
A COMPARISON OF PARALLEL SOLVERS FOR DIAGONALLY DOMINANTAND GENERAL NARROW-BANDED LINEAR SYSTEMSPETER ARBENZy, ANDREW CLEARYz, JACK DONGARRAx, AND MARKUS HEGLAND{Abstract. We investigate and compare stable parallel algorithms for solving diagonally dominant and generalnarrow-banded linear systems of equations. Narrow-banded means that the bandwidth is very small compared withthe matrix order and is typically between 1 and 100. The solvers compared are the banded system solvers of ScaLA-PACK [12] and those investigated by Arbenz and Hegland [4, 8]. For the diagonally dominant case, the algorithmsare analogs of the well-known tridiagonal cyclic reduction algorithm, while the inspiration for the general case isthe lesser-known bidiagonal cyclic reduction, which allows a clean parallel implementation of partial pivoting. Thesedivide-and-conquer type algorithms complement �ne-grained algorithms which perform well only for wide-banded ma-trices, with each family of algorithms having a range of problem sizes for which it is superior. We present theoreticalanalyses as well as numerical experiments conducted on the Intel Paragon.Key words. narrow-banded linear systems, stable factorization, parallel solution, cyclic reduction, ScaLAPACK1. Introduction. In this paper we compare implementations of direct parallel methods forsolving banded systems of linear equations Ax = b: (1.1)The n-by-n matrix A is assumed to have lower half-bandwidth kl and upper half-bandwidth ku,meaning that kl and ku are the smallest integers that implyaij 6= 0 =) �kl � j � i � ku:We assume that the matrix A has a narrow band, such that kl+ ku � n. Linear systems with wideband can be solved e�ciently by methods similar to full system solvers. In particular, parallel algo-rithms using two-dimensional mappings (such as the torus-wrap mapping) and Gaussian eliminationwith partial pivoting have achieved reasonable success [30, 33, 17, 11, 19]. The parallelism of thesealgorithms is the same as that of dense matrix algorithms applied to matrices of size minfkl; kug,independent of n, from which it is obvious that small bandwidths severely limit the usefulness ofthese algorithms, even for large n.Parallel algorithms for the solution of banded linear systems with small bandwidth have beenconsidered by many authors, both because they serve as a canonical form of recursive equations, aswell as having direct applications. The latter include the solution of eigenvalue problems with inverseiteration [18], spline interpolation and smoothing [10], and the solution of boundary value problemsfor ordinary di�erential equations using �nite di�erence or �nite element methods [32]. For theseone-dimensional applications, bandwidths typically vary between 2 and 30. The discretisation ofpartial di�erential equations leads to applications with slightly larger bandwidths, for example, thecomputation of uid ow in a long narrow pipe. In this case, the number of grid points orthogonalto the ow direction is much smaller than the number of grid points along the ow and this resultsin a matrix with bandwidth relatively small compared to the total size of the problem. There is atradeo� for these type of problems between band solvers and general sparse techniques, in that theband solver assumes that all of the entries within the band are nonzero, which they are not, andthus performs unnecessary computation, but its data structures are much simpler and there is noindirect addressing as in general sparse methods.In the second half of the 1980's, numerous papers dealt with parallel solvers for the class of non-symmetric narrow-banded matrices that can be factored stably without pivoting, such as diagonallyyInstitute of Scienti�c Computing, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland(arbenz@inf.ethz.ch)zCenter for Applied Scienti�c Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liver-more CA 94551, U.S.A. (acleary@llnl.gov)xDepartment of Computer Science, University of Tennessee, Knoxville TN 37996-1301, U.S.A.(dongarra@cs.utk.edu){Computer Sciences Laboratory, RSISE, Australian National University, Canberra ACT 0200, Australia(Markus.Hegland@anu.edu.au)

28 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDdominant matrices or M-matrices. Many have grown out of their tridiagonal counterparts. Bandedsystem solvers similar to Wang's tridiagonal solver were presented in [16, 27, 28, 15, 13] for sharedmemory multiprocessors with a small number of processors. The algorithm that we will review insection 2 is related to cyclic reduction (CR). This algorithm has been discussed in detail in [4, 12]where the performance of implementations of this algorithm on distributed memory multicomputerslike the Intel Paragon [4] or the IBM SP/2 [12] is analyzed as well. Johnsson [25] considered the samealgorithm and its implementation on the Thinking Machine CM-2 which required a di�erent modelfor the complexity of the interprocessor communication. A similar algorithm has been presented byHajj and Skelboe [20] for the Intel iPSC hypercube. Cyclic reduction can be interpreted as Gaussianelimination applied to a symmetrically permuted system of equations (PAP T)Px = Pb. This inter-pretation has important consequences, such as it implies that the algorithm is backward stable [7].It can also be used to show that the permutation necessarily causes Gaussian elimination to generate�ll-in which in turn increases the computational complexity as well as the memory requirements ofthe algorithm.In section 3 we consider algorithms for solving (1) for arbitrary (narrow-) banded matrices A thatmay require pivoting for stability reasons. This algorithm was proposed and thoroughly discussedin [8]. It can be interpreted as a generalization of the well-known (block) tridiagonal cyclic reductionto (block) bidiagonal matrices, and again, it is also equivalent to Gaussian elimination applied toa permuted (nonsymmetrically for the general case) system of equations (PAQT)Qx = Pb. Blockbidiagonal cyclic reduction for the solution of banded linear systems was introduced by Hegland [21].Conroy [13] described an algorithm that performs the �rst step of our pivoting algorithm but thencontinues by solving the reduced system sequentially. A further stable algorithm based on fullpivoting was presented by Wright [34]. This algorithm is however di�cult to implement and proneto load-imbalance. Parallel banded system solvers based on the QR factorization are discussedin [31, 3, 8]. These algorithms require about twice the amount of work of those considered here.In section 4 we compare the ScaLAPACK implementations [12] of the two algorithms abovewith the implementations by Arbenz [4] and Arbenz and Hegland [8], respectively, by means ofnumerical experiments conducted on the Intel Paragon. Corresponding results for the IBM SP/2 arepresented in [5]. ScaLAPACK is a software package with a diverse user community. Each subroutineshould have an easily intelligible calling sequence (interface) and work with easily manageable datadistributions. These constraints may reduce the performance of the code. The other two codes areexperimental. They have been optimized for low communication overhead. The number of messagessent among processors and the marshaling process has been minimized for the task of solving asystem of equations. The code does, for instance, not split the LU factorization from the forwardelimination which prohibits the solution of a sequence of systems of equations with equal systemmatrix (without factoring the system matrix over and over again). Our comparisons shall give ananswer to the question how much performance the ScaLAPACK algorithms may have lost throughthe constraint to be user friendly.We further continue a discussion started in [7] on the overhead introduced by partial pivoting.As the execution time of the pivoting algorithm was only marginally higher than that of the non-pivoting algorithm, the question arose if it is necessary to have a pivoting as well as a non-pivotingalgorithm in ScaLAPACK. In LAPACK [2], for instance, all dense and banded systems that are notsymmetric positive de�nite are solved by the same pivoting algorithm. However, in contrast to theserial algorithm, in the parallel algorithm the doubling of the memory requirement is unavoidable,see x3. We settle this issue in the concluding section 5.2. Parallel Gaussian elimination for the diagonally dominant case. In this section weassume that the matrix A = [aij]i;j=1;:::;n in (1) is diagonally dominant, i.e., thatjaiij > nXj=1j 6=i jaij j; i = 1; : : : ; n:Then the system of equations can be solved by Gaussian elimination without pivoting in the followingthree steps:

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 291. Factorization into A = LU .2. Solution of Lz = y (forward elimination)3. Solution of Ux = z (backward substitution)The lower and upper triangular Gauss factors L and U are banded with bandwidths kl and ku,respectively, where kl and ku are the half-bandwidths of A. The number of oating point operations'n for solving the banded system (1) with r right-hand sides by Gaussian elimination is (see alsoe.g. [18]) 'n = (2ku+1)kln+ (2kl+2ku�1)rn+O((k+r)k2); k := maxfkl; kug: (2.1)For solving (1) in parallel on a p processor multicomputer we partition the matrix A, the solutionvector x and the right-hand hand side b according to0BBBBBBB@A1 BU1BL1 C1 DU2DL2 A2 BU2.BLp�1 Cp�1 DUpDLp Ap
1CCCCCCCA0BBBBBBB@ x1�1x2...�p�1xp

1CCCCCCCA = 0BBBBBBB@ b1�1b2...�p�1bp
1CCCCCCCA ; (2.2)

where Ai 2 Rni�ni ; Ci 2 Rk�k ; xi; bi 2 Rni ; �i; �i 2 Rk; and Ppi=1 ni + (p� 1)k = n. This blocktridiagonal partition is feasible only if ni > k. This condition restricts the degree of parallelism,i.e. the maximal number of processors p that can be exploited for parallel execution, p < (n+k)=(2k). The structure of A and its submatrices is depicted in Fig. 1(a) for the case p = 4. In

(a) (b)Fig. 2.1. Non-zero structure (shaded area) of (a) the original and (b) the block odd-even permuted band matrixwith kl > ku.ScaLAPACK [12, 9], the local portions of A on each processor are stored in the LAPACK scheme asdepicted in Fig. 2. This input scheme requires a preliminary step of moving the triangular block DLifrom processor i�1 to processor i. This transfer of the block can be overlapped with computationand has a negligible e�ect on the overall performance of the algorithm [12]. The input format usedby Arbenz does not require this initial data movement.

30 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLAND
Fig. 2.2. Storage scheme of the band matrix. The thick lines frame the local portions of A.We now execute the �rst step of block-cyclic reduction [24]. This is best regarded as blockGaussian elimination of the block odd-even permuted A,266666666666666664

A1 BU1A2 DL2 BU2.Ap�1 . . . BUp�1Ap DLpBL1 DU2 C1BL2 . . . C2.BLp�1 DUp Cp�1
377777777777777775
2666666666666664
x1x2...xp�1xp�1�2...�p�1
3777777777777775 =

2666666666666664
b1b2...bp�1bp�1�2...�p�1

3777777777777775 : (2.3)
The structure of this matrix is depicted in Fig. 1(b). We write (4) in the form

Fig. 2.3. Fill-in produced by block Gaussian elimination. The bright-shaded areas indicate original nonzeros,the dark-shaded areas indicate the (potential) �ll-in.� Â BUBL C � �x�� = �b�� ; (2.4)where the respective submatrices and subvectors are indicated by the lines in equation (4). If LR = Âis the ordinary LU factorization of Â then� Â BUBL C � = � L 0BLR�1 I� �R L�1BU0 S � ; S = C �BLÂ�1BU : (2.5)The matrices BLi R�1i , L�1i BUi , DUi R�1i , and L�1i DLi overwrite BLi , BUi , DUi , and DUi , respectively.As DUi , and DLi , su�er from �ll-in, cf. Fig. 3, additional memory space for (kl + ku)n oating pointnumbers has to be provided. The overall memory requirement of the parallel algorithm is about

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 31twice as high as that of the sequential algorithm. The blocks BLi R�1i and L�1i BUi keep the structureof BLi and BUi and can be stored at their original places, cf. Fig. 2.The Schur complement S of Â in A is a diagonally dominant (p�1)-by-(p�1) block tridiagonalmatrix whereby the blocks are k-by-k,S = 0BBBBBB@T1 U2V2 T2 U3. Up�1Vp�1 Tp�1
1CCCCCCA ; (2.6)where Ti = Ci �BLi A�1i BUi �DUi+1A�1i+1DLi+1= Ci � (BLi R�1i)(L�1i BUi)� (DUi+1R�1i+1)(L�1i+1DLi+1);Ui = �(DUi R�1i)(L�1i BUi); Vi = �(BLi R�1i)(L�1i DLi):As indicated in Fig. 3 these blocks are not full if kl < k or ku < k. This is taken into account in theScaLAPACK implementation but not in the implementation by Arbenz where the block-tridiagonalCR solver treats the k-by-k blocks as full blocks. Using the factorization (6), (5) gets�R L�1BUS ��x�� = � LBLR�1 I��1 �b�� = � L�1�BLR�1L�1 I� �b�� =: �c� ; (2.7)where the sections ci and �i of the vectors c and � are given byci = L�1i bi; i = �i �BLi R�1i ci �DUi+1R�1i+1ci+1:Up to this point of the algorithm, no interprocessor communication is necessary, as each processorindependently factors its diagonal block of Â, Ai = LiRi, and computes the blocks BLi R�1i , L�1i BUi ,DUi R�1i , L�1i DLi , and L�1i bi. Each processor forms its portions of the reduced system S� = ,��DUi R�1i L�1i DLi �DUi R�1i L�1i BUi�BLi R�1i L�1i DLi Ci �BLi R�1i L�1i BUi � 2 R2k�2k and � �DUi R�1i ci�i �BLi R�1i ci� 2 R2k:Standard theory in Gaussian elimination shows that the reduced system is diagonally dominant. Oneoption is to solve the reduced system on a single processor. This may be reasonable on shared memorymultiprocessors with small processor numbers [29, p.124], but complexity analysis reveals that thisquickly dominates total computation time on multicomputers with many processors. An attractiveparallel alternative for solving the system S� = is block cyclic reduction [6]. Implementationally,the reduction step described above is repeated until the reduced system becomes a dense k-by-ksystem, which is trivially solved on a single processor. Since the order of the remaining system ishalved in each reduction step, blog2(p�1)c steps are needed. Note that the degree of parallelism isalso halved in each step.In order to understand how we proceed with CR we take another look at how the (2p�1)-by-(2p�1) block tridiagonal matrix A in (3) is distributed over the p processors. Processor i, i < p,holds the 2-by-2 diagonal block �Ai BUiBLi Ci � together with the block DUi above it and the block DLito the left of it. To obtain a similar situation with the reduced system we want the 2-by-2 diagonalblocks �Ti�1 UiVi Ti� of S in (7) together with the block Ui�1 above and Vi�1 to the left to reside onprocessor i, i = 2; 4; : : : which then allows us to proceed with these reduced number of processorsas earlier. To that end the odd-numbered processor i has to send some of its portion of S to theneighboring processors i�1 and i+1. The even-numbered processors will then continue to computethe even-numbered portions of �. Having done so the odd-numbered processors receive �i�1 and

32 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLAND�i+1 from their neighboring processors which allows them to compute their portion �i of � providedthey know the i-th block row of S. This is easily attained if in the beginning of this CR step notonly the odd-numbered but all processors send the needed information to their neighbors.Finally, if the vectors �i; 1 � i < p; are known, each processor can compute its section of x,x1 = R�11 (c1 � L�1i BU1 �1);xi = R�1i (ci � L�1i DL1 �i�1 � L�1i BUi �i); 1 < i < p;xp = R�1p (cp � L�1p DLp �p�1): (2.8)Notice that the even-numbered processors have to receive �i�1 from their direct neighbors. In theback substitution phase (9) each processor can again proceed independently without interprocessorcommunication.The parallel complexity of the above divide-and-conquer algorithm as implemented by Arbenz [6,4] is 'AHn;p � 2kl(4ku+1)np + (4kl+4ku + 1)rnp+�323 k3 + 9k2r + 4ts + 4k(k + r)tw� blog2(p� 1)c: (2.9)In the ScaLAPACK implementation, the factorization phase is separated from the forward substi-tution phase. This allows a user to solve several systems of equations without the need to factor thesystem matrix over and over again. In the implementation by Arbenz, several systems can be solvedsimultaneously but only in connection with the matrix factorization. The close coupling of factor-ization and forward substitution reduces communication at the expense of exibility of the code.In the ScaLAPACK solver the number of messages sent is higher while overall message volume andoperation count remain the same,'ScaLAPACKn;p � 2kl(4ku+1)np + (4kl+4ku + 1)rnp+�323 k3 + 9k2r + 6ts + 4k(k + r)tw� blog2(p� 1)c: (2.10)The complexity for solving a system with an already factored matrix consists of the terms in (11)containing r, the number of right-hand sides. In (10) and (11) we have assumed that the time forthe transmission of a message of length n oating point numbers from one to another processor isindependent of the processor distance and can be represented in the form [26]ts + ntw:ts denotes the startup time relative to the time of a oating point operation, i.e. the number of opsthat can be executed during the startup time. tw denotes the number of oating point operationsthat can be executed during the transmission of one word, here a (8-Byte) oating point number.Notice that ts is much larger than tw. On the Intel Paragon, for instance, the transmission of mbytes takes about 0:11 + 5:9 �10�5m msec. The bandwidth between applications is thus about 68MB/s. Comparing with the 10 Mop/s performance for the LINPACK benchmark we get ts�1100and tw�4:7 if oating point numbers are stored in 8 bytes of memory. On the SP/2 or the SGI/CrayT3D the characteristic numbers ts and tw are even bigger.Dividing (2) by (10) and by (11), respectively, the speedups becomeSAHn;p = 'n'AHn;p ; SScaLAPACKn;p = 'n'ScaLAPACKn;p ; (2.11)The processor number for which highest speedup is observed is O(n=k) [6]. Speedup and e�ciencyare relatively small, however, due to the high redundancy of the parallel algorithm. Redundancy isthe ratio of the serial complexity of the parallel algorithm and the serial algorithm, i.e. it indicates

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 33

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

n=20000, k
l
=k

u
=10, r=1

n=100000, k
l
=k

u
=10, r=1

n=100000, k
l
=k

u
=10, r=10

Fig. 2.4. Speedups vs. processor numbers for various problem-sizes as predicted by (12). Drawn lines indicatethe Arbenz/Hegland implementation, dashed lines the ScaLAPACK implementation.the parallelization overhead with respect to oating point operations. If r is small, say r=1, then theredundancy is about 4 if kl = ku and even higher otherwise [7]. If r is bigger, then the redundancytends to 2. In Fig 4 speedup is plotted versus processor number for three di�erent problem sizesas predicted by (12). The Paragon values for ts = 1000 and tw = 4:7 have been chosen. Becausethere are fewer messages sent in the Arbenz/Hegland implementation than in the ScaLAPACKimplementation, the former can be expected to yield slightly higher speedups. However, the gainin exibility with the ScaLAPACK routine certainly justi�es the small performance loss. Noticehowever that the formulae given for 'AHn;p and for 'ScaLAPACKn;p must be considered very approximative.The assumption that all oating point operations take the same amount of time is completelyunrealistic on modern RISC processors. Also, the numbers tw and ts are crude estimates of thereality. However, the saw-teeth caused by the term blog2(p � 1)c are clearly visible in timings [4].The numerical experiments of section 4 will give a more realistic comparison of the implementationsand will tell more about the value of the above complexity measures.3. Parallel Gaussian elimination with partial pivoting. In this section we treat the casewhere A is not diagonally dominant. Then the LU factorization may not exist or its computationmay be unstable. Thus, it is advisable to use partial pivoting with elimination in this case. Thecorresponding factorization is PA = LU where P is the row permutation matrix. Pivoting requiresadditionally about kln comparisons and n row interchanges. More importantly, the bandwidth of Ucan get as large as kl + ku. (L looses its bandedness but has still only kl + 1 nonzeros per columnand can therefore be stored at its original place.) The wider the band of U the higher the numberof arithmetic operations and our previous upper bound for the oating point operations increases inthe worst case to'ppn = (2kl+ 2ku+1)kln+ (4kl+2ku+1)rn+O((k+r)k2); k := kl + ku; (3.1)where again r is the number of right-hand sides. This bound is obtained by counting the ops forsolving a banded system with lower and upper half-bandwidth kl and kl + ku, respectively, without

34 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDpivoting. The overhead introduced by pivoting, which may be as big as (kl + ku + 1)=(ku + 1),is inevitable if stability of the LU factorization cannot be guaranteed. Therefore the methodsfor solving banded systems in packages like LAPACK incorporate partial pivoting and accept theoverhead. (This is actually a de�ciency of LAPACK which has been eliminated in ScaLAPACK: thememory space wasted is simply too big. Further, back-substitution can be implemented faster if itis known that there are no row interchanges.) Note that this overhead is particular for banded andsparse linear systems; it does not occur with dense matrices!

(a) (b)Fig. 3.1. Non-zero structure (shaded area) of (a) the original and (b) the block column permuted band matrixwith kl > ku.The partition (3) is not suited for the parallel solution of (1) if partial pivoting is to be applied.In order that pivoting can take place independently in block columns they must not have elementsin the same row. Therefore, the separators have to be k := kl + ku columns wide, cf. Fig. 5(a). Asdiscussed in detail in [8] we consider the matrix A as a cyclic band matrix by moving the last klrows to the top. Then we partition this matrix into a cyclic lower block bidiagonal matrix,0BBBBBBB@A1 D1B1 C1D2 A2.Dp ApBp Cp
1CCCCCCCA0BBBBBBB@x1�1x2...xp�p

1CCCCCCCA = 0BBBBBBB@b1�1b2...bp�p
1CCCCCCCA ; (3.2)

where Ai 2 Rmi�ni ; Ci 2 Rk�k; xi; bi 2 Rni ; �i; �i 2 Rk; k := kl + ku; and Ppi=1mi = n,mi = ni + k. If ni > 0 for all i, then the degree of parallelism is p [8].For solving Ax = b in parallel we apply a generalization of cyclic reduction that permits pivot-ing [21]. We again discuss the �rst step more closely. The later steps are similar except the matrixblocks are square. We �rst (formally) apply a block odd-even permutation to the columns of thematrix in (14). For simplicity of exposition we consider the case p = 4. Then, the permuted system

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 35becomes 266666666664
A1 D1B1 C1A2 D2B2 C2A3 D3B3 C3A4 D4B4 C4

377777777775
0BBBBBBBB@x1...x4�1...�4

1CCCCCCCCA = 0BBBBBBB@b1�1b2...b4�4
1CCCCCCCA : (3.3)

The structure of the matrix in (15) is depicted in Fig. 5(b). Notice that the permutation that movesthe last rows to the top was done for pedagogical reasons: it makes the diagonal blocks Ai andCi square and the �rst elimination step formally equal to the successive ones. A di�erent point ofview (which leads to the same factorisation) could allow the �rst and the last diagonal blocks to benon-square.The local matrices are stored in the LAPACK storage scheme for non-diagonally dominantmatrices [2, 9]: in addition to the kl + ku + 1 rows that store the original portions of the matrix,an additional kl + ku rows have to be provided for storing the �ll-in. In the ScaLAPACK algorithmprocessor i stores the blocks Ai, Bi, Ci, Di+1. In the Arbenz/Hegland implementation processori stores Ai, Bi, Ci, and Di. It is assumed that DTi is stored in an extra k-by-ni array. TheScaLAPACK algorithm constructs this situation by an initial communication step that consumesa negligible fraction of the overall computing time, as in the discussion in the previous section. Inboth algorithms, the blocks Bp, Cp, and D1 do not really appear but are incorporated into Ap.Let Pi �AiBi� = Li � RiOk�ni� ; 1 � i � p; (3.4)be the LU factorizations of the blocks on the left of (15), and letL�1i Pi �Omi�kCi � = �XiTi � ; L�1i Pi � DiOk�k� = �YiVi� ; L�1i Pi �bi�i� = �cii� : (3.5)Then, we can rewrite (15) in the form

(a) (b)Fig. 3.2. Fill-in produced by GE with partial pivoting. Here p = 4.

36 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLAND2664L�11 P1 L�12 P2 L�13 P3 L�14 P43775
266666666664
A1 D1B1 C1A2 D2B2 C2A3 D3B3 C3A4 D4B4 C4

377777777775
= 266666666664

R1 X1 Y1O T1 V1R2 Y2 X2O V2 T2R3 Y3 X3O V3 T3R4 Y4 X4O V4 T4
377777777775

= P 266666666664
R1 X1 Y1R2 Y2 X2R3 Y3 X3R4 Y4 X4T1 V1V2 T2V3 T3V4 T4

377777777775
(3.6)

P denotes odd-even permutation of the rows. The structure of the second and third matrix in (18)is depicted in Fig. 6(a) and 6(b), respectively. The last equation shows that again we end up witha reduced system S� = 0BBB@T1 V1V2 T2.Vp Tp1CCCA � = (3.7)with the same cyclic block bidiagonal structure as the original matrix A in (14).The reduced system can be treated as before by dp=2e processors. This procedure is discussedin detail by Arbenz and Hegland [8].Finally, if the vectors �i; 1 � i < p; are known, each processor can compute its section of x,x1 = R�11 (c1 �X1�1 � Y1�p); (3.8)xi = R�1i (ci � Yi�i�1 �Xi�i); 1 < i � p: (3.9)The back substitution phase does not need interprocessor communication.The parallel complexity of this algorithm is'pp;AHn;p � (4k2 + (6k � 1)r)np +�233 k3 + 12k2r + 2ts + 3k2tw� blog2(p)c: (3.10)in the Arbenz/Hegland implementation [8] and'pp;ScaLAPACKn;p = 'pp;AHn;p + tsblog2(p)c: (3.11)in the ScaLAPACK implementation. We treat the blocks in S as full k-by-k blocks, as their non-zeropattern is not predictable due to the pivoting process. The speedups for these algorithms areSpp;AHn;p = 'ppn'pp;AHn;p Spp;ScaLAPACKn;p = 'ppn'pp;ScaLAPACKn;p : (3.12)

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 37

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

n=20000, k=20,r=1

n=100000, k=20,r=1

number of processors

sp
ee

du
p

n=100000, k=20,r=10

Fig. 3.3. Speedups vs. processor numbers for various problem-sizes as predicted by (22) in linear scale (left) anddoubly logarithmic scale (right).In general, the redundancy of the pivoting algorithm is only about 2 for small numbers r of right-hand sides and around 1.5 if r is large. Note, though, that the redundancy varies according to thespeci�c sequence of interchanges during partial pivoting. Here, we have always assumed that �ll-inis the worst possible.We make particular note of the following: since the matrix is partitioned di�erently than inthe diagonally dominant case, this algorithm results in a di�erent factorization than the diagonallydominant algorithm even if the original matrix A is diagonally dominant. In particular, the diagonalblocks Ai, 1 < i < p, are treated like banded lower triangular matrices. In fact, the case of adiagonally dominant matrix is a somewhat poor case for this algorithm. This is easily seen: byreordering each diagonal block to be lower triangular, we have moved the largest elements fromthe diagonal and put them in the middle of each column, thus forcing interchanges for the partialpivoting algorithm when they were not necessary for the input matrix.In Fig. 7 we have again plotted predicted speedups for two problem sizes and di�erent numbersof right-hand sides. We do not distinguish between the two implementations as the ts term is smallcompared with the others even for k = kl+ku = 20. The plot on the right shows the same in doublylogarithmic scale. This plot shows that the speedup is close to ideal for (very) small processornumbers and then detoriates. The gap between the actual and the ideal speedup for small processornumbers illustrates the impact of the redundancy.Remark 1. If the original problem were actually cyclic-banded the redundancy would be 1, i.e.the parallel algorithm has (essentially) the same complexity as the serial algorithm [8]. This is so,as in this case, also the serial code generates �ll-in.Remark 2. In (16) instead of the LU factorization a QR factorization could be computed [8, 22].This doubles the computational e�ort but enhances stability. Similar ideas are pursued by Amestoyet al.[1] for the parallel computation of the QR factorization of large sparse matrices.4. Numerical experiments on the Intel Paragon. We compared the algorithms describedin the previous two sections by means of three test-problems. The matrix A has all ones within theband and the number � � 1 on the diagonal. The problem sizes were (n; kl; ku) = (100000; 10; 10),(n; kl; ku) = (20000; 10; 10), and (n; kl; ku) = (100000; 50; 50). The condition numbers grow verylarge as � tends to one. Estimates of them obtained by Higham's algorithm [23, p.295] are listedin Tab. 1 for various values of �. The right-hand sides were chosen such that the solution was(1; : : : ; n)T which enabled us to compute the error in the computed solution. We compiled oneprogram for each problem size, adjusting the arrays to just the needed size. In this way we couldsolve the small problems on one processor, too. When compiling we chose the highest optimizationlevel and turned o� IEEE arithmetic. IEEE arithmetic turned on lead to erratic non-reproducibleexecution times [6].We begin with the discussion of the diagonally dominant case (�=100). In Tab. 2 the execution

38 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDn (kl; ku) � = 100 � = 10 � = 5 � = 2 � = 1:0120000 (10,10) 1.3 9.0 4.2e+4 3.3e+6 2.9e+6100000 (10,10) 1.3 9.0 4.3e+5 3.6e+6 3.8e+6100000 (50,50) 2.9 1.8e+5 6.0e+6 1.8e+7 4.7e+8Table 4.1Estimated condition numbers for systems of equations solved in the above tables.Diagonally dominant case on the Intel Paragon(n; kl; ku) (20000; 10; 10) (100000; 10; 10) (100000; 50; 50)p t S " t S " t S "ScaLAPACK implementation1 1110 1.0 4e-10 5543 1.0 5e-9 30750 1.0 |2 1210 .92 4e-10 5572 1.0 4e-9 | | |4 662 1.7 3e-10 2849 1.9 4e-9 25335 1.2 1e-88 398 2.8 2e-10 1489 3.7 3e-9 14347 2.1 8e-916 233 4.8 2e-10 814 6.8 2e-9 7341 4.2 6e-924 172 6.5 2e-10 593 9.3 2e-9 5032 6.1 5e-932 142 7.8 1e-10 482 12 1e-9 3890 7.9 4e-948 118 9.4 1e-10 379 15 1e-9 2763 11 4e-964 109 10 1e-10 312 18 1e-9 2211 14 3e-996 109 10 9e-11 243 23 8e-10 1692 18 3e-9128 65 17 8e-11 168 33 7e-10 1390 22 2e-9Arbenz / Hegland implementation1 1102 1.0 4e-10 5499 1.0 5e-9 32734 1.0 |2 1369 .81 4e-10 6840 .80 4e-9 | | |4 687 1.6 3e-10 3423 1.6 4e-9 22908 1.4 9e-98 347 3.2 2e-10 1716 3.2 3e-9 11475 2.9 7e-916 179 6.2 2e-10 864 6.4 2e-9 5775 5.7 5e-924 126 8.7 2e-10 580 9.5 2e-9 3917 8.4 2e-932 98 11 1e-10 438 12.6 1e-9 2975 11 4e-948 72 15 1e-10 296 18.6 1e-9 2065 16 3e-964 59 19 1e-10 228 24.1 1e-9 1598 21 3e-996 48 23 8e-11 159 34.6 8e-10 1161 28 2e-9128 41 27 7e-11 124 44.3 7e-10 930 35 2e-9Table 4.2Selected execution times t in milliseconds, speedups S = S(p), and error of the two implementations for thethree problem sizes. " denotes the 2-norm error of the computed solution.times are listed for all problem sizes. For the ScaLAPACK and the Arbenz/Hegland (AH) imple-mentation the one-processors times are quite close. The di�erence in this part of the code is thatthe AH implementation calls the level-2 BLAS based LAPACK routine dgbtf2 for the triangularfactorization, whereas in the ScaLAPACK implementation the level-3 BLAS based routine dgbtrfis called. The latter is advantageous with the wider bandwidth k = 50, while dgbtf2 performs(slightly) better with the narrow band.The two implementations show a noteworthy di�erence in their two-processor performance. TheScaLAPACK implementation performs about as fast as on one processor which is to be expected. TheAH implementation however looses about 20%. We attribute this loss in performance to the zeroingof auxiliary arrays that are will be used to store the �ll-in (`spikes'). This is done unnecessarily inthe preparation phase of the algorithm.In ScaLAPACK, for forward elimination and backward substitution the level-2 BLAS dtbtrs iscalled. In the AH implementation this routine is expanded in order to avoid unnecessary checks ifrows have been exchanged in the factorization phase. This avoids the evaluation of if-statements. Inthe AH implementation the above mentioned auxiliary arrays are stored as `lying' blocks to furtherimprove the scalability and to better exploit the RISC architecture of the underlying hardware [14].

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 39The speedups of the AH implementation relative to the 2-processor performance is very close to idealup to at least 64 processors. The ScaLAPACK implementation does not scale so well. For largeprocessor numbers the di�erence in execution times is about 2/3 which correlates with the ratio ofmessages sent in the two implementations.As indicated by (11) the speedups for the medium size problem are best. The 1=p-term thatcontaines the factorization of the Ai and the computations of the `spikes' DUi R�1i and L�1i DLiconsumes �ve times as much time as with the small problem size and scales very well. This portionis still increased with the large problem size. However, there the solution of the reduced system getsexpensive also. Non-diagonally dominant case on the Intel Paragon. Small problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 1669 1.0 6e-10 1700 1.0 6e-8 2352 1.0 2e-6 2354 1.0 2e-72 1717 1.0 6e-10 1715 1.0 7e-8 1946 1.2 4e-6 1879 1.3 2e-64 867 1.9 4e-10 868 2.0 3e-8 982 2.4 2e-6 948 2.5 7e-78 455 3.7 3e-10 455 3.7 4e-8 514 4.6 1e-6 497 4.7 1e-716 252 6.6 3e-10 254 6.7 3e-8 283 8.3 1e-6 276 8.5 5e-724 184 9.1 3e-10 185 9.2 2e-8 207 11 1e-6 199 12 6e-732 159 11 3e-10 160 11 2e-8 177 13 5e-7 172 14 2e-748 113 15 3e-10 114 15 2e-8 128 18 1e-6 124 19 3e-764 127 13 2e-10 127 13 2e-8 138 17 4e-7 133 18 4e-896 124 14 2e-10 125 14 1e-8 134 18 2e-6 132 18 1e-7128 84 20 2e-10 87 20 1e-8 94 25 2e-7 92 26 1e-7Arbenz / Hegland implementation1 1329 1.0 7e-10 1362 1.0 9e-8 2030 1.0 2e-6 2033 1.0 2e-62 1306 1.0 6e-10 1305 1.0 3e-8 1526 1.3 4e-6 1482 1.4 3e-74 663 2.0 5e-10 662 2.1 5e-8 773 2.6 2e-6 750 2.7 6e-78 342 3.9 4e-10 342 4.0 3e-8 396 5.1 1e-6 386 5.3 3e-716 184 7.2 3e-10 184 7.4 1e-8 211 9.6 1e-6 206 9.9 2e-724 135 9.8 3e-10 135 10.1 1e-8 153 13 5e-7 149 14 1e-732 108 12 3e-10 108 13 2e-8 121 17 2e-7 118 17 1e-748 86 16 3e-10 86 16 1e-8 94 22 1e-6 93 22 1e-764 72 19 3e-10 73 19 1e-8 79 26 2e-7 78 26 1e-796 64 21 3e-10 64 21 1e-8 68 30 1e-7 68 30 1e-7128 57 23 2e-10 57 24 1e-8 61 33 1e-6 60 34 2e-7Table 4.3Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two implementations for thesmall problem size (n; kl; ku) = (20000; 10; 10) with varying �.We now compare the performance of the ScaLAPACK and the Arbenz-Hegland implementationof the pivoting algorithm of section 3. Tables 3, 4, and 5 contain the respective numbers, executiontime, speedup and 2-norm of the error, for the three problem sizes.Relative to the AH implementation the execution times for ScaLAPACK comprise overheadproportional to the problem size, mainly zeroing elements of work arrays. This is done in the AHimplementation during the building of the matrices. Therefore, the comparison in the non-diagonallydominant case should not be based on execution times but on speedups. Nevertheless, it should benoted that the computing time increases with the di�culty, i.e. with the condition, of the problem.They are of course hard or even impossible to predict as the pivoting procedure is unknown. Atleast the two problems with bandwidth k = kl + ku = 20 can be discussed along similar lines. TheAH implementation scales better than ScaLAPACK. Its execution times for large processor numbersis about 2/3 of that of the ScaLAPACK implementation again reecting the ratio of messages sent.Notice that here the block size of the reduced system but also of the �ll-in blocks (`spikes') are twiceas big as in the diagonally dominant case. Therefore, the performance in Mop/s is higher here.

40 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDNon-diagonally dominant case on the Intel Paragon. Intermediate problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 8331 1.0 7e-9 8489 1.0 9e-7 11759 1.0 2e-5 11756 1.0 1e-52 8528 1.0 7e-9 8516 1.0 2e-6 9689 1.2 2e-5 9327 1.3 6e-64 4277 1.9 6e-9 4274 2.0 2e-6 4856 2.4 1e-5 4684 2.5 5e-68 2157 3.9 5e-9 2156 3.9 1e-6 2448 4.8 8e-6 2365 5.0 5e-616 1103 7.6 3e-9 1103 7.7 1e-6 1251 9.4 8e-6 1210 9.7 1e-624 770 11 3e-9 771 11 9e-7 870 14 5e-6 842 14 1e-632 585 14 2e-9 588 14 1e-6 663 18 4e-6 642 18 1e-648 429 19 2e-9 431 20 8e-7 481 24 6e-6 450 26 1e-664 338 25 2e-9 342 25 7e-7 382 31 5e-6 370 32 7e-796 264 32 2e-9 268 32 3e-7 296 40 2e-6 290 42 5e-7128 188 44 1e-9 193 44 4e-7 215 55 2e-6 206 57 8e-7Arbenz / Hegland implementation1 6645 1.0 8e-9 6811 1.0 2e-6 10158 1.0 2e-5 10178 1.0 7e-62 6499 1.0 8e-9 6493 1.0 7e-7 7614 1.3 2e-5 7418 1.4 9e-64 3260 2.0 6e-9 3257 2.1 7e-7 3815 2.7 1e-5 3715 2.7 2e-68 1640 4.1 5e-9 1639 4.2 6e-7 1917 5.3 9e-6 1869 5.4 2e-616 834 8.0 4e-9 833 8.2 1e-6 971 11 5e-6 949 11 2e-624 569 12 3e-9 569 12 5e-7 660 15 5e-6 643 16 1e-632 433 15 3e-9 433 16 5e-7 501 20 4e-6 490 21 2e-648 303 22 2e-9 302 23 4e-7 348 29 4e-6 340 30 1e-664 236 28 2e-9 235 29 6e-7 269 38 5e-6 263 39 4e-796 173 38 2e-9 172 40 2e-7 195 52 2e-6 191 53 6e-7128 139 48 2e-9 139 49 4e-7 155 66 6e-6 153 67 9e-7Table 4.4Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two implementations for themedium problem size (n; kl; ku) = (100000; 10; 10) with varying �.This plays a role mainly in the computation of the �ll-in. The redundancy does not have the highweight that the op count of the previous section indicates. In fact, the pivoting algorithm performsalmost as well or sometimes even better than the algorithm for the diagonally dominant case. Thismay suggest always using the former algorithm [7]. This consideration is correct with respect tocomputing time. It must however be remembered that the pivoting algorithm requires twice as muchmemory space as the algorithm for the diagonally dominant case. (In the serial algorithm the ratiois only (2kl + ku)=(kl + ku).) In any case, the overhead for pivoting in the solution of the reducedsystem by bidiagonal cyclic reduction is not so big that it justi�es sacri�cing stability.The picture is di�erent for the largest problem size. Here, ScaLAPACK scales quite a bit betterthan the implementation by Arbenz and Hegland. The reduction of the number of messages andmarshaling overhead without regard to the message volume is counterproductive here. With the wideband, the volume of the message times tw by far outweighs the cumulated startup-times, cf. (20).So, for the largest processor numbers ScaLAPACK is fastest and yields the highest speedups.5. Conclusion. We have shown that the algorithms implemented in ScaLAPACK are stableand perform reasonably well. The comparison with the implementations of the same algorithms byArbenz and Hegland that are designed to reduce the number of messages that are communicated arefaster for very small bandwidth. The di�erence is however not too big. The exibility and versatilityof the ScaLAPACK justi�es the loss in performance.Nevertheless, it may be useful to have in ScaLAPACK a routine that combines the factoriza-tion and solution phase. Appropriate routines would be the `drivers' pddbsv.f for the diagonallydominant case and pdgbsv.f for the non-diagonally dominant case. In the present version of ScaLA-PACK, the former routine consecutively calls pddbtrf.f and pddbtrs.f, the latter calls pdgbtrf.fand pdgbtrs.f, respectively. The storage policy could stay the same. So, the exibility in how to

PARALLEL SOLVERS FOR NARROW-BANDED LINEAR SYSTEMS 41Non-diagonally dominant case on the Intel Paragon. Large problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 41089 1.0 | 45619 1.0 | 68553 1.0 | 68737 1.0 |8 24540 1.7 2e-6 24524 1.9 7e-5 30820 2.2 2e-4 27857 2.5 8e-516 12931 3.2 3e-6 12926 3.5 3e-5 16000 4.3 1e-4 14567 4.7 8e-524 9035 4.5 2e-6 9020 5.1 3e-5 11053 6.2 1e-4 10112 6.8 8e-532 7319 5.6 2e-6 7305 6.2 1e-5 8790 7.8 1e-4 8111 8.5 8e-548 5313 7.7 1e-6 5309 8.6 5e-6 6255 11 1e-4 5830 12 8e-564 4670 8.8 2e-6 4665 9.8 6e-6 5345 13 1e-4 5034 14 2e-496 3690 11 1e-6 3680 12 1e-5 4101 17 1e-4 3926 18 2e-5128 3470 12 1e-6 3459 13 1e-5 3744 18 1e-4 3632 19 2e-5Arbenz / Hegland implementation1 36333 1.0 | 40785 1.0 | 64100 1.0 | 64308 1.0 |8 21598 1.7 2e-6 21647 1.9 6e-6 27929 2.3 1e-4 24837 2.6 3e-416 11734 3.1 2e-6 11767 3.5 2e-6 14863 4.3 1e-4 13334 4.8 5e-524 8737 4.2 1e-6 8740 4.7 3e-6 10787 5.9 2e-4 9777 6.6 1e-432 7019 5.2 2e-6 7023 5.8 9e-6 8537 7.5 1e-4 7798 8.2 1e-448 5716 6.4 2e-6 5721 7.1 2e-5 6704 9.6 1e-4 6208 10 8e-564 4858 7.5 1e-6 4855 8.4 5e-6 5575 12 1e-4 5226 12 6e-696 4415 8.2 1e-6 4402 9.3 6e-6 4861 13 2e-4 4648 14 8e-5128 3981 9.1 7e-7 3973 10 1e-5 4301 15 8e-5 4149 16 3e-5Table 4.5Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two implementations for thelarge problem size (n; kl; ku) = (100000; 50; 50) with varying �. The single processor execution times (in italics) havebeen estimated.apply the routines remains.We found that the pivoting algorithm does not imply a large computational overhead over thesolver for the diagonally dominant systems of equations. We even observed shorter solution timesin some cases. However, as the pivoting algorithm requires twice as much memory space it shouldonly be used in uncertain situations. Notice further, that on the IBM SP/2 also the computationaloverhead of the pivoting algorithm is considerable [5]. Therefore we recommend to use the algorithmsfor diagonally dominant systems if possible.REFERENCES[1] P. R. Amestoy, I. S. Duff, and C. Puglisi, Multifrontal QR factorization in a multiprocessor environment,Numer. Linear Algebra Appl., 3 (1996), pp. 275{300.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide - Release 2.0, Society forIndustrial and Applied Mathematics, Philadelphia, PA, 1994. (Software and guide are available from Netlibat URL http://www.netlib.org/lapack/).[3] I. J. Anderson and S. K. Harbour, Parallel factorization of banded linear matrices using a systolic arrayprocessor, Adv. Comput. Math., 5 (1996), pp. 1{14.[4] P. Arbenz, On experiments with a parallel direct solver for diagonally dominant banded linear systems, inEuro-Par '96 Parallel Processing, L. Boug�e, P. Fraigniaud, A. Mignotte, and Y. Robert, eds., Lecture Notesin Computer Science, No. 1124, Springer, Berlin, 1996, pp. 11{21.[5] P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, A comparison of parallel solvers for diagonallydominant and general narrow-banded linear systems II, in Euro-Par'99 Parallel Processing, P. Amestoy,P. Berger, M. Dayd�e, I. Du�, V. Frayss�e, L. Giraud, and D. Ruiz, eds., Lecture Notes in Computer Science,No. 1685, Springer, Berlin, 1999, pp. 1078{1087.[6] P. Arbenz and W. Gander, A survey of direct parallel algorithms for banded linear systems, Tech.Report 221, ETH Z�urich, Computer Science Department, October 1994. Available at URLhttp://www.inf.ethz.ch/publications/.[7] P. Arbenz and M. Hegland, Scalable stable solvers for non-symmetric narrow-banded linear systems, inSeventh International Parallel Computing Workshop (PCW'97), P. Mackerras, ed., Australian National

42 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLANDUniversity, Canberra, Australia, 1997, pp. P2{U{1 { P2{U{6.[8] , On the stable parallel solution of general narrow banded linear systems, in High Performance Algorithmsfor Structured Matrix Problems, P. Arbenz, M. Paprzycki, A. Sameh, and V. Sarin, eds., Nova SciencePublishers, Commack, NY, 1998, pp. 47{73.[9] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users' Guide, Societyfor Industrial and Applied Mathematics, Philadelphia, PA, 1997. (Software and guide are available fromNetlib at URL http://www.netlib.org/scalapack/).[10] C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.[11] R. Brent, A. Cleary, M. Dow, M. Hegland, J. Jenkinson, Z. Leyk, M. Nakanishi, M. Osborne, P. Price,S. Roberts, and D. Singleton, Implementation and performance of scalable scienti�c library subroutineson Fujitsu's VPP500 parallel-vector supercomputer, in Proceedings of the Scalable High-Performance Com-puting Conference, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 526{533.[12] A. Cleary and J. Dongarra, Implementation in ScaLAPACK of divide-and-conquer algorithms for banded andtridiagonal systems, Tech. Report CS-97-358, University of Tennessee, Knoxville, TN, April 1997. (Availableas LAPACK Working Note #125 from URL http://www.netlib.org/lapack/lawns/).[13] J. M. Conroy, Parallel algorithms for the solution of narrow banded systems, Appl. Numer. Math., 5 (1989),pp. 409{421.[14] M. J. Dayd�e and I. S. Duff, The use of computational kernels in full and sparse linear solvers, e�cient codedesign on high-performance RISC processors, in Vector and Parallel Processing { VECPAR'96, J. M. L. M.Palma and J. Dongarra, eds., Lecture Notes in Computer Science, No. 1215, 1997, pp. 108{139.[15] J. J. Dongarra and L. Johnsson, Solving banded systems on a parallel processor, Parallel Computing, 5(1987), pp. 219{246.[16] J. J. Dongarra and A. H. Sameh, On some parallel banded system solvers, Parallel Computing, 1 (1984),pp. 223{235.[17] J. Du Croz, P. Mayes, and G. Radicati, Factorization of band matrices using level 3 BLAS, Tech. ReportCS-90-109, University of Tennessee, Knoxville, TN, July 1990. (LAPACK Working Note #21).[18] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,MD, 2nd ed., 1989.[19] A. Gupta, F. G. Gustavson, M. Joshi, and S. Toledo, The design, implementation and evaluation of asymmetric banded linear solver for distributed-memory parallel computers, ACM Trans. Math. Softw., 24(1998), pp. 74{101.[20] I. N. Hajj and S. Skelboe, A multilevel parallel solver for block tridiagonal and banded linear systems, ParallelComputing, 15 (1990), pp. 21{45.[21] M. Hegland, Divide and conquer for the solution of banded linear systems of equations, in Proceedings of theFourth Euromicro Workshop on Parallel and Distributed Processing, IEEE Computer Society Press, LosAlamitos, CA, 1996, pp. 394{401.[22] M. Hegland and M. Osborne, Algorithms for block bidiagonal systems on vector and parallel computers, inInternational Conference on Supercomputing ICS'98, D. Gannon, G. Egan, and R. Brent, eds., ACM, NewYork, NY, 1998, pp. 1{6.[23] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics,Philadelphia, PA, 1996.[24] R. W. Hockney and C. R. Jesshope, Parallel Computers 2, Hilger, Bristol, 2nd ed., 1988.[25] S. L. Johnsson, Solving narrow banded systems on ensemble architectures, ACM Trans. Math. Softw., 11 (1985),pp. 271{288.[26] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing, Benjamin/Cummings,Redwood City CA, 1994.[27] D. Lawrie and A. Sameh, The computation and communication complexity of parallel banded system solves,ACM Trans. Math. Softw., 10 (1984), pp. 185{195.[28] U. Meier, A parallel partition method for solving banded systems of linear equations, Parallel Computing, 2(1985), pp. 33{43.[29] J. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New York, 1998.[30] Y. Saad and M. H. Schultz, Parallel direct methods for solving banded linear systems, Linear Algebra Appl.,88/89 (1987), pp. 623{650.[31] A. Sameh and D. Kuck, On stable parallel linear system solvers, J. ACM, 25 (1978), pp. 81{91.[32] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, New York, 2nd ed., 1993.[33] D. W. Walker, T. Aldcroft, A. Cisneros, G. C. Fox, and W. Furmanski, LU decomposition and bandedmatrices and the solution of linear systems on hypercubes, in The Third Conference on Hypercube Concur-rent Computers and Applications, G. Fox, ed., New York, NY, 1988, ACM, pp. 1635{1653.[34] S. J. Wright, Parallel algorithms for banded linear systems, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 824{842.Edited by: Jack Dongarra and Erricos John KontoghiorghesReceived: February 1st, 1999Accepted: August 26th, 1999

