
Solution of Exercise 11

Question 2. We want to show that there is a positive β, independent of the mesh size h, such that

min
eH∈ΩH

‖eh − IhHeH‖2D ≤ β‖eh‖2Ah
.

for the 1D Poisson matrix

Ah =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ Rn×n, n odd.

Here, IhH denotes linear interpolation.
The eigenvectors of Ahare given by

qk = (sinϑk, sin 2ϑk, . . . , sinnϑk)
T , ϑk =

kπ

n+1
, k = 1, . . . , n,

with associated eigenvalue

λk = 4 sin2 ϑk
2
.

To estimate β in the approximation property

min
eH∈ΩH

‖eh − IhHeH‖2D ≤ β‖eh‖2Ah
(AP)

we first set eh = qk, and eH is the vector that interpolates eh at all even-numbered nodes. At the odd-
numbered nodes the difference is

ehj −
1

2
(ehj−1 + ehj+1) = sin jϑk −

1

2
(sin(j − 1)ϑk + sin(j + 1)ϑk)

= (1− cosϑk) sin jϑk = 2 sin2 ϑk
2

sin jϑk

So,

‖eh − IhHeH‖2D = 2 sin2 ϑk
2

(n+1)/2∑
j=1

sin2(2j − 1)
ϑk
2

= (n+ 1) sin2 ϑk
2
.

The weight 2 before the sum stems from D. Likewise, since qk is an eigenvector of Ah,

‖eh‖2Ah
= qTk Ahqk = 2(n+ 1) sin2 ϑk

2
.

So, we for eh = qk inequality (AP) holds with β = 1/2. A general eh can be represented as a linear
combination of the eigenvectors,

eh =

n∑
k=1

ηkqk.

Thus,

‖eh‖2Ah
=

n∑
j,k=1

ηjηkq
T
j Ahqk =

n∑
j,k=1

ηjηk4 sin
ϑk
2
qTj qk = 2(n+ 1)

n∑
k=1

η2
k sin

ϑk
2
.
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Similarly,

‖eh − IhHeH‖2D = (n+ 1)
n∑

k=1

η2
k sin

2 ϑk
2
.

So, inequality (AP) with β = 1/2 holds for general eh.

Question 3. The code md2Dsolver below generates the required matrices for the 2-grid method, ω andD
for the damped Jacobi smoother, restriction R, prolongation P , fine and coarse grid matrices Ah and AH .

%% Exercise 11.3 Solution
%% mg2Dsolver.m

global Ah AH LH P R D omega

%n=33;
N=(n-1)/2;

I1=speye(n);
Ah1=gallery('tridiag',n,-1,2,-1);
AH1=gallery('tridiag',N,-1,2,-1)/4;

Ah=kron(Ah1,I1) + kron(I1,Ah1);
AH=kron(AH1,eye(N)) + kron(eye(N),AH1);
LH=chol(AH,'lower');

I=kron(I1,I1); D=4*I;

R=kron(abs(Ah1),abs(Ah1));

ind=reshape(1:nˆ2,n,n);
J=ind(2:2:n-1,2:2:n-1);% Indices of coarse grid points
J=J(:);

R=R(:,J); P=R;
R=R'/16; P=P/4; % Restriction, prolongation

omega=4/5; % Optimal 2D smoothing parameter
%%S=(I-omega*(D\Ah)); % Iteration matrix of smoother
%%T=I - P*(AH\R)*Ah; % Iteration matrix of coarse grid correction
%%M=S*T*S; % Iteration matrix for complete 2-grid preconditioning

xe = rand(nˆ2,1); b = Ah*xe; % exact solution, right-hand side

tic, [x,flag,relres,iter] = pcg(Ah,b,1e-6,500,D); etime=toc;
if (flag>0) flag, end
fprintf(['Jacobi preconditioner: n = %d, iter = %d, ',...

'relres = %8.2e, time = %8.2e\n'],n,iter,relres,etime)

tic, [x,flag,relres,iter] = pcg(Ah,b,1e-6,50,@mfun1mfun); etime=toc;
if (flag>0) flag, end
fprintf(['2-grid preconditioner: n = %d, iter = %d, ',...

'relres = %8.2e, time = %8.2e\n'],...
n,iter,relres,etime)

return

function [x] = mfun1mfun(r)
%% preconditioner solves M x = r
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global Ah AH LH P R D omega
n = length(r);

x = omega*(D\r); % pre-smooting with x=0

rr = r - Ah*x;
x = x + P*(LH'\(LH\(R*rr))); % coarse-grid correction

rr = r - Ah*x;
x = x + omega*(D\rr); % post-smooting

return
end

The iteration counts for PCG, preconditioned with (i) Jacobi and (ii) 2-grid solver with damped Jacobi
smoother, are given in the table below.

Jacobi precond. 2-grid precond.
n it. steps time [s] it. steps time [s]
33 78 2.69e-02 7 3.29e-02
65 133 3.30e-02 7 7.77e-03
97 178 4.14e-02 7 1.35e-02
129 242 9.75e-02 7 2.97e-02

The stunning effect of the 2-grid preconditioner is the constant iteration count. Note that the solver is faster
than Jacobi-preconditioned CG only for larger problem sizes.
In the approximation property the constant β = 1/2. The constant in the smoothing property is α =
ω(2ωρ(D−1Ah)) = 0.32 as ρ(D−1Ah)) / 2. So, the contraction factor in the theorem on Slide 11-34 is√

1− α

β
=
√
1− 0.32/0.6 ≈ 0.683.

The contraction rate refers to the Ah-norm of ShTH
h ,

max
x6=0

(
xTT TSTAhSTx

xTAhx

)1/2

= max
y 6=0

‖LT
hSTL

−T
h y‖2

‖y‖2
= ‖LT

hSTL
−T
h ‖2,

where Ah = LhL
T
h is the Cholesky factorization of Ah. The value of this norm is obtained in MATLAB by

the command

max(svd(full(L’*S*T/L’)))

The matrices S and T are given in the MATLAB code above. For n = 65 the value is 0.5995.
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