
Introduction to finite elements and sparse linear system solving 2016

Exercise 9 – Solutions

1. The arithmetic complexities of these three algorithms:

� GMRES: After N iteration steps:

N multiplications with A: N × nnz(A) flops

N solves with the preconditioner: O(N × nnz(A)) flops

Orthogonalizations:
N∑
j=1

j ≈ 1

2
N2, i.e. O(N2n) flops, if A is n× n.

Memory: N × n for the Krylov basis, besides A and the preconditioner M .

� GMRES(m): After N = iter(1)× restart + iter(2) iteration steps:

Multiplications with A/solves with the preconditioner as with GMRES.

Orthogonalizations: iter(1)× restart2

2
+

iter(2)2

2
Memory: N × restart for the Krylov basis, besides A and M .

� MINRES: After N iteration steps:

Multiplications with A/solves with the preconditioner as with GMRES.

Orthogonalizations: 3N .

Memory: 4N for the few vectors of the Krylov basis, besides A and M .

The most expensive portions of the GMRES/MINRES solver without preconditioning
are the matrix-vector multiplication and the Gram–Schmidt orthogonalization. If there
is preconditioning, then solving with the preconditioner, i.e.,Mzk = rk, must also be
added to get the total arithmetic complexity.

2. The vector r0 = b must be ‘touched by just three eigenvectors. Two (simple) solutions
are as follows:

(1) You can generate a matrix that has just three eigenvalues.

(2) You can generate a diagonal matrix with all different diagonal elements (= eigenvalues)
and have the vector b just 3 non-zero elements.

3. The following Matlab script solves this problem. Notice that you need to set restart=30
at least in order that the unpreconditioned GMRES algorithm can solve this problem.
If restart is smaller then the residual norm is hardly reduced until maxit iterations
are completed.

clear all
A = mmread('fs 183 6.mtx');
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tol = 1e-6; n = length(A(:,1)); b = ones(n,1);
restart = 30;
maxit = 30;

[x1,flag1,relres,iter,resvec1] = gmres(A,b,restart,tol,maxit);
mvm1 = (iter(1)-1)*restart+iter(2);
fprintf('flag1 = %d, mvm1 = %d\n',flag1,mvm1)

%[L,U] = ilu(A);
L=tril(A);
[x2,flag2,relres,iter,resvec2] = gmres(A,b,restart,tol,maxit,L);
mvm2 = (iter(1)-1)*restart+iter(2);
fprintf('flag2 = %d, mvm2 = %d\n',flag2,mvm2)

close all

semilogy(0:mvm1,resvec1/resvec1(1),'bx','Linewidth',2)
hold on
semilogy(0:mvm2,resvec2/resvec2(1),'ro','Linewidth',2)
title('GMRES: development of residuals','FontWeight','demi')
xlabel('Number of matrix vector multiplications','FontWeight','demi')
ylabel('Residual norm','FontWeight','demi')
legend('GMRES without preconditioner',...

'GMRES with Gauss-Seidel preconditioner','Location','SouthEast')

hold off

The figure shows how much preconditioning can help.



Introduction to finite elements and sparse linear system solving 2016

4. run gmres with matrix.m: gmres with Gauss–Seidel preconditioner: M = D + L.

run gmres with function handle.m: gmres with Jacobi preconditioner: M = D.

We explore the impact of the restarting technique on the performance of the gmres

solver in run gmres restart tech.m

% FEM17- Exercise9-4
N=30000; A=2; B=3; C=8; D=3.5; E=4.5;
% (4a) Generate a sample Toeppen matrix
P = gallery('toeppen',N, A, B, C, D, E);
% (4b) Right hand side of the linear equation
b=rand(N,1);

tol = 1.0e-9; % Tolerance
maxit = 1000; % Maximum iterations
restart=[1,2,4,6,8,16,32];

total iter=[];
telapsed=[];
for i=1:7

% (4c) total number of iterations = (iter(1)-1) x restart + iter(2)
[total iter(i),telapsed(i)] = restart tech(restart(i),P,b,tol,maxit);

end
restart
total iter
telapsed

In restart tech.m the statement [x,flag,relres,iter] = gmres(P, b, restart,

tol, maxit) returns both the outer and inner iteration numbers at which x was computed,
where 0 ≤ iter(1) ≤ maxit and 0 ≤ iter(2) ≤ restart.

On my Laptop (2.8 GHz Intel Core i7) I get the following numbers

restart = 1 2 4 6 8 16 32
total iter = 290 182 173 151 143 135 133
telapsed = 0.3464 0.1922 0.1791 0.1561 0.1751 0.2082 0.3033

� In Figure 1, the number of iterations of GMRES method decreases when restart
is increased, but the rate of decreasing is getting smaller and smaller, and finally
the number of iterations keeps constant at a munimun value(92 in this example).
explanation: When the restart value grows, so does the Krylov searching space.
And the method tends to converge within fewer steps. However, this is at the cost
of increased memory consumption, which is directly proportional to restart.

� In Figure 2, the execution time of GMRES method first reduces when restart
increases. But after it reaches a minimum value, it starts to increase.
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Figure 1: Number of iterations vs. restart of GMRES method
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Figure 2: Execution time vs. restart of GMRES method
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Explanation: In the gmres solver, the most expensive portions are routines
of Matrix-Vector multiplication and the Gram–Schmidt orthogonalization. The
complexity per iteration step is about OMV = O(m×restart) for the Matrix-Vector
multiplication and Oortho = O(restart

2

2
×N) for the Gram–Schmidt orthogonalization.

The execution time can be evaluated by number of iterations ×(OMV+Oortho)×tmul,
where tmul is the time for a scalar multiplication. When restart starts from 1, as
the restart rises, the number of iterations drops sharply as presented in Figure 1 in
spite of the cost for the orthogonalization and matrix-vector multiplication routines
increases in a moderate rate, therefore the execution time decreases. However,
when restart continues to grow, the number of iterations just drops a little or even
keeps constant at last, while on the other hand the cost for the orthogonalization
and matrix-vector multiplication routines still grows at a moderate rate. Therefore
the execution time increases. According to the experimental results on my machine,
the optimal restart value is 6, that minimizes the execution time.

5. The solution of this problem is given in ex9 5.m. The experimental results are again
machine dependent. In general, if a good preconditioner is applied to the iterative solver,
the number of iterations and the execution time will both reduce. Preconditioning is
an essential part for the success of the iterative solvers. You will learn more details of
preconditioning techniques in the future lectures.


