjectGroup, RoleHierarchy, and ActionHierarchy respectively.

Model Driven Security 19

A SecureUML model defines a ΣRBAC-structure SRBAC in the ob-
vious way: the sets Subjects, Users, Roles, Permissions, Actions, and
AtomicActions each contain entries for every model element of the cor-
responding metamodel types Subject, User, Role, Permission, Action, and
AtomicAction. Also, the relations UA, PA, and AA contain tuples for
each instance of the corresponding association in the abstract syntax of
SecureUML.

Additionally, we define the partial orders≥Subjects, ≥Roles, and≥Actions

on the sets of subjects, roles, and actions respectively. ≥Subjects is given
by the reflexive closure of the aggregation association SubjectGroup in
Figure 4 and formalizes that a group is larger than all its contained
subjects. ≥Role is defined analogously based on the aggregation associ-
ation RoleHierarchy on Role and we write subroles (roles with additional
privileges) on the left (larger) side of the ≥-symbol. ≥Actions is given
by the reflexive closure of the composition hierarchy on actions, defined
by the aggregation ActionHierarchy. We write a1 ≥Actions a2, if a2 is a
subordinated action of a1. These relations are partial orders because
aggregations in UML are transitive and antisymmetric by definition.

Note that compared to Figure 4, we have excluded the metamodel
types Group, CompositeAction, Resource, and AuthorizationConstraint.
Resource is excluded because the target of access control is the actions
performed on resources, and not resources themselves. Group and Com-
positeAction are excluded because groups and composite actions are just
subsets of subjects and actions respectively and do not play any further
role in the semantics. AuthorizationConstraint is excluded because its
semantics is not part of declarative access control, but rather part of
programmatic access control.

We define the formula φRBAC(u, a) with variables u of sort Users and
a of sort Actions by

φRBAC(u, a) =∃s ∈ Subjects, r1, r2 ∈ Roles, p ∈ Permissions, a′ ∈ Actions.
s ≥Subjects u ∧UA(s, r1) ∧ r1 ≥Roles r2 ∧
PA(r2, p) ∧AA(p, a′) ∧ a′ ≥Actions a ,

or equivalently, by factoring out the permissions explicitly, as

φRBAC(u, a) =
∨

{p∈Permissions}

φUser(u, p) ∧ φAction(p, a) , (1)

where

φUser(u, p) = ∃s ∈ Subjects, r1, r2 ∈ Roles.
s ≥Subjects u ∧UA(s, r1) ∧ r1 ≥Roles r2 ∧PA(r2, p)

20

states that the user u has the permission p, and

φAction(p, a) = ∃a′ ∈ Actions.AA(p, a′) ∧ a′ ≥Actions a

states that p is a permission for the action a. This is essentially a re-
formulation of the usual RBAC semantics (cf. Section 2.4). The reason
for the factorization given by definition (1) will become clear when we
combine this formula with programmatic access control formulas φp

ST (u).
The declarative access control part of SecureUML is now defined

by saying that a user u may perform an action a only if SRBAC |=
φRBAC(u, a) holds.

Programmatic Access Control While declarative access control deci-
sions can be made independently of the system model, we must explicitly
incorporate the syntax and semantics of the design modeling language
into SecureUML for programmatic access control. In order to be able
to combine the semantics of SecureUML with the semantics of system
design modeling languages, we make some assumptions about the nature
of the latter, so that the semantic combination will be well-defined.

To make programmatic access control decision, we require that the
system design model provides a vocabulary for talking about the struc-
ture of the system. More formally, we require that the system design
model provides a sorted first-order signature ΣST = (SST ,FST ,PST).
Typically, SST contains one sort for each class in the system model, FST

contains a function symbol for each attribute and for each side-effect free
method of the model, and PST contains predicate symbols for 1-to-many
and many-to-many relations between classes. How exactly this signature
is defined depends on the semantics of the system design modeling lan-
guage. We do however require that SST contains a sort Users and that
FST contains a constant symbol caller of sort Users, and a constant
symbol selfC for each class C in the system model. This amounts to the
requirement that the design modeling language provides some way of
talking about who is accessing what, which is a minimal requirement for
any reasonable notion of access control. For practical reasons, we also
assume that FST contains a function symbol UserName, which maps
users to a string representation of their names. How the symbols in ΣST

are interpreted in Sst is again defined by the system design modeling
language. Here we only require that the constant symbol selfC is inter-
preted by the currently accessed object, in case the currently accessed
object is of the sort C, and that the constant symbol caller is interpreted
by the user that initiated this access.

In this setting, the state of the system at a particular time defines
a ΣST -structure Sst. Constraints on the system state Sst can be ex-

Model Driven Security 21

pressed as logical formulas φST , whereby constraint satisfaction is just
the question of whether Sst |= φST holds.3

Combining Declarative and Programmatic Access Control To formal-
ize combined declarative and programmatic access control decisions,
we combine the states Sst and SRBAC into the composite structure
SAC = 〈SRBAC ,Sst〉 and combine the formulas φST and φRBAC into a
new formula φAC . The combined access control decision is then defined
as the question of whether SAC |= φAC holds.

By 〈SRBAC ,Sst〉 we mean that SAC is the structure that consists
of the carrier sets, functions and predicates from both SRBAC and Sst,
where we identify the carrier sets of the sort Users, which belongs to
both structures. As for φAC , observe that authorization constraints are
not global constraints, but are attached to permissions (as can be seen
in Figure 5) and hence are only relevant for the roles that have these
permissions. We denote the authorization constraint that is attached to
a permission p by φp

ST , and require that φp
ST is an expression in the first-

order language defined by ΣST . In order to define the language for the
combined formula φAC , we combine the signatures ΣRBAC and ΣST by
taking their componentwise union4, i.e., ΣAC = (SAC ,≤AC ,FAC ,PAC),
where SAC = SRBAC ∪ SST , ≤AC=≤RBAC ∪ idSST

, FAC = FRBAC ∪
FST , and PAC = PRBAC ∪ PST . Here we assume that the signatures
ΣRBAC and ΣST are disjoint, with the exception of the sort Users, which
belongs to both signatures. Observe that under this definition of ΣAC ,
SAC is a ΣAC-structure.

The combined access control semantics is now defined by the formula

φAC(u, a) =
∨

p∈Permissions

φUser(u, p) ∧ φAction(p, a) ∧ φp
ST (u) , (2)

stating that a user u must have a permission p for the action a according
to the RBAC configuration and that the corresponding authorization
constraint for this permission p must evaluate to true for the user u.

Behavioral Semantics of Access Control The preceding paragraphs de-
fined how access control decisions are made in a system state. But what
is interesting in the end is how the system behaves when an access control
decision is made. In order to define this, we again make some minimal
assumptions on the semantics of the design modeling language. Namely,
we assume that the semantics of the system design modeling languages
can be expressed as a Labeled Transition System (LTS) ∆ = (Q,A, δ).
In this LTS, the set of nodes Q consists of ΣST -structures, the edges
are labeled with elements from a set of actions A that is a superset of

22

AtomicActions, and δ ⊆ Q × A × Q is the transition relation. Note
that we do not require that A = AtomicActions because the design
modeling language may define state-changing actions (i.e., those with
side-effects) that are not protected. The behavior of the system is de-
fined by the paths (also called traces) in the LTS as is standard: a trace
s0

a0→ s1
a1→ . . . defines a possible behavior if and only if (si, ai, si+1) ∈ δ,

for 0 ≤ i.
In this setting, adding access control to the system design corresponds

to deleting traces from the LTS, i.e., when an action is not permitted
then the transition must not be made, and when an action is permitted,
the subsequent state must be the same as before adding access control.

More formally, adding access control to a system description means
transforming the LTS ∆ = (Q,A, δ) to an LTS ∆AC = (QAC , AAC , δAC)
as follows:

QAC is defined by combining system states with RBAC configura-
tions, i.e., QAC = QRBAC ×Q, where QRBAC denotes the universe
of all finite ΣRBAC-structures.

AAC is unchanged: AAC = A.

δAC is defined by restricting δ to the permitted transitions:

δAC = {(〈qRBAC , q〉, a, 〈qRBAC , q′〉) | (q, a, q′) ∈ δ ∧
(a ∈ AtomicActions → 〈qRBAC , q〉 |= φAC(caller, a)}

Note that this definition implies that the RBAC configuration does
not change during system execution. We do not address issues like
run-time user administration in this work.

We will see concrete semantic combinations of SecureUML with dif-
ferent design modeling languages in Sections 5.3 (for ComponentUML)
and in Section 7.3 (for ControllerUML).

5. An Example Modeling Language:ComponentUML

In this section, we give an example of a system design language, which
we call ComponentUML, and present its combination with SecureUML.
We also show how to model security policies using the resulting secu-
rity design modeling language and we illustrate its semantics using the
example introduced in Section 2.1.

ComponentUML is a simple language for modeling distributed object-
oriented systems. The metamodel for ComponentUML is shown in Fig-
ure 6. Elements of type Entity represent object types of a particular do-
main. An entity may have multiple methods and attributes, represented

Model Driven Security 23

Association AssociationEnd

2 12 1

 Attribute

Entity

1 0..*

+type

1 0..*

0..*

 Method

0..*0..*0..*

Figure 6. ComponentUML Metamodel

by elements of the types Method and Attribute respectively. Associa-
tions are used to specify relations between entities. An association is
built from an Association model element and every entity participating
in an association is connected to the association by an AssociationEnd.

ComponentUML uses a UML-based notation where entities are rep-
resented by UML classes with the stereotype «Entity». Every method,
attribute, or association end owned by such a class is automatically con-
sidered to be a method, attribute, or association end of the entity, so no
further stereotypes are necessary.

Figure 7 shows the structural model of our scheduling application in
the ComponentUML notation. Instead of classes, we now have the three
entities Meeting, Person, and Room, each represented by a UML class
with the stereotype «Entity».

5.1 Extending the Abstract Syntax

Merging the Syntax As the first step towards making ComponentUML
security aware, we extend its abstract syntax with the vocabulary of Se-
cureUML by integrating both metamodels, i.e., we merge the abstract
syntax of both modeling languages. This is achieved by importing the
SecureUML metamodel into the metamodel of ComponentUML. This
extends ComponentUML with the SecureUML modeling constructs, e.g.,
Role and Permission. The use of packages and corresponding namespaces
for defining these metamodels ensures that no conflicts arise during
merging.

Identifying Protected Resources Second, we identify the model elements
of ComponentUML representing protected resources and formalize this
as part of a SecureUML dialect. To do this, we must determine which
model element we wish to control access to in the resulting systems.
When doing this, we must account for what can ultimately be protected
by the target platform. Suppose, for example, we decide to interpret en-
tity attributes as protected resources and the target platform supports

24

<<Entity>>
Meeting

-duration : time
-start : date

+cancel() : void
+notify() : void

<<Entity>>
Person

-e-mail : string
-name : string

<<Entity>>
Room

-number : int
-floor : int

0..*

+owner
1

0..*

+location
0..1

0..*
+participants

0..*

Figure 7. Scheduling Application

access control on methods only. This is possible, but it necessitates a
transformation function that transforms each modeled attribute into a
private attribute and generates (and enforces access to) access methods
for reading and changing the value of the attribute in the generated
system.

In our example, we identify the following model elements of Com-
ponentUML as protected resources: Entity, Method, Attribute, and As-
sociationEnd. This identification is made by using inheritance to specify
that these metatypes are subtypes of the SecureUML type Resource, as
shown in Figure 8. In this way, the metatypes inherit all properties
needed to define authorization policies. Additionally, we define in this
figure several action classes as subtypes of the SecureUML class Com-
positeAction. The action composition hierarchy is then defined as part
of each action’s type information, by way of OCL invariant constraints
(see below) on the respective types.

Defining Resource Actions In the next step, we define the set of actions
that is offered by every model element type representing a protected
resource, i.e., we fix the domain of the metamodel association Resource-
Action for each resource type of the dialect. Actions can be freely defined
at every level of abstraction. One may choose just to leverage the ac-
tions that are present in the target security architecture, e.g., the action
“execute” on methods. Alternatively one may define actions at a higher
level of abstraction, e.g., “read” access to a component. This results in
a richer, easier to use vocabulary since granting read or write access to
an entity is more intuitive than giving someone the privilege to execute
the methods getBalance, getOwner, and getId. High-level actions also
lead to concise models. We usually define actions of both kinds and
connect them using hierarchies.

Model Driven Security 25

AtomicAction
(from SecureUML)

AssociationEndFullAccessAttributeFullAccessEntityRead EntityUpdateEntityFullAccess AtomicAction
(from SecureUML)

CompositeAction
(from SecureUML)

Resource
(from SecureUML)

Entity

name : string
Method Attribute AssociationEnd

execute fullAccess
update

readdeleteread updatefullAccess create fullAccessupdate
read

Figure 8. SecureUML Dialect for ComponentUML Metamodel

In the metamodel, the set of actions each resource type offers is defined
by the named dependencies from the resource type to action classes,
as shown in Figure 8. Each dependency represents one action of the
referenced action type in the context of the resource type, where the
dependency name determines the name of the action. For example, the
metamodel in Figure 8 formalizes that an Attribute always possesses the
action fullAccess of type AttributeFullAccess and the actions read and
update of type AtomicAction.

Defining the Action Hierarchy As the final step in defining our Se-
cureUML dialect, we define a hierarchy on actions. We do this by re-
stricting the domain of the SecureUML association ActionHierarchy on
each composite action type of the dialect by an OCL invariant. An
overview of the composite actions of the SecureUML dialect for Com-
ponentUML is given in Table 2. The approach we take is shown for the
action class EntityFullAccess by the following OCL expression.

context EntityFullAccess inv:

subordinatedActions =

resource.actions ->select(name=" create" or name="read" or

name=" update" or name=" delete ")

This expression states that the composite action EntityFullAccess is larger
(a “super-action”) in the action hierarchy than the actions create, read,
update, and delete of the entity the action belongs to.

26

composite action type subordinated actions

EntityFullAccess create, read, update, and delete of the entity.
EntityRead read for all attributes and association ends of the entity,

and
execute for all side-effect free methods of the entity.

EntityUpdate update for all attributes of the entity,
update for all association ends of the entity, and
execute for all non-side-effect free methods of the entity.

AttributeFullAccess read and update of the attribute.
AssociationEndFullAccess read and update of the association end.

Table 2. SecureUML Dialect Action Hierarchy

5.2 Extending the Concrete Syntax

In the previous section, we have seen how the abstract syntax of Com-
ponentUML can be augmented with syntax for security modeling by
combining it with the abstract syntax of SecureUML. We extend the
concrete syntax of ComponentUML analogously by importing the Se-
cureUML notation into ComponentUML. Afterwards, we define well-
formedness rules on SecureUML primitives that restrict their use to
those ComponentUML elements representing protected resources. For
example, the scope of a permission, which is any UML class in the Se-
cureUML notation (see Section 4.2), is restricted to UML classes with
the stereotype «Entity». Finally, as shown in Table 3, we define the
action reference types for entities, attributes, methods, and association
ends.

5.3 Extending the Semantics

Our combination schema requires that we define the semantics of
ComponentUML as a labeled transition system ∆ = (Q,A, δ) over a
first-order signature ΣST . Intuitively, every entity defines a sort in the
first-order signature, and every atomic action defined by the SecureUML
dialect for ComponentUML (cf. Figure 8) defines an action in the labeled
transition system. Side-effect free actions give rise to function and pred-
icate symbols in the first-order signature.

To make this more precise, given a model in the ComponentUML
language, we define the signature ΣST = (SST ,FST ,PST) as follows:

Each Entity e gives rise to a sort Se in SST . Additionally, SST

contains the sorts Users, String, Int, Real, and Boolean:

SST = {Se | e is an entity}∪{Users, String, Int, Real, Boolean} .

Model Driven Security 27

stereotype resource type naming convention

EntityAction Entity empty string
MethodAction Method method signature
AttributeAction Attribute attribute name
AssociationEndAction AssociationEnd association end name

Table 3. Action Reference Types for ComponentUML

Each side-effect free entity method m (which is marked in UML
by the tagged value “isQuery”, set to true) gives rise to a function
symbol fm in FST of the corresponding type. Corresponding type
here means, in particular, that we add the sort of the entity as an
additional parameter, i.e., the “this-pointer” is passed as an addi-
tional argument. Each entity attribute at gives rise to a function
symbol getat in FST (the “get-method”) of type s → v, where s
is the sort of the entity and v is the sort of the attribute’s type.
Each association end ae with multiplicity {1} gives rise to a func-
tion symbol fae. Finally, we have a constant symbol caller of type
Users and a function symbol UserName of type Users → String:

FST = {fm | m is an entity method}∪
{getat | at is an entity attribute}∪
{selfe | e is an entity}∪
{fae | ae is an association end with multiplicity {1}}∪
{caller,UserName} .

Each association end ae with a multiplicity other than {1} gives
rise to a binary predicate symbol Pae in PST of the type of the
involved entities:

PST = {Pae | ae is an association end with multiplicity 6= {1}} .

We now define the labeled transition system ∆ = (Q,A, δ) by:

Q is the universe of all possible system states, which is just the set
of all first-order structures over the signature ΣST that consist of
finitely many objects for each entity as well as for the sort Users,
and where the interpretations of String, Int, Real, and Boolean
are fixed to be the sets Strings, Z, R, and {true, false} respectively.

The entity sorts consist of objects that can be thought of as tuples,
containing an object identifier and fields for each attribute. The
attribute fields contain the object identifier of the referenced object

28

(in case this object is of an entity sort) or a value of one of the
primitive types.

The set of actions A is defined by (cf. Figure 8):

A = EntityCreateActions ∪ EntityDeleteActions ∪
MethodActions ∪
AttributeReadActions ∪AttributeUpdateActions ∪
AssociationEndReadActions ∪AssociationEndAddActions ∪
AssociationEndRemoveActions ,

where, for example, AttributeUpdateActions is defined by:

AttributeUpdateActions =
⋃

{at∈Attributes}

{setat} ×Qe ×Qat .

Here, Qe and Qat denote the universes of all possible instances of
the type of the attribute’s entity, and the type of the attribute
respectively, e.g., the action (setat, e, v) ∈ AttributeUpdateActions
denotes the action of setting the attribute at of the entity e to the
value v. The other sets of actions are defined similarly.

The transition relation δ ⊆ Q × A × Q defines the allowed tran-
sitions. The exact details of δ will depend on the intended se-
mantics of the methods themselves. We will just give a few ex-
amples here to illustrate the main idea. For example, for a ∈
AttributeReadActions, (q, a, q′) ∈ δ if and only if q = q′, i.e., read-
ing an attribute’s value does not change the system state. In con-
trast, setting an attribute value should be reflected in the system
state: for a = (setat, e, v) ∈ AttributeUpdateActions, (q, a, q′) ∈ δ
implies q′ |= getat(e) = v.

It is possible to complete this account and give a full semantics of
ComponentUML, but this would take us too far afield. Any comple-
tion will meet the requirements put forth in Section 4.3 and have a
well-defined behavioral semantics. Specifically, the combined transition
system ∆AC = (QAC , AAC , δAC) is defined by adding ΣRBAC-structures
to the system states in Q, extending δ to QAC×AAC×QAC , and remov-
ing forbidden transitions. Hence, δAC will only contain those transitions
that are allowed according to the SecureUML semantics.

5.4 Modeling the Authorization Policy

We now use the combined language to formalize the security policy
given in Section 2.1. We do this by adding permissions to the entity

Model Driven Security 29

SupervisorCancel

<<EntityMethodAction>>-Meeting.cancel : execute
<<EntityMethodAction>>-Meeting.notify : execute

OwnerMeeting

<<EntityAction>>-Meeting : update
<<EntityAction>>-Meeting : delete

UserMeeting

<<EntityAction>>-Meeting : create
<<EntityAction>>-Meeting : read

caller.name = self.owner.name

<<Entity>>
Meeting

-duration : time
-start : date

+cancel() : void
+notify() : void

<<Entity>>
Person

-e-mail : string
-name : string

<<Entity>>
Room

-number : int
-floor : int

<<Role>>
Supervisor

<<Role>>
User

<<Permission>>

<<Permission>>

<<Permission>>

0..*

+location

0..1

0..*

+participants

0..*

0..*

+owner

1

Figure 9. Scheduler Example with Authorization Policy

model of the scheduler application that formalize the three policy re-
quirements. As these permissions associate roles with actions, we also
employ the roles User and Supervisor, which we introduced in Section 4.2.

The first requirement states that any user may create and read meet-
ing data. We formalize this by the permission UserMeeting in Figure 9,
which grants the role User the right to perform create and read actions
on the entity Meeting.

We formalize the second requirement with the permission OwnerMeet-
ing, which states that a meeting may only be altered or deleted by its
owner. This permission grants the role User the privilege to perform up-
date and delete actions on a Meeting. Additionally, we restrict this per-
mission with the authorization constraint caller.name = self.owner.name,
which states that the name of a caller must be equal to the name of
the owner of the meeting instance. Due to the definition of the action
update (cf. Table 2), this permission must hold for every change of the
value of the attributes or association ends of the meeting entity as well
as for invocations of the methods notify or cancel.

Finally, we formalize the third requirement with the permission Su-
pervisorCancel. This gives a supervisor the permission to cancel any
meeting, i.e., the right to execute the methods cancel and notify.

5.5 Examples of Access Control Decisions

We now illustrate the semantics by analyzing several access control
decisions in the context of Figure 9. We assume that we have three

30

users, Alice, Bob, and Jack, and that Bob is assigned the role User
whereas Alice is assigned the role Supervisor. Here we assume that our
dialect has the default behavior “access allowed” and we directly apply
the semantics of SecureUML to the policy given in the previous section.
The corresponding ΣRBAC-structure SRBAC is5

Users = Subjects ={Alice,Bob, Jack}
Roles ={User, Supervisor}

Permissions ={OwnerMeeting, SupervisorCancel, . . . }
AtomicActions ={Meeting::cancel.execute, . . . }

Actions =AtomicActions ∪ {Meeting.update, . . . }
UA ={(Bob, User), (Alice, Supervisor)}
PA ={(User, OwnerMeeting),

(Supervisor, SupervisorCancel), . . . }
AA ={(SupervisorCancel, Meeting::cancel.execute),

(OwnerMeeting, Meeting.update), . . . }
≥Roles={(Supervisor, User), (Supervisor, Supervisor),

(User, User)}
≥Actions={(Meeting.update, Meeting::cancel.execute),

. . . } ,

and the signature ΣST , derived from the system model, is

S = {Meetings,Persons,Rooms} ∪ {String, Int, Real, Bool}
F = {self Meetings , . . . ,MeetingOwner ,PersonName}
P = {MeetingLocation,MeetingParticipants, . . .} .

The constant symbol self Meetings of sort Meetings denotes the currently
accessed meeting. The function symbols

MeetingOwner : Meetings → Persons
PersonName : Persons → String

represent the association end owner of the entity type Meeting and the
attribute name of a person.

Now suppose that Alice wants to cancel a meeting entry owned by
Jack. Suppose further that the system state is given by the first-order

Model Driven Security 31

structure Sst over ΣST , where

callerSst = Alice
MeetingsSst = {meetingJack}
PersonsSst = {alice, bob, jack}
self Sst

Meetings = meetingJack

MeetingOwnerSst = {(meetingJack, jack)}
PersonNameSst = {(alice, "Alice"), (bob, "Bob"), (jack , "Jack")}

UserNameSst = {(Alice, "Alice", (Bob, "Bob"), (Jack, "Jack")}.

The formula that must be satisfied by the structure SAC = 〈SRBAC ,Sst〉
in order to grant Alice access is built according to the definition (2), given
in Section 4.3:

φAC(u, a) =
∨

p∈Permissions

φUser(u, p) ∧ φAction(p, a) ∧ φp
ST (u) .

As can be seen in Figure 9, Alice has the permission SupervisorCan-
cel for the action Meeting::cancel.execute. However, the method
cancel() of the entity Meeting is a method with side-effects. There-
fore, the composite action Meeting.update includes the action Meet-
ing::cancel.execute. Because the role Supervisor inherits permissions
from the role User, Alice also has the permission OwnerMeeting for the
action Meeting::cancel.execute. No other permissions for this action
exist. Hence, the formula

φUser(Alice, p) ∧ φAction(p, Meeting::cancel.execute)

is only true for these permissions. The constraint expression

caller.name = self.owner.name

on the permission OwnerMeeting is translated into the formula

UserName(caller) = PersonName(MeetingOwner(self Meetings())) ,

and the formula for the permission SupervisorCancel is true. For all other
permissions p, the formula φUser(u, p) ∧ φAction(p, a) is false. Therefore
the access decision is equivalent to

SAC |= true ∨
UserName(caller) = PersonName(MeetingOwner(self Meetings())) ,

which is satisfied.

32

Alternatively, suppose that Bob tries to perform this action. The
corresponding structure S′

AC differs from SAC by the interpretation of
the constant symbol caller, which now refers to “Bob”. Bob only has
the permission OwnerMeeting for this action. Hence,

S′
AC |= UserName(caller) =

PersonName(MeetingOwner(self Meetings()))

is required for access. Since Jack (not Bob) is the owner of this meeting,
this constraint is not satisfied and access is denied.

6. Generating an EJB System

We now show how ComponentUML models can be transformed into
executable EJB systems with configured access control infrastructures.
First, we outline the basic generation rules for EJB systems. After-
wards, we present the rules for transforming SecureUML elements into
EJB access control information. The generation of users, roles, and
user assignments is straightforward in EJB: for each user, role, and user
assignment, we generate a corresponding element in the deployment de-
scriptor. We therefore omit these details and focus here on the parts of
the infrastructure responsible for enforcing permissions and authoriza-
tion constraints.

6.1 Basic Generation Rules for EJB

Generation rules are defined for entities, their attributes, methods,
and association ends. The result of the transformation is a source code
fragment in the concrete syntax of the EJB platform, either Java source
code or XML deployment descriptors.

An Entity is transformed to a complete EJB component of type entity
bean with all necessary interfaces and an implementation class. Addi-
tionally, a factory method create for creating new component instances
is generated. The component itself is defined by an entry in the deploy-
ment descriptor of type entity as shown by the following XML fragment.
<entity >

<ejb -name >Meeting </ejb -name >

<local -home >scheduler.MeetingHome </local -home >

<local >scheduler.Meeting </local >

<ejb -class >scheduler.MeetingBean </ejb -class >

...

</entity >

A Method is transformed to a method declaration in the component
interface of the respective entity bean and a method stub in the corre-

Model Driven Security 33

sponding bean implementation class. The following shows the stub for
the method cancel of the entity Meeting.
void cancel (){ }

For each Attribute, access methods for reading and writing the at-
tribute value are generated along with persistency information that is
used by the application server to determine how to store this value in a
database. The declarations of the access methods for the attribute dura-
tion of the entity Meeting are shown in the following Java code fragment.
int getDuration ();

void setDuration(int duration);

Elements of type AssociationEnd are handled analogously to attributes.
Access methods are generated for reading the collection of associated
objects and for adding objects to, or deleting them from, the collec-
tion. Furthermore, persistency information for storing the association-
end data in a database is generated. The following code fragment shows
the declarations of the access methods for the association end participants
of the entity Meeting.
Collection getParticipants ();

void addParticipant(Participant participant);

void removeParticipant(Participant participant);

6.2 Generating Access Control Infrastructures

We define generation rules that translate a security design model into
an EJB security infrastructure based on declarative and programmatic
access control. Each permission is translated into an equivalent XML
element of type method-permission, used in the deployment descriptor
for the declarative access control of EJB. The resulting access control
configuration enforces the static part of an access control policy, without
considering the authorization constraints. Programmatic access control
is used to enforce the authorization constraints. For each method that
is restricted by at least one permission with an authorization constraint,
an assertion is generated and placed at the start of the method body.

Note that since the default behavior of both the SecureUML dialect for
ComponentUML and the EJB access control monitor is “access allowed”,
we need not consider actions without permissions during generation.

Generating Permissions As explained in Section 2.5, a method permis-
sion element names a set of roles and the set of EJB methods that the
members of the roles may execute. Generating a method permission can
therefore be split into two parts: generating a set of roles and assigning
methods to them.

34

rule # resource type action EJB methods

1 Entity create automatically generated factory methods
2 Entity delete delete methods
3 Method execute corresponding method
4 Attribute read get-method of the attribute
5 Attribute update set-method of the attribute
6 AssociationEnd read get-method of the association end
7 AssociationEnd update add- and remove-method of the association end

Table 4. Atomic Action to Method Mapping for EJB

Since EJB does not support role hierarchies, both the roles directly
connected to permissions in the model, as well as their subroles, are
needed for generation. First, the set of roles directly connected to a
permission is determined using the association PermissionAssignment of
the SecureUML metamodel. Then, for every role in this set, all of its
subroles (under the transitive closure of the relation defined by the as-
sociation RoleHierarchy) are added to the role set. Finally, for each role
in the resulting set, one role-name element is generated. Applying this
generation procedure to the permission OwnerMeeting in our example
results in the following two role references.

<role -name >User </role -name >

<role -name >Supervisor </role -name >

The set of method elements that is generated for each permission is
computed similarly. First, for each permission, we determine the set of
actions directly referenced by the permission using the association Ac-
tionAssignment. Then, for every action in this set, all of its subordinated
actions (under the reflexive closure of the relation defined by the asso-
ciation ActionHierarchy) are added to the action set. Finally, for each
atomic action in the resulting set, method elements for the correspond-
ing EJB methods are generated. The correspondence between atomic
actions and EJB methods is given in Table 4. Note that an atomic
action may map to several EJB methods and therefore several method
entries may need to be generated.

We illustrate this process for the permission UserMeeting, which ref-
erences the actions Meeting.create and Meeting.read. The resulting
set of atomic actions for this permission is

{Meeting.create, Meeting::start.read, Meeting::duration.read,
Meeting::owner.read, Meeting::location.read, Meeting::participants.read} ,

where “::” is standard object-oriented notation, which is used here to
reference the attributes and association ends of the entity Meeting. The

Model Driven Security 35

action create of the entity Meeting remains in the set, whereas the ac-
tion read is replaced by the corresponding actions for reading the at-
tributes and the association ends of the entity Meeting. The map-
ping rules 1, 4, and 6 given in Table 4 are applied, which results in
a set of six methods: the method create, the read-methods of the at-
tributes start and duration, and the read-methods of the association ends
owner, participants, and location. The XML code generated is as follows:

<method >
<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >create </method -name >
<method -params/>

</method >
<method >

<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >

getStart
</method -name >
<method -params/>

</method >
<method >

<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >

getDuration
</method -name >
<method -params/>

</method >

<method >
<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >getOwner </method -name >
<method -params/>

</method >
<method >

<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >

getLocation
</method -name >
<method -params/>

</method >
<method >
<ejb -name >Meeting </ejb -name >
<method -intf >Local </method -intf >
<method -name >

getParticipants
</method -name >
<method -params/>

</method >

Generating Assertions While the generation of an assertion for each
OCL constraint is a simple matter, this task is complicated by the fact
that a method may have multiple (alternative) permissions, associated
with different constraints and roles, where the roles in turn may be
associated with subroles. Below we describe how we account for this
when generating assertions.

First, given a method m, the atomic action a corresponding to the
method is determined using Table 4. For example, the action corre-
sponding to the EJB method Meeting::cancel is the action execute
of the method cancel of the entity Meeting in the model. Then, using
this action a, the set of permissions ActionPermissions(a) that affect the
execution of the method m is determined as follows: a permission is in-
cluded if it is assigned to a by the association ActionAssignment or one of
the super-actions of a (under the reflexive closure of the relation defined
by the association ActionHierarchy). Next, for each permission p in the
resulting set ActionPermissions(a), the set PR(p) of roles assigned to p
is determined, again taking into account the hierarchy on roles in the
same way as in the previous section. Finally, based on this information,
an assertion is generated of the form

36

if (!(
_

p∈ActionPermissions(a)

““ _
r∈PR(p)

UserRole(r)
”
∧ Constraint(p)

”
))

throw new AccessControlException("Access denied."); .

(3)

This scheme is similar to Equation (2) in Section 4.3, which defines
φAC(u, a), as each permission represents an (alternative) authorization
to execute an action. However, because the permission assignments and
action assignments are known at compile time, this information is used
to simplify the assertion. Instead of considering all permissions, we only
consider permissions that refer to the action in question by calculating
the set ActionPermissions(a). This has the effect that the equivalent of
φAction(p, a) in Equation (2) can be omitted. Similarly, the equivalent
of φUser is simplified by only considering roles that have one of these
permission, which is done by calculating the sets PR(p). If a constraint
is assigned to a permission, it is evaluated afterwards. Access denial is
signaled to the caller by throwing an exception.

As an example, the following assertion is generated for the method
Meeting::cancel.

if (!(ctxt.isCallerInRole("Supervisor")/* SupervisorCancel */

|| (ctxt.isCallerInRole("User")

|| ctxt.isCallerInRole("Supervisor"))

&& ctxt.getCallerPrincipal.getName (). equals(

getOwner (). getName ()))) /* OwnerMeeting */

throw new AccessControlException("Access denied.");

Observe that the role assignment check UserRole(r) is translated into a
Java expression of the form ctxt.isCallerInRole(<roleName>). The
variable ctxt references an object that is used in EJB to communicate
with the execution environment of a component. Here, the context ob-
ject is used to check the role assignment of the current caller.

An authorization constraint, defined in OCL, is translated to an equiv-
alent Java expression. The symbol caller is translated into the expression
ctxt.getCallerPrincipal.getName(). Access to methods, attributes,
and association ends respects the rules that are applied to generate the
respective counterparts of these elements, given in Section 6.1. For ex-
ample, access to the value of an attribute name is translated to a call
of the corresponding read method getName. The OCL equality opera-
tor is translated into the Java method equals for objects or into Java’s
equality operator for primitive types.

7. ControllerUML

To demonstrate the general applicability of our approach, we now
present a second design modeling language. This language, which we

Model Driven Security 37

ViewStateSubControllerState StatemachineAction

EventStateTransition

0..1effect0..1

1

trigger

1

Statemachine State 0..n1

incoming

0..ntarget1

0..n1

outgoing

0..nsource1n

states

n

0..n0..1
+substates
0..n

StateHierarchy

container
0..1

Controller

1 +controller1

1

behavior

1

ControllerAttribute

0..n0..n

Figure 10. Metamodel of ControllerUML

call ControllerUML, is based on state machines.6 We will show how
ControllerUML can be integrated with SecureUML and used to model
secure controllers for multi-tier applications, and how access control in-
frastructures can be generated from such controller models.

A well-established pattern for developing multi-tier applications is the
Model-View-Controller pattern [Krasner and Pope, 1988]. In this pat-
tern, a controller is responsible for managing the control flow of the
application and the data flow between the persistence tier (model) and
the visualization tier (view). The behavior of the controller can be for-
malized by using event-driven state machines and the modeling language
ControllerUML utilizes UML state machines for this purpose.

The abstract syntax of ControllerUML is defined by the metamodel
shown in Figure 10. Each Controller possesses a Statemachine that de-
scribes its behavior in terms of States, StateTransitions, Events, and
StatemachineActions. A State may contain other states, formalized by
the association StateHierarchy, and a transition between two states is
defined by a StateTransition, which is triggered by the event referenced
by the association end trigger. A state machine action specifies an exe-
cutable statement that is performed on entities of the application model.
ViewState and SubControllerState are subclasses of State. A ViewState
is a state where the application interacts with humans by way of view
elements like dialogs or input forms. The view elements generate events
in response to user actions, e.g., clicking a mouse button, which are pro-
cessed by the controller’s state machine. A SubControllerState references
another controller using the association end controller. The referenced
controller takes over the application’s control flow when the referencing
SubControllerState is activated. This supports the modular specification
of controllers.

38

MainController's Statechart

MainController

- selectedMeeting : Meeting

<<Controller>>
CreationController

<<Controller>>

Start

End

CreateMeeting
<<SubControllerState>>

EditMeeting
<<ViewState>>

ListMeetings
<<ViewState>> back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

Figure 11. Controllers for the Scheduling Application

The notation of ControllerUML uses primitives from UML class di-
agrams and statecharts. An example of a ControllerUML model is
shown in Figure 11. A Controller is represented by a UML class with
the stereotype «Controller». The behavior of the controller is defined
by a state machine that is associated with this class. States, transi-
tions, events, and actions are represented by their counterparts in the
UML metamodel. Transitions are labeled with a string, containing a
triggering event and an action to be executed during state transition,
separated by a slash. We use events to name transitions in our explana-
tions. View states and subcontroller states are labeled by the stereotypes
«ViewState» and «SubControllerState», respectively.

Figure 11 shows the design model for an interactive application that
formalizes the scheduler workflow presented in Section 2.2. The con-
troller class MainController is the top-level controller of the application
and CreationController controls the creation of new meetings (details are
omitted here to save space). The state machine of MainController is sim-
ilar to that of Figure 2. Note that the selected meeting is stored in the
attribute selectedMeeting of the controller object. Also, the reference
from the subcontroller state CreateMeeting to the controller Creation-
Controller is not visible in the diagram. This information is stored in a
tagged value of the subcontroller state.

7.1 Extending the Abstract Syntax

There are various ways to introduce access control into a process-
oriented modeling language like ControllerUML. For example, one can
choose whether entering states or making transitions (or both) are pro-

Model Driven Security 39

ControllerActivateRecursive

CompositeAction
(from SecureUML)

AtomicAction
(from SecureUML)

StateActivateRecursive

Controller State

Resource
(from SecureUML)

StatemachineAction

executeactivateRecursive activate activateRecursiveactivate

Figure 12. Resource Model of ControllerUML

tected. Each choice results in the definition of a different dialect for
integrating ControllerUML with SecureUML. Here we shall proceed by
focusing on the structural aspects of statecharts, which are described
by the classes of the metamodel (Figure 10) and the relations between
them. We identify the types Controller, State, and StatemachineAction as
the resource types in our language since their execution or activation can
be sensibly protected by checkpoints in the generated code. Figure 12
shows this identification and also defines the composite actions for the
dialect and the assignment of actions to resource types.

The resource type StatemachineAction offers the atomic action execute
and a state has the actions activate and activateRecursive. The action
activateRecursive on a state is composed of the actions activate on the
state, execute on all state machine actions of the outgoing transitions of
the state, and the actions activateRecursive on all substates of the state.
The corresponding OCL definition is as follows:

context StateActivateRecursive inv:

subordinatedActions =

resource.actions ->select(name = "activate ")

->union(resource.outgoing ->select(effect <>None). effect

.actions ->select(name = "execute "))

->union(resource.substates.actions

->select(name = "activateRecursive "))) .

This expression is built using the vocabulary defined by the Controller-
UML metamodel shown in Figure 10 and the dialect definition given in
Figure 12. The third line accesses the resource that the action belongs
to (always a state) and selects the action with the name “activate”. The
next line queries all outgoing transitions on the state and selects those
transitions with an assigned state machine action (association end ef-

40

stereotype resource type naming convention

ControllerAction Controller empty string
StateAction State state name
ActionAction StatemachineAction state name + “.” + event name

Table 5. Action Reference Types for ControllerUML

fect). Afterwards, for each state machine action, its (SecureUML) ac-
tions with the name“execute” is selected. The last line selects all actions
with the name “activateRecursive” on all substates of the state to which
the action of type StateActivateRecursive belongs.

A controller possesses the actions activate and activateRecursive. The
latter is a composite action that includes the action activate on the
controller and the action activateRecursive for all of its states. Due to
the definition of activateRecursive on states, this (transitively) includes
all substates and all actions of the state machine.

7.2 Extending the Notation

First, we merge the notation of both languages. Afterwards, we define
well-formedness rules on SecureUML primitives that restrict which kinds
of combined expressions are possible, i.e., we restrict how SecureUML
primitives can refer to ControllerUML elements representing protected
resources. For example, the scope of a permission is restricted to the
UML classes with the stereotype «Controller». Finally, we define the
action reference types for controllers, states, and state machine actions,
as shown in Table 5.

7.3 Extending the Semantics

We first define the semantics of ControllerUML in terms of a labeled
transition system over a fixed first-order signature (cf. Section 4.3). In-
tuitively, every Controller defines a sort in the first-order signature and,
in addition, we have a sort of states. Also, every atomic action defined
in the SecureUML dialect as well as every state-transition in the Con-
trollerUML model defines an action of the labeled transition system.

More precisely, given a model in the ControllerUML language, the
corresponding signature ΣST = (SST ,FST ,PST) is defined as follows:

Each Controller c gives rise to two sorts Cc and Sc in SST . Cc is
the sort of the controller c, where the elements of sort Cc represent
the instances of the controller c. Each user interacting with the
system gives rise to such an instance. Sc is the sort of the states of

Model Driven Security 41

the controller c, where each state of the state machine describing
the behavior of the controller c gives rise to an element of sort Sc.
Additionally, SST contains the sorts Users, String, Int, Real, and
Boolean:

SST = {Sc | c is a controller} ∪ {Cc | c is a controller}∪
{Users, String, Int, Real, Boolean} .

Function symbols are defined similarly to ComponentUML. How-
ever, controllers in ControllerUML only have attributes, but not
methods. Therefore, each controller attribute at gives rise to a
function symbol getat in FST (the “get-method”) of type s → v,
where s is the sort of the controller, and v is the sort of the at-
tribute’s type:

FST = {getat | at is a controller attribute}∪
{selfc | c is a controller} ∪ {caller,UserName} .

The initial and current states of a controller’s state machine are de-
noted by the implicit (in the sense that every controller will have
them) controller attributes initialState and currentState of
type Sc. The initial state of a controller denotes the state that is
active when the state machine starts after the controller is cre-
ated, and the current state denotes the currently active state.
Whereas the attributes initialState and currentState are of
type Sc, other controller attributes denote application-specific data
attached to the controller and can have the types String, Int,
Real, and Boolean. Additionally, it is possible to combine Con-
trollerUML with a more data-oriented modeling language (like
ComponentUML). Then one can use controller attributes with
types provided by the data-modeling language. For example, in
Figure 13 in the MainController, we refer to the entity Meeting of
the ComponentUML model.

Since there are no predicate symbols,

PST = ∅ .

The transition system ∆ = (Q,A, δ) is defined as follows:

Q is the universe of all possible states, which is just the set of
all first-order structures over the signature ΣST with finitely many
elements for each controller sort as well as for the sort Users, where
the interpretations of String, Int, Real, Boolean, and Sc are fixed

42

to be the sets Strings, Z, R, {true, false}, and the set of states of
the controller c respectively.

The set of actions A is defined by:

A = ControllerActivateActions ∪ StateActivateActions ∪
SMActionExecuteActions ∪ StateTransitions .

This means that all atomic actions (cf. Figure 12) as well as all
state transitions are actions of the transition system.

The transition relation δ ⊆ Q× A×Q defines the allowed transi-
tions. For example, one requires that for each transition s1

a→ s2

in the model there are corresponding tuples (sold, a, snew) in δ,
where the current state of the controller (i.e., the attribute cur-
rentState) is s1 in sold and is s2 in snew. For the purposes of this
paper, it does not matter which particular semantics is used, e.g.,
one of the many semantics for state-chart like languages ([von der
Beeck, 1994] lists about 20 of them).

Having defined the semantics of ComponentUML in this way, we com-
bine it with the semantics of SecureUML as described in Section 4.3.
That is, the new transition system ∆AC = (QAC , AAC , δAC) is defined
by adding ΣRBAC-structures to the system states in Q, extending δ to
QAC × AAC × QAC , and removing the forbidden transitions from the
result. Hence, δAC will only contain those transitions that are allowed
according to the SecureUML semantics.

7.4 Formalizing the Authorization Policy

We now return to our scheduling application model and extend it with
a formalization of the security policy given in Section 2.1. In doing so,
we use the role model introduced in Section 4.2.

As Figure 13 shows, we use two permissions to formalize the first
requirement that all users are allowed to create and to read all meetings.
The permission UserMain grants the role User the right to activate the
controller MainController and the states ListMeetings and CreateMeeting.
The permission UserCreation grants the role User the privilege to activate
the CreationController including the right to activate all of its states and
to execute all of its actions.

The second requirement states that only the owner of a meeting entry
is allowed to change or delete it. We formalize this by the permission
OwnerMeeting, which grants the role User the right to execute the actions
on the outgoing transitions delete and cancel of the state ListMeetings and

Model Driven Security 43

UserCreation

<<ControllerAction>>CreationController : activate_recursive

OwnerMeeting

<<StateAction>>EditMeeting : activate_recursive

<<ActionAction>>ListMeetings.delete : execute
<<ActionAction>>ListMeetings.cancel : execute

SupervisorCancel

<<ActionAction>>ListMeetings.cancel : execute

caller.name = self.selectedMeeting.owner.name

UserMain

<<ControllerAction>>MainController : activate

<<StateAction>>CreateMeeting : activate
<<StateAction>>ListMeetings : activate

<<Controller>>
MainController

-selectedMeeting : Meeting

<<Controller>>
CreationController

<<Role>>
Supervisor

<<Role>>
User

<<Permission>>

<<Permission>>

<<Permission>>

<<Permission>>

Figure 13. Policy for Scheduling Application

the right to activate the state EditMeeting. This permission is restricted
by the ownership constraint attached to it.

Finally, only supervisors are allowed to cancel any meeting. Therefore,
the permission SupervisorCancel grants this role the unrestricted right to
execute the action cancelMeeting on the transition cancel.

7.5 Transformation to Web Applications

In this section, we describe a transformation function that constructs
secure web applications from ControllerUML models. As a starting
point, we assume the existence of a transformation function that trans-
lates UML classes and state machines into controller classes for web
applications, which can be executed in a Java Servlet environment (see
Section 2.5). We describe here how we extend such a function to generate
security infrastructures from SecureUML models.

The Java Servlet architecture supports RBAC; however, its URL-
based authorization scheme only enforces access control when a request
arrives from outside the web server. This is ill-suited for advanced web
applications that are built from multiple servlets, with one acting as the
central entry point to the application. This entry point servlet acts as
a dispatcher in that it receives all requests and forwards them (depend-
ing on the application state) to the other servlets, which execute the

44

business logic. The declarative authorization mechanism only provides
protection for the dispatcher. To overcome this weakness, we generate
access control infrastructures that exploit the programmatic access con-
trol mechanism that servlets provide, where the role assignments of a
user can be retrieved by any servlet.

Our transformation function is an extension of an existing genera-
tor provided by the MDA-tool ArcStyler [Hubert, 2001], which converts
UML classes and state machines into controller classes. Each controller
is equipped with methods for activating the controller, performing state
transitions, activating the states of the controller, and executing actions
on transitions.

We augment the existing transformation function by generation rules
that operate on the abstract syntax of SecureUML and add Java as-
sertions to the methods for process activation, state activation, and ac-
tion execution of a controller class. First, the set ActionPermissions(a),
which contains all permissions affecting the execution of an action, is
determined as described in Section 6.2. Afterwards, an assertion is gen-
erated of the form:

if (!(
_

p∈ActionPermissions(a)

““ _
r∈PR(p)

UserRole(r)
”
∧ Constraint(p)

”
))

c.forward("/unauthorized.jsp");

(4)

The rule that generates this assertion has a structure similar to rule 3
in Section 6.2, which is used to generate assertions in the stubs of EJB
components. However, instead of throwing an exception when access is
denied, a request to a controller is forwarded to an error page by the term
c.forward("/unauthorized.jsp"). Additionally, the functions used to
obtain security information differ between EJB and Java Servlet. For
example, the following assertion is generated for the execution of the
action cancel on the state ListMeetings.

if (!(request.isUserInRole("Supervisor") /* SupervisorCancel */

|| (request.isUserInRole("User")

|| request.isUserInRole("Supervisor"))

&& getSelectedMeeting (). getOwner (). getName (). equals(

request.getRemoteUser ())))

c.forward("/unauthorized.jsp");

The role check is performed using the method isUserInRole() on the
request object and each constraint is translated into a Java expression
that accesses the attributes and side-effect free methods of the controller.
The symbol caller is translated into a call to getRemoteUser() on the
request object.

Model Driven Security 45

8. Conclusion

8.1 Evaluation

We have evaluated the ideas presented in this paper in an extensive
case study: the model-driven development of the J2EE “Pet Store” ap-
plication. Pet Store is a prototypical e-commerce application designed to
demonstrate the use of the J2EE platform. It features web front-ends for
shopping, administration, and order processing. The application model
consists of 30 components and several front-end controllers. We have ex-
tended this model with an access control policy formalizing the principle
of least privileges, where a user is given only those access rights that are
necessary to perform a job. The modeled policy comprises six roles and
60 permissions, 15 of which are restricted by authorization constraints.
The corresponding infrastructure is generated automatically and con-
sists of roughly 5,000 lines of XML (overall application: 13,000) and
2,000 lines of Java source code (overall application: 20,000).

This large expansion is due to the high abstraction level provided by
the modeling language. For example, we can grant a role read access to
an entity, whereas EJB only supports permissions for whole components
or single methods. Therefore, a modeled permission to read the state
of a component may require the generation of many method permis-
sions, e.g., for the get-methods of all attributes. Clearly, this amount
of information cannot be managed at the source code level. The low
abstraction level provided by the access control mechanisms of today’s
middleware platforms often forces developers to take shortcuts and make
compromises when implementing access control. For example, roles are
assigned full access privileges even where they only require read access.
As our experience shows, Model Driven Security can not only help to
ease the transition from security requirements to secure applications, it
also plays an important role in helping system designers to formalize and
meet exact application requirements.

8.2 Related Work

Various extensions to the core RBAC model have been presented
in the literature, e.g., [Jaeger, 1999; Ahn and Sandhu, 1999; Ahn and
Sandhu, 2000; Ahn and Shin, 2001]. These use constraints on role as-
signments to express different kinds of high-level organizational policies,
like separation of duty. In contrast, SecureUML extends RBAC with
constraints on system states associated with a design model.

Jürjens [Jürjens, 2001; Jürjens, 2002] proposed an approach to devel-
oping secure systems using an extension of UML called UMLsec. Using

46

UMLsec, one can annotate UML models with formally specified security
requirements, like confidentiality or secure information flow. In contrast,
our work focuses on a semantic basis for annotating UML models given
by class or statechart diagrams with access control policies, where the
semantics provides a foundation for generating implementations and for
analyzing these policies.

Probably the most closely related work is the Ponder Specification
Language [Damianou, 2002], which supports the formalization of autho-
rization policies where rules specify which actions each subject can per-
form on given targets. As in our work, Ponder supports the organization
of privileges in an RBAC-like way and allows rules to be restricted by
conditions expressed in a subset of OCL. Moreover, Ponder policies can
be directly interpreted and enforced by a policy management platform.

There are, however, important differences. The possible actions on
targets are defined in Ponder by the target’s visible interface methods.
Hence, the granularity of access control in Ponder is at the level of meth-
ods, whereas in our approach higher-level actions can be defined using
action hierarchies. Moreover, Ponder’s authorization rules refer to a hi-
erarchy of domains in which the subjects and targets of an application
are stored. In contrast, our approach integrates the security modeling
language with the design modeling language, providing a joint vocabu-
lary for building combined models. In our view, the overall security of
systems benefits by building such security design models, which tightly
integrate security policies with system design models during system de-
sign, and using these as a basis for subsequent development.

8.3 Future Work

There are a number of promising directions for future work. To begin
with, the languages we have presented constitute representative exam-
ples of security and design modeling languages. There are many ques-
tions remaining on how to design such languages and how to specialize
them for particular modeling domains. On the security modeling side,
one could enrich SecureUML with primitives for modeling other security
aspects, like digital signatures or auditing. On the design modeling side,
one could explore other design modeling languages that support mod-
eling different views of systems at different levels of abstraction. What
is attractive here is that our use of dialects to join languages provides
a way of decomposing language design so that these problems can be
tackled independently.

We believe that Model Driven Security has an important role to play
not only in the design of systems but also in their analysis and certifica-

Model Driven Security 47

tion. Our semantics provides basis for formally verifying the transforma-
tion of models to code. Moreover, since our models are formal, we can
ask questions about them and get well-defined answers, as the examples
given in Section 5.5 suggest. More complex kinds of analysis should be
possible too, which we will investigate in future work. Ideas here include
calculating a symbolic description of those system states where an action
is allowed, model checking statechart diagrams that combine dynamic
behavior specifications with security policies, and verifying refinement
or consistency relationships between different models.

Notes

1. SecureUML supports users, groups, and their role assignment. This can be used, e.g.,
to analyze the security-related behavior of an application. In general, user administration
will not be performed using UML models, but rather using administration tools provided by
the target platform at deployment time. Note too that the reader should not confuse the
«Role» User with the SecureUML type «User».

2. For an overview of order-sorted signatures and algebras, see [Goguen and Meseguer,
1992].

3. Recall that authorization constraints are OCL formulas. A translation from OCL
constraints to first-order formulas can be found in [Beckert et al., 2002].

4. Note that we are here combining a many-sorted signature and an order-sorted signa-
ture. This is sensible because a many-sorted signature is trivially order-sorted

5. We denote actions by the name of their resource and the name of the action type,
separated by a dot.

6. To keep the account self-contained, we simplify state machines by omitting parallelism,
actions on state entry and exit, and details on visualization elements.

References
Ahn, G.-J. and Sandhu, R. S. (1999). The RSL99 language for role-based separation

of duty constraints. In Proceedings of the 4th ACM Workshop on Role-based Access
Control, pages 43–54. ACM Press.

Ahn, G.-J. and Sandhu, R. S. (2000). Role-based authorization constraints specifica-
tion. ACM Transactions on Information and System Security, 3(4):207–226.

Ahn, G.-J. and Shin, M. E. (2001). Role-based authorization constraints specification
using object constraint language. In 10th IEEE International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2001),
pages 157–162. IEEE Computer Society.

Akehurst, D. and Kent, S. (2002). A relational approach to defining transformations
in a metamodel. In UML 2002 — The Unified Modeling Language. Model Engi-
neering, Languages, Concepts, and Tools. 5th International Conference, Dresden,
Germany, September/October 2002, Proceedings, volume 2460 of LNCS, pages 243–
258. Springer Verlag.

Beckert, B., Keller, U., and Schmitt, P. H. (2002). Translating the Object Constraint
Language into first-order predicate logic. In Autexier, S. and Mantel, H., editors,
Proceedings of the Second Verification Workshop: VERIFY’02, volume 02-07 of
DIKU technical reports, pages 113–123.

48

Damianou, N. (2002). A Policy Framework for Management of Distributed Systems.
PhD thesis, Imperial College, University of London.

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and Chandramouli, R. (2001).
Proposed NIST standard for role-based access control. ACM Transactions on In-
formation and System Security (TISSEC), 4(3):224–274.

Frankel, D. S. (2003). Model Driven ArchitectureTM : Applying MDATM to Enterprise
Computing. John Wiley & Sons.

Goguen, J. A. and Meseguer, J. (1992). Order-sorted algebra I: equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–273.

Hubert, R. (2001). Convergent Architecture: Building Model Driven J2EE Systems
with UML. John Wiley & Sons.

Hunter, J. (2001). Java Servlet Programming, 2nd Edition. O’Reilly & Associates.

Jaeger, T. (1999). On the increasing importance of constraints. In Proceedings of 4th
ACM Workshop on Role-based Access Control, pages 33–42. ACM Press.

Jürjens, J. (2001). Towards development of secure systems using UMLsec. In Huss-
mann, H., editor, Fundamental Approaches to Software Engineering (FASE/E-
TAPS 2001), number 2029 in LNCS, pages 187–200. Springer-Verlag.

Jürjens, J. (2002). UMLsec: Extending UML for secure systems development. In
Jézéquel, J.-M., Hussmann, H., and Cook, S., editors, UML 2002 — The Unified
Modeling Language, volume 2460 of LNCS, pages 412–425. Springer-Verlag.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
and Irwin, J. (1997). Aspect-oriented programming. In Akşit, M. and Matsuoka,
S., editors, Proceedings European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer-Verlag.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view con-
troller user interface paradigm in smalltalk-80. Journal of Object Oriented Pro-
gram., 1(3):26–49.

Monson-Haefel, R. (2001). Enterprise JavaBeans (3rd Edition). O’Reilly & Associates.

Rumbaugh, J., Jacobson, I., and Booch, G. (1998). The Unified Modeling Language
Reference Manual. Addison-Wesley.

von der Beeck, M. (1994). A comparison of statechart variants. In Langmaack, H.,
de Roever, W.-P., and Vytopil, J., editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863 of LNCS, pages 128–148. Springer Verlag.

