
FEM and Sparse Linear System Solving

FEM and Sparse Linear System Solving
Lecture 10, Nov 24, 2017: Preconditioning

http://people.inf.ethz.ch/arbenz/FEM17

Peter Arbenz
Computer Science Department, ETH Zürich

E-mail: arbenz@inf.ethz.ch

FEM & sparse system solving, Lecture 10, Nov 24, 2017 1/64

http://people.inf.ethz.ch/arbenz/FEM17

FEM and Sparse Linear System Solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Steepest descent and conjugate gradient methods
I Krylov space methods, GMRES, MINRES
I Preconditioning

I Preconditioning by stationary and related iterations
I Incomplete factorization preconditioning
I Domain decomposition

I Nonsymmetric Lanczos iteration based methods
Bi-CG, QMR, CGS, BiCGstab

I Multigrid preconditioning

FEM & sparse system solving, Lecture 10, Nov 24, 2017 2/64

FEM and Sparse Linear System Solving

Survey on lecture

Outline of this lecture

1. Preconditioning

2. Preconditioned GMRES

3. Preconditioning with stationary iterations

4. Flexible GMRES

5. Incomplete factorization preconditioning

6. Domain decomposition preconditioning

FEM & sparse system solving, Lecture 10, Nov 24, 2017 3/64

FEM and Sparse Linear System Solving

References

References

I A. Wathen: Preconditioning. Acta Numerica 2015,
pp. 329–376.

I Y. Saad: Iterative Methods for Sparse Linear Systems, SIAM,
2nd edition, 2003.

I B. Smith, P. Bjørstad, W. Gropp: Domain decomposition:
Parallel multilevel methods for elliptic partial differential
equations. Cambridge University Press 1996.

I V. Dolean, P. Jolivet, F. Nataf: An introduction to domain
decomposition methods. SIAM 2015.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 4/64

FEM and Sparse Linear System Solving

Preconditioning

Preconditioning

I Given a system of equations

Ax = b, A ∈ Rn×n is nonsingular (1)

that we want to solve iteratively.

I Can we improve the convergence behavior, i.e., reduce the
number of iterations until convergence?

I Introduce a preconditioner M and change (1) into

M−1Ax = M−1b. (2)

This is called left preconditiong as the preconditioner is
multiplied from the left to (1).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 5/64

FEM and Sparse Linear System Solving

Preconditioning

Preconditioning (cont.)
I Right preconditioning with M:

AM−1y = b, x = M−1y

I Split preconditioning with M = LU:

L−1AU−1z = L−1b, x = U−1z

Special case if A and M are SPD. Then use Cholesky instead
of LU factorization of M, M = LLT ,

L−1AL−Tz = b, x = L−Tz .

I How to choose M?

I Relations among the three versions of preconditioning?

FEM & sparse system solving, Lecture 10, Nov 24, 2017 6/64

FEM and Sparse Linear System Solving

Preconditioning

Summary: Requirements for a preconditioner

I Either κ(M−1A) ≈ 1.

I M is a good approximation of A
(or M−1 is a good approximation of A−1).

I or the spectrum of M−1A consists of a few eigenvalues (or
eigenvalue clusters).

I Mz = r can be solved cheaply.

I M can be constructed cheaply (if necessary at all)

Note: In Krylov space methods the preconditioner M is applied
once in each iteration step, more precisely: we solve the system of
equations Mz = r in each iteration step.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 7/64

FEM and Sparse Linear System Solving

Krylov space methods

Krylov space methods

I Without preconditioning we work in the Krylov space

Km(r0,A) = span
{
r0,Ar0,A

2r0, . . . ,A
m−1r0

}
I With xm ∈ x0 +Km(r0,A), we have

xm = x0 + pm−1(A)r0, rm = (I − Apm−1(A))r0.

I In GMRES we determine xm = x0 + Vmym such that

min ‖rm‖2 = min ‖b − Axm‖2 = min ‖b − A(x0 + Vmy)‖2

= min ‖r0 − AVmy‖2 = min ‖r0 − Vm+1H̄my‖2

= min ‖Vm+1

(
βe1 − H̄my

)
‖2 = min ‖βe1 − H̄my‖2.

H̄m is a m + 1×m upper Hessenberg matrix.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 8/64

FEM and Sparse Linear System Solving

Krylov space methods

Residual results

Residual polynomial: Since rm = b − Axm ∈ r0 + AKm, we have
rm = (I − Apm−1(A))r0 = pm(A)r0.

pm is a polynomial of degree m and pm(0) = 1. Denote the set of
all such polynomials by P′m.

Theorem: Let A = QΛQ−1 be diagonalizable. Then at step m of
the GMRES iteration, the residual rm satisfies

‖rm‖2

‖r0‖2
≤ inf

pm∈P′m
‖pm(A)‖2 ≤ κ(Q) inf

pm∈P′m
max
λ∈σ(A)

|pm(λ)|.

Here, λ runs through the set σ(A) of A’s eigenvalues.
Remark: A similar result holds for the symmetric case (i.e., for
CG), but with A-norm, κ(Q) = 1, and all eigenvalues are real.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 9/64

FEM and Sparse Linear System Solving

Krylov space methods

CG method for SPD A

We bound

inf
pm∈P′m

max
λ∈σ(A)

|pm(λ)| by inf
pm∈P′m

max
λ∈[λmin,λmax]

|pm(λ)|

Fiddling around with Chebyshev polynomials gives (Saad)

Theorem: Let A be SPD, then the error of the CG method satisfies

‖ek‖A ≤
(√

κ− 1√
κ+ 1

)k

‖e0‖A.

Here, κ = κ(A) = λmax
λmin

.

By consequence: We choose M such that κ(M−1A)� κ(A).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 10/64

FEM and Sparse Linear System Solving

Krylov space methods

Alternative view point

I The previous statement (for PCG) holds also for general
matrices, but the set of eigenvalues is not so easy to manage,
since the eigenvalues do not lie on a straight line.

I The polynomial pm must be small on all eigenvalues.

I Desired, m� n.

I Sounds impossible, but eigenvalues may be equal (!) or at
least clustered.
If there are just a few eigenvalues (or eigenvalue clusters) then
it may be possible that |pm(λ)| is small on all eigenvalues.

I By consequence: We must choose M such that eigenvalues of
M−1A cluster.

I With both view points, M = A is the ideal preconditioner.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 11/64

FEM and Sparse Linear System Solving

Krylov space methods

Left preconditioned GMRES algorithm

The left preconditioned GMRES algorithm

I With left preconditioning we work in the Krylov space

Km(z0,M
−1A) = span

{
z0,M

−1Az0, . . . , (M
−1A)m−1z0

}
where z0 = M−1r0 = M−1(b − Ax0).

I We determine xm ∈ x0 +Km(z0,M
−1A) such that

‖zm‖2 = ‖(I −M−1Apm−1(M−1A))z0‖

is as small as possible.

I So, xm = x0 + pm−1(M−1A)z0

= x0 + pm−1(M−1A)M−1r0

= x0 + M−1pm−1(AM−1)r0

FEM & sparse system solving, Lecture 10, Nov 24, 2017 12/64

FEM and Sparse Linear System Solving

Krylov space methods

Left preconditioned GMRES algorithm

The left preconditioned GMRES(m) algorithm

Choose initial guess x0 .
2: Compute z0 = M−1(b−Ax0), β=‖z0‖2, and v1 =z0/β.
for j = 1, . . . ,m do

Compute w := M−1Avj
Orthogonalize w against v1, . . . , vj . (Gram–Schmidt)
Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j .

end for
Define Vm := [v1, . . . , vm], H̄m = ((hi ,j))
Compute ym = argminy‖βe1−H̄my‖2 and xm =x0+Vmym
if converged then

leave GMRES
else

set x0 := xm and goto 2.
end if

FEM & sparse system solving, Lecture 10, Nov 24, 2017 13/64

FEM and Sparse Linear System Solving

Krylov space methods

Right preconditioned GMRES algorithm

The right preconditioned GMRES algorithm

I With right preconditioning we work in the Krylov space

Km(r0,AM
−1) = span

{
r0,AM

−1r0, . . . , (AM
−1)m−1r0

}
where r0 = b − AM−1u0 = b − Ax0, i.e., x0 = M−1u0.

I We determine um such that

‖rm‖2 = ‖(I − AM−1 pm−1(AM−1))r0‖

is minimal.

I So, um = u0 + pm−1(AM−1)r0,
or, xm = M−1um = x0 + M−1pm−1(AM−1)r0.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 14/64

FEM and Sparse Linear System Solving

Krylov space methods

Right preconditioned GMRES algorithm

The right preconditioned GMRES algorithm (cont.)
Theorem
The approximate solutions obtained by left- and
right-preconditioned GMRES both have the form

xm = x0 + M−1pm−1(AM−1)r0

where pm−1 is a polynomial of degree m−1. In
right-preconditioning pm−1 minimizes ‖b − Axm‖ while in
left-preconditioning pm−1 minimizes ‖M−1(b − Axm)‖.

Remark (Saad, p. 272) In most practical situations, the difference
in the convergence behavior is not significant. The only exception
is when M is ill-conditioned, which could lead to substantial
differences.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 15/64

FEM and Sparse Linear System Solving

Krylov space methods

Right preconditioned GMRES algorithm

The right preconditioned GMRES(m) algorithm

Choose initial guess x0 = Mu0.
2: Compute r0 =b − AM−1u0, β=‖r0‖2, v1 =r0/β.
for j = 1, . . . ,m do

Compute w := AM−1vj
Orthogonalize w against v1, . . . , vj . (Gram–Schmidt)
Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

end for
Define Vm := [v1, . . . , vm], H̄m = ((hi ,j))
Set ym = argminy‖βe1−H̄my‖2 and xm = x0 +M−1Vmym
if converged then

leave GMRES
else

set x0 := xm and goto 2.
end if

FEM & sparse system solving, Lecture 10, Nov 24, 2017 16/64

FEM and Sparse Linear System Solving

Preconditioning with stationary iterations

Preconditioning with stationary iterations

I We can choose the same preconditioners for PCG / PGMRES
as in stationary iterations.

I Jacobi (= diagonal), block Jacobi, (block) Gauss–Seidel,
(block) symmetric Gauss–Seidel, (block) (S)SOR.

I Usually just one iteration step.

I These preconditioners are very simple and easy to implement.

I They are often not very powerful.
But the Jacobi preconditioner parallelizes ideally, and can
make up in this way for deficiencies.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 17/64

FEM and Sparse Linear System Solving

Preconditioning with stationary iterations

Preconditioning with stationary iterations (cont.)
I Let A = M − N, M nonsingular, be a matrix splitting.

I One step of the corresponding stationary iteration for solving
Az = r is

z1 = z0 + M−1(r − Az0)

Let’s set our first approximate to 0 (we do not know anything
better anyway). Then,

z1 = M−1r

I If one step of a stationary iteration is executed, then the M
matrix of the underlying matrix splitting is the preconditioner
of GMRES, PCG, or any other Krylov space method.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 18/64

FEM and Sparse Linear System Solving

Preconditioning with stationary iterations

Preconditioning with stationary iterations (cont.)
I Let’s execute p > 1 steps of the stationary iteration. Then

z1 = M−1r

z2 = z1 + M−1(r − Az1) = M−1r + M−1(r − AM−1r)

= GM−1r + M−1r , G = I −M−1A

z3 = z2 + M−1(r − Az2) = G 2M−1r + GM−1r + M−1r

zp = (I + G + G 2 + · · ·+ Gp−1)M−1r

I Therefore, Meff = M(I + G + G 2 + · · ·+ Gp−1)−1.
Of course, we do not form Meff but proceed as above.

I Note that
M(I +G +G 2 + · · ·)−1 = M((I −G)−1)−1 = M(M−1A) = A.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 19/64

FEM and Sparse Linear System Solving

CG for the normal equations

CG for the normal equations (CGNE)

Can we get the benefits of the conjugate gradient (CG) algorithm
for nonsymmetric A?

Maybe: instead of Ax = b solve the normal equations

ATAx = ATb.

A related approach is to solve

AATy = b, x = ATy .

Two severe issues:

1. Condition number κ(AAT) = κ(ATA) = κ2(A).

2. Each iteration step requires multiplication with A and AT .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 20/64

FEM and Sparse Linear System Solving

CG for the normal equations

CG for the normal equations (CGNE) (cont.)
Consensus: CGNE used only if A is well conditioned and Matvec
with AT is cheap.

Important general observation: MTM can be an arbitrarily bad
preconditioner for ATA irrespective of the quality of M as a
preconditioner of A, see Wathen (2015).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 21/64

FEM and Sparse Linear System Solving

Flexible GMRES

Flexible GMRES

I So far we have considered the preconditioner to be fixed. It
does not change from step to step.

I The formalism does not allow to change it.
(Construction of Krylov space!)

I We could envision, however, to solve Az = r to a given
accuracy instead of just executing a fixed number of steps of
some stationary iteration method.

I What happened if we used a Krylov space method to solve
Az = r approximately? This would be an inner iteration.

I Then, formally, we solved Mjz = r in the j-th (outer)
iteration step.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 22/64

FEM and Sparse Linear System Solving

Flexible GMRES

Flexible GMRES (cont.)
I In line 9 of right-preconditioned GMRES the solution xm is

expressed as a linear combination of preconditioned vectors
zj = M−1vj , i = 1, . . . ,m.

I The zj are obtained by the vj by multiplying with the same
matrix M−1 whence the zj need not be stored. Instead we
apply M−1 to the linear combination of the vj .

I If the preconditioner could change at every step, then the zj
were given by

zj = M−1
j vj .

Then it would be natural to compute the approximate solution
as xm = x0 + [M−1

1 v1, . . . ,M
−1
m vm]ym = x0 + Zmym,

with Zm = [z1, . . . , zm].

FEM & sparse system solving, Lecture 10, Nov 24, 2017 23/64

FEM and Sparse Linear System Solving

Flexible GMRES

The flexible GMRES algorithm (FGMRES)

1: Compute r0 = b − Ax0, β = ‖r0‖2, and v1 = r0/β.
for j = 1, . . . ,m do

Compute zj := M−1
j vj

Compute w := Azj
for i = 1, . . . , j do

hi ,j = wTvi
w = w − hi ,jvi

enddo
Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

enddo
Define Zm := [z1, . . . , zm], H̄m = ((hi ,j))
Compute ym = argminy‖βe1 − H̄my‖2 and xm = x0 + Zmym
If converged leave GMRES else set x0 := xm and goto 1

FEM & sparse system solving, Lecture 10, Nov 24, 2017 24/64

FEM and Sparse Linear System Solving

Flexible GMRES

Discussion of FGMRES

I FGMRES is quite a simple modification of GMRES

I Flexibility may cause problems as the Zm may be badly
conditioned.

I There is a relation

AZm = Vm+1H̄m

instead of the simpler (AM−1)Vm = Vm+1H̄m

I Provided that Hm is nonsingular we still have

b − Az = b − A(x0 + Zmy) = Vm+1[βe1 − H̄my]

I So, the approximate solution xm obtained at step m of
FGMRES minimizes the residual norm ‖b − Axm‖ over
x0 + span(Zm).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 25/64

FEM and Sparse Linear System Solving

Flexible GMRES

Discussion of FGMRES (cont.)
I FGMRES can break down.

I A breakdown occurs if the vector vj cannot be computed
because hj+1,j = 0.

I For GMRES this was a happy event. In FGMRES this is
different.

I Theorem. Assume that β = ‖r0‖ 6= 0 and that j − 1 steps of
FGMRES have been successfully performed, i.e., that
hi+1,i 6= 0 for i < j . In addition, assume that the matrix Hj is
nonsingular. Then xj is exact if and only if hj+1,j = 0.

I The additional cost of the flexible variant over the standard
algorithm is the additional vectors that have to be stored.
This may be worth it.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 26/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

Incomplete factorization preconditioners

I M = A would be the ideal preconditioner.
I However, to solve with A we need to compute a factorization

of A,
LU = A

that introduces fill-in.
I Want to get as close to A as we can without allowing too

much fill-in.
I A general Incomplete LU (ILU) factorization process computes

a sparse lower triangular matrix L and a sparse upper
triangular matrix U such that the residual

R = LU − A

satisfies certain constraints such as having zero entries at
certain locations.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 27/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

General static Pattern ILU

I Let
P ⊂ {(i , j) | i 6= j ; 1 ≤ i , j ≤ n}

be a so-called zero pattern.

I We want compute an ILU factorization of A such that li ,j = 0,
ui ,j = 0 for all (i , j) ∈ P.

I We assume that if ai ,j 6= 0 in the original matrix A then
(i , j) /∈ P.

I In the following algorithms L and U are stored in A.
Since we know where the nonzeros of L/U will be, the memory
layout can easily be prepared before the factorization starts.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 28/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

IKJ variant of Gaussian elimination

Image from Saad: Iterative methods (1st edition), p. 272.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 29/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

General static ILU factorization, IKJ version

for i = 2, . . . , n do
for k = 1, . . . , i − 1 and if (i , k) /∈ P do

aik = aik/akk ;
for j = k + 1, . . . , n and if (i , j) /∈ P do

aij = aij − aikakj ;
enddo

enddo
enddo

If we wanted to compute the residual matrix R there would be a
statement rij = rij + aikakj for (i , j) ∈ P.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 30/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

ILU(0) / IC(0)

The most popular zero pattern is obtained by choosing P to be the
zero pattern of the original matrix A:

P = {(i , j) | ai ,j = 0}

In this way, the sparsity structure of the incomplete factors is a
priori determined to be the structure of the original matrix A.
These preconditioners are called ILU(0) and IC(0) for the
incomplete Cholesky variants. cg with the preconditioner IC(0) is
called ICCG(0).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 31/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

ILU(p) / IC(p)

Static Incomplete LU/Cholesky factorizations with more fill-in
exist. They require more computing time and more memory space.
Let L0 be the IC factor of A. The sparse factor L1 corresponding to
IC(1) is obtained by accepting nonzeros at the nonzero positions of
L0L

T
0 .

ILU(p) / IC(p) are obtained in this recursive fashion. Do not use
p > 0.
Matrices should be reordered before the incomplete factorization.

Numerical example
We solve −∆u = f with homogeneous boundary conditions on the
square by the Finite Difference method on a m ×m grid, m = 31,
m = 101. The iterative solver is PCG with 4 different
preconditioners, see next slide.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 32/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

Numerical example

Exec times (it steps) Jacobi Block Jacobi Sym. GS ICCG(0)
m = 31 0.45 (76) 1.23 (57) 0.34 (33) 0.28 (28)
m = 101 18.0 (234) 54.1 (166) 10.1 (84) 8.8 (73)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 33/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

Dynamic nonzero patterns

I Incomplete factorizations that rely on the levels of fill p are
blind to numerical values because elements that are dropped
depend only on the structure of A.

I This can cause difficulties in realistic problems that arise in
many applications.

I Alternative methods drop elements in the Gaussian
elimination process according to their magnitude rather than
their location.

I With these techniques the zero pattern P is determined
dynamically.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 34/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

The ILUT(p, τ) approach

I In the ILUT(p, τ) approach there are two strategies combined:
Small elements are dropped and the number of elements per
row of L and U are limited.

I The parameter τ is used to drop small elements:
Set ai ,k ← 0 if it is less than tolerance τi = τ‖ai ,:‖

I Limit the number of elements per row of L and U by keeping
only the p largest (in modulus).

I Note that L and U have at most p nonzeros per row which
eases the memory management considerably.

I Incomplete factorizations may not exist. Pivoting is possible
(→ ILUTP), for details see Saad, Iterative methods for Sparse
Linear Systems, Chapter 10, both editions.

I Matlab does not provide ILUT(p, τ).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 35/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

Algorithm ILUT(p, τ)

for i = 1, . . . , n do
w = ai ,: // copy of i-th row of A

for k = 1, . . . , i − 1 and if wk 6= 0 do
wk = wk/akk ;
Apply the dropping rule to wk

if wk 6= 0 then
w = w − wk × uk,:

endif
enddo
Limit the number of nonzeros per row of L / U
li ,1:i−1 = w1:i−1

ui ,i :n = wi :n

enddo

FEM & sparse system solving, Lecture 10, Nov 24, 2017 36/64

FEM and Sparse Linear System Solving

Incomplete factorization preconditioners

Symmetric reorderings for ILU / IC

I The primary goal of reordering techniques is to reduce fill-in
during Gaussian elimination.

I A good ordering for reducing fill-in may lead to factors of poor
numerical quality (e.g., small pivots).

I For incomplete factorizations we may argue that fill-reducing
permutations result in dropping fewer terms such that the
sparse factors are more accurate.

I In general it is advisable to apply RCM or MD reordering
before the factorization.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 37/64

FEM and Sparse Linear System Solving

Reorderings

Reordering for ILU / IC

I In a second category of reorderings row-permutations are
applied to avoid poor pivots in Gaussian elimination.

I More precisely, we are looking for a permutation π or
corresponding permutation matrix Qπ such that

B = QπA

has large entries on the diagonal. The hope is that the pivots
are mostly on the diagonal and few row permutations are
needed.

I More details are in Lecture 6.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 38/64

FEM and Sparse Linear System Solving

Polynomial preconditioning

Polynomial preconditioning

A preconditioner of the form

M−1 = s(A) =
m−1∑
j=0

αjA
j

is called a polynomial preconditioner. The polynomial s(A) should
approximate A−1, i.e., s(λ) ≈ λ−1 for λ ∈ σ(A).
Such a preconditioner is easy to implement, in particular, on
parallel or vector processors.
In a sequential environment polynomial preconditioners are not
recommended as the same work can be used to extend a Krylov
subspace in a CG or GMRES iteration. (Here, work corresponds to
matvec’s.)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 39/64

FEM and Sparse Linear System Solving

Polynomial preconditioning

Neumann polynomials

If ‖N‖ < 1 then

(I − N)−1 =
∞∑
j=0

N j (Neumann series)

Let ‖A‖ < 1/ω. Then ‖ωA‖ < 1 and

(ωA)−1 = (I − (I − ωA))−1 =
∞∑
j=0

(I − ωA)j

and

M−1 =
k∑

j=0

(I − ωA)j ⇐⇒ s(λ) =
k∑

j=0

(1− ωλ)j .

The preconditioner is applied using Horner’s rule.
FEM & sparse system solving, Lecture 10, Nov 24, 2017 40/64

FEM and Sparse Linear System Solving

Polynomial preconditioning

Chebyshev polynomials

For stationary iterations

xk+1 = xk + M−1rk

the error satisfies

ek+1 = ek −M−1Aek = (I −M−1A)ek

So, we may try to find a polynomial s of degree k such that

max
λ∈σ(A)

|1− λs(λ)|

is minimized. Since this problem is too hard to solve we relax it
and try to find a polynomial s ∈ Pk such that

max
λ∈(α,β)

|1− λs(λ)| = max
λ∈(α,β),s(0)=1

|s(λ)| (3)

is minimized, where σ(A) ⊂ (α, β), 0 < α ≤ β.
FEM & sparse system solving, Lecture 10, Nov 24, 2017 41/64

FEM and Sparse Linear System Solving

Polynomial preconditioning

This minimizing problem for p is solved by the Chebyshev
polynomial Tk(t;α, β) shifted to the interval (α, β) and scaled
such that Tk(0;α, β) = 1:

Tk(t;α, β) =
Tk

(
β+α−2t
β−α

)
Tk

(
β+α
β−α

) .

The preconditioner is applied using the 3-term recurrence for
Chebyshev polynomials,

Tk+1(t) = 2tTk(t)− Tk−1(t), T1(t) = t,T0(t) = 1.

Note that this is the Chebyshev iteration of last week.
Note also that a different norm in (3), e.g. ‖·‖2 instead of ‖·‖∞,
will lead to different polynomials.
Ref.: Saad: Iterative methods for sparse linear systems. SIAM 2003.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 42/64

FEM and Sparse Linear System Solving

Domain decomposition

Domain decomposition

Let’s assume that we want
to solve the Poisson
equation −∆u(x) = f (x)
(with Dirichlet boundary
conditions u = g) in some
domain Ω.

Let’s further assume that we have an approximation v ≈ u that
satisfies the boundary conditions. We want to correct v by some e
that is nonzero only in Ωj such that v + e better approximates u.
Then we solve

−∆e = f + ∆v , x ∈ Ωj

e = 0 on ∂Ωj .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 43/64

FEM and Sparse Linear System Solving

Domain decomposition

Let Ax = b be a FE or FD discretization of a PDE, like on the
previous slide. We decompose the underlying domain Ω in
subdomains Ωj , j = 1, . . . , d , such that Ω = ∪Ωj .
Thus, each grid point is in at least one subdomain
(overlapping vs. non-overlapping domains).
Let RT

j be the projector that extracts from a vector those
components that belong to subdomain Ωj . (The columns of Rj are
columns of the identity matrix.) Then we write

A|Ωj
= Aj = RT

j ARj

(b − Axk)|Ωj
= RT

j (b − Axk)

Note. The Rj is a generalization of the topology maps that we
encountered when mapping the local dof’s in the reference triangle
to the global dof’s in the actual triangle.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 44/64

FEM and Sparse Linear System Solving

Domain decomposition

If we apply the above procedure for j = 1, . . . , d , i.e., improve
solutions in subdomain Ωj , one after the other, then we can
written this as

x
k+ j

d
= x

k+ j−1
d

+ Rj(R
T
j ARj)

−1RT
j︸ ︷︷ ︸

Bj

(b − Ax
k+ j−1

d
)︸ ︷︷ ︸

r
k+ j−1

d

,

= x
k+ j−1

d
+ Bj rk+ j−1

d
, j = 1, . . . , d .

This is called a multiplicative Schwarz procedure1.
If there are no overlaps, it is a block Gauss–Seidel iteration and
converges (as a stationary method) for SPD matrices.

1H.A. Schwarz: Vierteljahresschrift der Naturforschenden Gesellschaft
Zürich 15 (1870), 272–286.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 45/64

FEM and Sparse Linear System Solving

Domain decomposition

Let d = 2. Then

xk+1/2 = xk + B1rk ,

xk+1 = xk+1/2 + B2rk+1/2.

Combining the two steps gives,

xk+1 = xk+1/2 + B2rk+1/2

= xk + B1rk + B2(b − Axk+1/2)

= xk + B1rk + B2(b − Axk︸ ︷︷ ︸
rk

+AB1rk)

= xk + (B1 + B2 − B2AB1)︸ ︷︷ ︸
M−1

rk

For the iteration matrix we have

I −M−1A = I − B1A− B2A + B2AB1A = (I − B2A)(I − B1A)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 46/64

FEM and Sparse Linear System Solving

Domain decomposition

In general, for d domains, we have

I −M−1A = (I − BdA)(I − Bd−1A) · · · (I − B2A)(I − B1A).

The preconditioner M is not symmetric! A simple remedy is a
second sweep through the domains in reversed order. (The domain
d does not have to be treated twice.)
For d = 2 we have

I −M−1A = (I − B1A)(I − B2A)(I − B1A),

i.e.,
M−1 = (I − (I − B1A)(I − B2A)(I − B1A))A−1.

This procedure is similar to the symmetrization of SOR or
Gauss–Seidel.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 47/64

FEM and Sparse Linear System Solving

Domain decomposition

Let us consider the factors (I − BjA) of the iteration matrix
I −M−1A. Let Pj = BjA. Then,

Bj r = Rj(R
T
j ARj)

−1RT
j r = Rj(R

T
j ARj)

−1RT
j AA−1r = Pje =: ej .

Pj is a projector on R(Rj):

P2
j = Rj(R

T
j ARj)

−1RT
j ARj(R

T
j ARj)

−1RT
j A = Rj(R

T
j ARj)

−1RT
j A = Pj

If A is SPD then 〈x , y〉A is an inner product and we have

〈Pjx , y〉A = xTPT
j Ay = xTABjAy = 〈x ,Pjy〉A.

So, Pj is symmetric (w.r.t. to the A-inner product).
Altogether, Pj is an A-orthogonal projector on R(Rj).

FEM & sparse system solving, Lecture 10, Nov 24, 2017 48/64

FEM and Sparse Linear System Solving

Domain decomposition

Likewise,
I − Pj = I − BjA

is an A-orthogonal projector onto the A-orthogonal complement of
R(Rj) which we denote by R(Rj)

⊥A .

We can interpret the formula

ek+1 = (I −M−1A)ek = (I − BdA) · · · (I − B2A)(I − B1A)ek .

as follows.
Pj projects the error e onto ej which is the vector in R(Rj) closest
to e. Then, this ‘local’ error is subtracted from the global error.

So, I − BjA reduces the error in R(Rj) in the ‘best possible way’.

This is done in turn for all subdomains j = 1, . . . , d .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 49/64

FEM and Sparse Linear System Solving

Domain decomposition

Additive Schwarz

Additive Schwarz

An alternative method is the additive Schwarz procedure:

xk+1 = xk +
d∑

j=1

Bj rk .

M−1 =
d∑

j=1
Bj is clearly symmetric.

I Notice that additive Schwarz is actually block Jacobi if the
domains do not overlap.

I Additive Schwarz as a stationary method with overlapping
domains often does not converge.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 50/64

FEM and Sparse Linear System Solving

Domain decomposition

Convergence

Simple 1D example

Let’s consider the 1D Poisson equation

−u′′(x) = f (x), u(0) = u(1) = 0,

discretized by P1 finite elements on an equidistant grid with 6
interior points.

2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2




x1

x2

x3

x4

x5

x6

 = Ax = b = h2


f1
f2
f3
f4
f5
f6

 .

Let I be the 6× 6 identity matrix.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 51/64

FEM and Sparse Linear System Solving

Domain decomposition

Convergence

Simple 1D example (cont.)
(1) DD without overlap. Set R1 = I (:, 1 : 3), R2 = I (:, 4 : 6),

Bj = Rj(R
T
j ARj)

−1RT
j and M−1 = B1 + B2.

M is the block Jacobi preconditioner with 3× 3 blocks.
We have ρ(G) = ρ(I −M−1A) < 1 and thus convergence.

(2) DD with overlap (1). Set R1 = I (:, 1 : 4), R2 = I (:, 3 : 6) and
the rest as in (1).

Then, ρ(G) = ρ(I −M−1A) = 1 and no convergence.

(3) DD with overlap (2). R1,R2 as in (2) and the rest as in (1).
Set, D1 = diag([1, 1, 2/3, 1/3]) and D2 = diag([1/3, 2/3, 1, 1])

Then, R1D1R
T
1 + R2D2R

T
2 = I (partition of unity)

Set M−1 = R1D1(RT
1 AR1)−1RT

1 + R2D2(RT
2 AR2)−1RT

2 .

Then, ρ(G) < 1 and we have convergence.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 52/64

FEM and Sparse Linear System Solving

Domain decomposition

Convergence

Restricted additive Schwarz (RAS) preconditioner

Let Ωj , j = 1, . . . , d , be a covering partition of Ω, Ω = ∪Ωj .
Let Nj be the set of indices associated with degrees of freedom in
Ωj . We define the diagonal matrix Dj , j = 1, . . . , d , by

(Dj)ii =


1, i ∈ Nj , i 6∈ Nk for k 6= j ,

1/Mi , i ∈ Nj , i ∈ Nk for Mi subdomains Ωk ,

0, otherwise.

Then,
∑d

j=1 RjDjR
T
j = I .

The restricted additive Schwarz (RAS) preconditioner is defined by

M−1 =
d∑

j=1

RjDj(R
T
j ARj)

−1RT
j .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 53/64

FEM and Sparse Linear System Solving

Domain decomposition

Convergence

Convergence

I Number of iterations (iteration count)
grows with 1/H.

I If δ proportional to H: # its bounded
indept. of h and H/h.

I # its (multiplicative Schwarz) ≈ 1
2 # its

(additive Schwarz)

I Convergence poor if δ = 0 (Jacobi),
increases rapidely as δ increases.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 54/64

FEM and Sparse Linear System Solving

Domain decomposition

Numerical example

Numerical example

[taken from Smith/Bjørstad/Gropp]

Poisson equation with Dirichlet boundary conditions

−∆u = xey in Ω, u = −xey on ∂Ω,

Ω is either a unit square
with N × N grid points
or an unstructured grid.

GMRES(10) with DD
preconditioner.

Comparison with ILU(τ)
and SSOR preconditioner.

Partitioning by METIS.
FEM & sparse system solving, Lecture 10, Nov 24, 2017 55/64

FEM and Sparse Linear System Solving

Domain decomposition

Numerical example

Numerical example (cont.)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 56/64

FEM and Sparse Linear System Solving

Domain decomposition

Numerical example

Numerical example (cont.)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 57/64

FEM and Sparse Linear System Solving

Domain decomposition

Parallelization

Parallelizing the multiplicative Schwarz procedure

The multiplicative Schwarz procedure is related to Gauss-Seidel in
that always the most recent values are used for computing the
residuals. Thus, the problems with parallelizing multiplicative
Schwarz are related to parallelizing Gauss-Seidel and the solution is
the same: multi-coloring
If we have q colors then

x (k+1/q) = xk +
∑

j∈color1

Bj rk

x (k+2/q) = x (k+1/q) +
∑

j∈color2

Bj r
(k+1/q)

...

xk+1 = x
(k+ q−1

q
) +

∑
j∈colorq

Bj r
(k+ q−1

q
)

FEM & sparse system solving, Lecture 10, Nov 24, 2017 58/64

FEM and Sparse Linear System Solving

Coarse grid correction

Coarse grid correction

I Domain decomposition (DD) preconditioning with domain size
one is ordinary Jacobi or Gauss–Seidel preconditioning.

I Non-overlapping DD preconditioning corresponds to ordinary
block Jacobi and block Gauss–Seidel preconditioning, resp.

I Convergence behavior of DD preconditioning is similar:

1. The iteration count increases with problem size.
2. With fixed problem size: the iteration count increases with

increased number of subdomains (parallelism).

I DD preconditioners are sophisticated smoothers. But they do
not reduce highly oszillating error components.

I Remedy: Coarse grid correction.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 59/64

FEM and Sparse Linear System Solving

Coarse grid correction

Coarse grid correction: the procedure

Let Z be a rectangular matrix with columns that approximate the
‘slow modes’ of the SPD matrix A.
We want to improve an approximation y ≈ x∗ by a vector in R(Z).

min
d
‖A(y + Zd)− b‖A−1

⇐⇒ min
d

dTZTAZd + 2(Ay − b)TZd + const

=⇒ Zd = Z (ZTAZ)−1ZT (b − Ay).

Complement a multiplicative or additive DD preconditioner by a
coarse grid correction, e.g., with R0 = Z

M−1
RAS,2 = R0(RT

0 AR0)−1RT
0 +

d∑
j=1

RjDj(R
T
j ARj)

−1RT
j .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 60/64

FEM and Sparse Linear System Solving

Coarse grid correction

Coarse grid correction: the procedure (cont.)
How do we choose Z . A number of variants exist.
Main idea: approximate the lowest mode(s). For the Poisson
equation this is the constant function.

Nicolaides coarse space:
Let Dj , j = 1, . . . , d , be the diagonal matrices defined earlier for
the restricted additive Schwarz preconditioner. We have,

d∑
j=1

RjDjR
T
j = I .

Then, we we define Z = [z1, . . . , zd] columnwise by

zj := RjDjR
T
j e, e = [1, 1, . . . , 1]T .

FEM & sparse system solving, Lecture 10, Nov 24, 2017 61/64

FEM and Sparse Linear System Solving

Coarse grid correction

Coarse grid correction: the procedure (cont.)
A procedure for a multiplicative DD preconditioner with a
multiplicative coarse grid correction could look as follows.

r = b − Ax ;
for j:=1 to d do
x = x + Rj(R

T
j ARj)

−1RT
j r ;

r = b − Ax ;
end for
x = x + R0(RT

0 AR0)−1RT
0 r ;

Notice that one can combine, e.g., the coarse grid correction
multiplicatively with an additive Schwarz preconditioner.

A number of variants are possible. See the book by Smith,
Bjørstad, and Gropp.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 62/64

FEM and Sparse Linear System Solving

Coarse grid correction

Experiments: −∆u = x · ey on unit square

problem overlap overlap overlap
size 0 1 2 0 1 2 0 1 2

RAS,1 GMRES RAS,1 GMRES MS,1

40× 40 288 150 103 44 33 24 20 15 11
80× 80 515 269 182 59 44 38 28 20 16

160× 160 920 484 324 103 64 51 40 28 23

RAS,2 GMRES RAS,2 GMRES MS,2

40× 40 62 40 32 17 14 12 15 11 9
80× 80 113 73 57 25 20 18 20 16 13

160× 160 205 133 103 36 28 25 27 21 18

4× 4 domains, tol=10−5, restart=10.

Multiplicative coarse grid correction

FEM & sparse system solving, Lecture 10, Nov 24, 2017 63/64

FEM and Sparse Linear System Solving

Coarse grid correction

Weak scalability test: −∆u = x · ey on unit square

Solve problem with p × p equally sized subdomains (size 21× 21).

domains n GMRES MS,1 GMRES MS,1 GMRES MS,2
overlap=0 overlap=2 overlap=2

its time its time its time

2× 2 1600 11 0.018 7 0.011 7 0.013
4× 4 6084 31 0.14 15 0.070 12 0.067
6× 6 13456 36 0.42 25 0.30 15 0.20
8× 8 23716 67 2.2 37 1.4 15 0.63

10× 10 36864 90 5.8 40 3.1 16 1.6
12× 12 52900 112 15 59 8.8 16 2.2
16× 16 93636 175 69 88 36 16 7.4

time is in seconds, tol=10−5, restart=10.

FEM & sparse system solving, Lecture 10, Nov 24, 2017 64/64

	Survey on lecture
	References
	Preconditioning
	Krylov space methods
	Left preconditioned GMRES algorithm
	Right preconditioned GMRES algorithm

	Preconditioning with stationary iterations
	CG for the normal equations
	Flexible GMRES
	Incomplete factorization preconditioners
	Reorderings
	Polynomial preconditioning
	Domain decomposition
	Additive Schwarz
	Convergence
	Numerical example
	Parallelization

	Coarse grid correction

