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6.2.1 General strategies for preconditioning

For the Stokes problem, discretization error is measured in the energy norm
for velocities and in the L, norm for pressure (see Section 5.4). Theretore, the
natural matrix norm is |e'*!|| g where
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(see (5.151), (5.152) and Problem 6.1). Since Kel®) = r* in terms of the
residual this is

le™)E = (EE ™ K ®) = p™ g

For the Stokes problem, with coefficient matrix (6.1), the relevant matrix is
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Since 1t 1s ||1'I:'k:|||‘||.f—1 that is reduced by the minrEs method, it would appear
that a good choice of preconditioner is the positive-definite matrix

o _[A+BTQ'B BT -BTQ-'C P
M= [B — QB BA-IBT 4y o0\ (6.16)
For uniformly stabilized approximation (C' = (), this has the form
o _|A+BTQ'B BT -
M = [B BA-1pT|- (6.17)

Here, the presence of the two relevant Schur complements for stability (see (6.9)
and (6.10)) are evident. Notice that BA~1BT is a discrete operator representing
V- (V) 'W, and BT ()~ 'B represents VI(V:) on the vector of velocity com-
ponents. It is clear, however, that these matrix operators are not suitable as
components of a preconditioner for the Stokes system, since they do not satisfy
the requirement concerning ease of solution of systems of the form Mz = r.

We will now derive some effective and practical preconditioners in this setting.
In Section 6.2.3 we will also show that under appropriate circumstances, the
resulting strategies are in fact essentially as good as (6.16)-(6.17) with respect
to the norm being minimized by MINRES.

The torm of the Galerkin matrix (6.1) and the desired norm based on the
matrix (6.14) suggests that it 1s important to take account of the block structure
when preconditioning. We thus consider block diagonal preconditioning matrices
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of the form

P 0 -
M= L] T] . (6.18)
where both P2 R™ ™™ and T £« B"#""? are symmetric and positive-definite. The
convergence bound (6.7) then indicates that the speed of MINRES convergence

depends on the elgenvalues A of the generalized eigenvalue problem

A BT [u P 0 |u o
AR T
It 1= readily seen that it P = A, then A = 1 iz an eigenvalue of multiplicity
at least n, — n, corresponding to any eigenvector [u?, 07]T with Bu = 0. The
multiplicity comes simply from the size of the right null space of the rectangular
matrix B; thus if B is of full rank, n,, then the multiplicity is exactly ny — np.

In the uniformly stable case (C'=0), if also T = BA~'BT| then the remaining
eigenvalues satisfy,

1- u=-EB'p an u= —B'p
(1— M)A BT d Bu=ABA BT
or by eliminating u,

(A2—A—1)BA'BTp=0.

Thus, since the assumed inf-sup stability in this case ensures that BA~1BT
is positive-definite, we deduce that A = 1/2 + +/5/2 are the remaining eigen-
values, each with multiplicity r,. This is an ideal situation from the point of
view of convergence of MINRES — since the preconditioned matrix has only
three distinet elgenvalues, there 1s a cubic polynomial with these three roots,
and the convergence bound (6.7) will be zero for £ = 3. That is, MINRES will
terminate with the exact solution after three iterations irrespective of the size of
the discrete problem.

This 15 an idealized sitnation, since the preconditioning operation with
(6.18) requires the action of the inverses of A and of the Schur complement
BA-1BT 4 (. Three iterations require three such computations. The operation
with the Schur complement 1s completely impractical since this 1s a full matrix.
Note, moreover, that the congruence transform (6.2) would allow direct solution
of thiz problem with two such operations with A and one with the Schur comple-
ment. However, this special choice of M suggests what 1s really needed, namely,
a suitably chosen P that approximates A, and a suitable T to approximate the
Schur complement BA~'BT + (.

We continue to consider the uniformly stable case for the moment, though
our analysis in Section 6.2.2 covers also the stabilized case. The key to hand-
ling the Schur complement is provided by the stability condition (6.9) together
with the boundedness condition (6.11): the sparse pressure mass matrix () is
spectrally equivalent to the dense matrix BA—1BT =0 that there is a lot to gain



