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FEM and sparse linear system solving

Survey on lecture

Survey on lecture

I The finite element method

I Direct solvers for sparse systems
I Iterative solvers for sparse systems

I Stationary iterative methods, preconditioning
I Preconditioned conjugate gradient method (PCG)
I Krylov space methods for nonsymmetric systems

GMRES, MINRES
I Preconditioning
I Multigrid (preconditioning)
I Nonsymmetric Lanczos iteration based methods

Bi-CG, QMR, CGS, BiCGstab
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FEM and sparse linear system solving

Survey on lecture

Outline of this lecture

1. Geometric multigrid preconditioning
I Multigrid restricted to rectangular grid. Here: square grid.
I Restricted to SPD matrices

Literature
I Y. Saad: Iterative methods for sparse linear systems (2nd ed.).

SIAM, 2003.

I J. Demmel: Applied Numerical Linear Algebra. SIAM, 1997.

I H. Elman, D. Silvester, & A. Wathen. Finite elements and fast
iterative solvers. Oxford University Press, 2005. Chapter 2.
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FEM and sparse linear system solving

Preconditioned conjugate gradient algorithm

Preconditioned conjugate gradients

I Given a system of equations

Ax = b, A ∈ Rn×n is SPD. (1)

I n is related to mesh width h in FE or FD, κ(A) = O(1/h2).

I For large systems, we need to precondition (1) to get
reasonable iteration counts.

I Simple and popular preconditioners are Jacobi (diagonal),
Gauss-Seidel (GS), or IC(0) preconditioners.

I These methods tend to be slow as problem size n increases.

I But, both Jacobi and GS preconditioners are good smoothers:
they effectively damp the high-frequency modes of the errors.

I Coarse grid correction takes care about low-frequency modes.
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FEM and sparse linear system solving

1D Poisson problem

1D Poisson problem

The FE/FD discretization of

−u′′(x) = f (x), u(0) = u(1) = 0,

leads to a linear system with the system matrix as below. Using the
trigonometric identity

sin(j−1)ϑ+ sin(j+1)ϑ = 2 sin jϑ cosϑ

gives

2−1
−1 2−1
−1 2−1
−1 2−1
−1 2−1
−1 2−1
−1 2





sinϑ
sin 2ϑ
sin 3ϑ
sin 4ϑ
sin 5ϑ
sin 6ϑ
sin 7ϑ


= 2(1−cosϑ)︸ ︷︷ ︸

4 sin2 ϑ

2



sinϑ
sin 2ϑ
sin 3ϑ
sin 4ϑ
sin 5ϑ
sin 6ϑ
sin 7ϑ


+



0
0
0
0
0
0

sin 8ϑ


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FEM and sparse linear system solving

1D Poisson problem

1D Poisson problem (cont.)
If ϑ is such that sin(n+1)ϑ = 0 (here n = 7) then we have found
an eigenvalue λ = 2(1−cosϑ) and a corresponding eigenvector.
Clearly,

ϑk =
kπ

n+1
=⇒ sinϑk = 0 =⇒ λk = 2(1−cosϑk) = 4 sin2 ϑk

2

The corresponding eigenvectors (of Tnx = λx) are

qk = (sinϑk , sin 2ϑk , . . . , sin nϑk)T .

The smallest/largest eigenvalues are

λ1 = 4 sin2 π

2(n+1)
= O(h2), λn = 4 sin2 nπ

2(n+1)
= 4−O(h2) ≈ 4.
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2D Poisson problem

2D Poisson problem

The FE/FD discretization of

−∆u(x) = f (x) in Ω = (0, 1)2, u = 0 on ∂Ω

on a grid with n-by-n (interior) gridpoints leads to a matrix of the
structure given on the next slide.

16× 16 grid
(including boundary points)
n = 14
grid width h = 1/15 = 1/(n+1)
Ω = (0, 1)2 = (0, 15h)2
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FEM and sparse linear system solving

2D Poisson problem

2D Poisson problem (cont.)

An×n = Tn ⊗ In + In ⊗ Tn

Kronecker product

The discretization in every (interior) grid point is given by

4ucenter − uwest − usouth − ueast − unorth = h2 · fcenter
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FEM and sparse linear system solving

2D Poisson problem

2D Poisson problem (cont.)
The eigenvalues and eigenvectors are given by

λk,` = λ
(1D)
k + λ

(1D)
` = 4

(
sin2 ϑk

2
+ sin2 ϑ`

2

)
, 1 ≤ k , ` ≤ n.

The corresponding eigenvectors are obtained by a tensor product of
the 1D-eigenvectors,

xk,` = Vec

(
x

(1D)
k

(
x

(1D)
`

)T)
, 1 ≤ k , ` ≤ n.

Remark: Vec makes a vector from a matrix by stacking column on
top of each other.
In Matlab this is obtained by the colon operator: a = A(:);

FEM & sparse linear system solving, Lecture 11, Dec 1, 2017 9/38



FEM and sparse linear system solving

Smoothing

Damped Jacobi iteration

Damped Jacobi iteration is given by

xk+1 = xk + ωD−1rk = xk + ωD−1(b − Axk)

where D = diag(A). So far we considered ω = 1.
The eigenvalues µk of the iteration matrix I − ωD−1A for the 1D
Poisson matrix are (D = 2I )

µk = 1− ω

2
λk = 1− 2ω sin2 ϑk

2
, 1 ≤ k ≤ n,

One sees that we must have 0 < ω ≤ 1 to have convergence at all.
If we want a maximal reduction of the high-order modes qk ,
k = n

2 , . . . , n, then we choose µ n
2

= −µn whence ω = 2/3.
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FEM and sparse linear system solving

Smoothing

Damped Jacobi iteration (cont.)
In the 2D case, the eigenvalues µk,` of the iteration matrix
I − ωD−1A are (D = 4I )

µk,` = 1− ω

4
λk,` = 1− ω

(
sin2 ϑk

2
+ sin2 ϑ`

2

)
, 1 ≤ k, ` ≤ n.

Again, 0 < ω ≤ 1 is required to have convergence.

Here, the high-order modes are those with eigenvalue λk,` with
k ≥ n

2 or ` ≥ n
2 .

Therefore, we require that µ n
2
,0(= µ0, n

2
) = |µn,n| = −µn,n or

1− ω
2 = −(1− 2ω) whence ω = 4/5.

Note: In 3D we request that µ n
2
,0,0 = −µn,n,n. Thus ω = 6/7.
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FEM and sparse linear system solving

Smoothing

2D case: plot of µk ,` for ω = 1

The eigenvalues are between ±1. The eigenvalues closest to 1 (in
modulus) correspond to very smooth (k ≈ ` ≈ 0) and very
“rough” (k ≈ ` ≈ n) eigenfunctions. (Here, n = 15.)
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FEM and sparse linear system solving

Smoothing

2D case: plot of µk ,` for ω = 4/5

Eigenvalues closest to 1 (in modulus) correspond to very smooth
(k ≈ ` ≈ 0). The rough eigenvalues are around 1− 2ω = −3/5. In
fact, |µk,`| ≤ 3/5 for all k ≥ n/2 or ` ≥ n/2
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Smoothing

Illustration of smoothing with symmetric Gauss–Seidel

I 2D Poisson equation, 21× 21 mesh. Random initial condition.
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Smoothing

Sym. Gauss–Seidel: error after 1 step
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Smoothing

Sym. Gauss–Seidel: error after 2 steps
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FEM and sparse linear system solving

Smoothing

Sym. Gauss–Seidel: error after 3 steps

I Notice slow overall convergence!
I Can represent smoother error on coarser grid =⇒ multigrid.
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FEM and sparse linear system solving

Coarse grid correction

Two-grid idea

I From convergence analysis for stationary iterative solvers we
know that error and residual are reduced similarly,

ek+1 = (I −M−1A)ek , rk+1 = (I − AM−1)rk .

I A well-designed smoother reduces high-frequency components
of errors/residuals.

I We try to reduce the smooth low-frequency error components
by means of a coarse grid.
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FEM and sparse linear system solving

Coarse grid correction

Two-grids

We stick with our square n × n grid. We assume n to be odd and
set N + 1 = (n + 1)/2.

Here n = 15 and N = 7.
(We do not count the grid
points on the boundary.
We denote the fine grid by Ωh

and the coarse grid by ΩH .

Note that here we also display boundary points.
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Coarse grid correction

Prolongation

I The prolongation takes a vector from ΩH and defines an
analogous vector on Ωh,

I hH : ΩH −→ Ωh.

I The simplest way to define a prolongation operator is by linear
interpolation

The values at those fine grid
points that are also coarse grid
points are taken over from the
coarse grid points.
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FEM and sparse linear system solving

Coarse grid correction

The corresponding matrix
is n × N.

A typical column of I hH has
this structure

1

4



...
1
2
1
...
2
4
2
...
1
2
1
...



Compare
with

1

4

1 2 1
2 4 2
1 2 1


=

1

4

1
2
1

 (1, 2, 1)
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FEM and sparse linear system solving

Coarse grid correction

Restriction

I The restriction operation is the reverse of the prolongation. It
takes a vector from the fine grid Ωh and defines a vector on
the coarse grid Ωh.

I The injection operator is the simplest variant,

v2h
i ,j = vh2i ,2j .

I Another common restriction operator, called full weighting
(FW), defines v2h

i ,j to be a weighted average of all neighboring
points.
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FEM and sparse linear system solving

Coarse grid correction

Restriction (cont.)

With these definitions the restriction becomes IHh =
1

4

(
I hH

)T
.
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FEM and sparse linear system solving

Coarse grid correction

Coarse grid problem

I At the highest level, i.e., on the finest grid, a mesh size h is
used and the problem to solve has the form

Ahxh = fh.

I One of the requirements of MG techniques is that a system
similar to the one above should be solved on the coarser levels.

I One may discretize the same, e.g. PDE, on the coarser grid.

I An alternative is to directly define the coarse linear system by
a Galerkin projection, where the coarse problem is defined by

AH = IHh AhI
h
H , fH = IHh fh.
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FEM and sparse linear system solving

Two-grid cycle

Two-grid cycle

xh = 2-grid cycle(Ah, x
h
0 , f

h)

1. Presmooth: xh := smoothν1(Ah, x
h
0 , f

h)
2. Get residual: rh = f h − Ahx

h

3. Coarsen: rH = IHh rh

4. Solve: AHd
H = rH

5. Correct: xh = xh + I hHd
H

6. Postsmooth: xh := smoothν2(Ah, x
h, f h)

7. Return xh

This two-grid cycle can be written in the form

xh
new = Mhx

h
0 + gMh

.

What is the iteration matrix Mh of the two-grid cycle?
(We do not care about gMh

.)
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FEM and sparse linear system solving

Two-grid cycle

Let us first look at smoothing, that we write as

xh
ν = smoothν(Ah, x

h
0 , f

h).

One step of the ν (stationary) iterations has the form

xh
j+1 = xh

j + Bh(f h − Ahx
h
j ) = xh

j − BhAhx
h
j + Bhf

h

= (I − BhAh)︸ ︷︷ ︸
Sh

xh
j + Bhf

h︸ ︷︷ ︸
gh

, Bh = (I − Sh)A−1
h .

The effect of ν smoothing steps on the error is

d h
j+1 = Sνh d h

0

Trick: We get the iteration matrix Sh if we set f h = 0.
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FEM and sparse linear system solving

Two-grid cycle

We apply the same trick to the two-grid cycle to get

Mh = Sν2
h [I − I hHA

−1
H IHh Ah]Sν1

h ≡ Sν2
h TH

h Sν1
h

The matrix in brackets,

TH
h = I − I hHA

−1
H IHh Ah,

is called coarse grid correction.

Remark: Evidently, TH
h I hH = O

TH
h is Ah-orthogonal projector on R(I hH)⊥

For an analysis of a multigrid method we have to investigate
(1) how the smooth error components are suppressed by TH

h , and
(2) how the ‘rough’ error components are smoothed by Sh.
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FEM and sparse linear system solving

Two-grid cycle

Two-grid example: 1D Poisson equation

n=33; N=(n-1)/2;

A=(p 1d(n)); I=eye(n); D=diag(diag(A));
AC=(p 1d(N))/4;

R=abs(A(:,2:2:n-1));
%J=[2:2:n-1]';
% R=R(:,J); P=R;
P=R/2; R=R'/4; % Prolongation, restriction

omega=2/3;
GS=(I-omega*(D\A)); % Iteration matrix for smoother
GCG=I-P*(AC\(R*A)); % Iteration matrix for

% coarse grid correction
G2G=GS*GCG*GS; % Iteration matrix for complete

% 2-grid preconditioning
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FEM and sparse linear system solving

Multigrid

Recursion −→ Multigrid: Algorithm V-cycle

xh = V-Cycle(Ah, x
h
0 , f

h)

1. Presmooth: xh := smoothν1(Ah, x
h
0 , f

h)
2. Get residual: rh = f h − Ahx

h

3. Coarsen: rH = IHh rh

4. If (H == h0)
5. Solve: AHd

H = rH

6. Else
7. Recursion: dH = V-Cycle(AH , 0, r

H)
8. Endif
9. Correct: xh = xh + I hHd

H

10. Postsmooth: xh := smoothν2(Ah, x
h, f h)

11. Return xh
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FEM and sparse linear system solving

Multigrid

Multigrid idea

1. Smooth error on finest grid
Highly oscillating error components (upper half of spectrum)
are strongly damped.

2. Project smoothed error on next coarser grid.
slowly oscillating error components (lower half of spectrum)
are now treated.

3. In the recursive approach: these error components are split in
two sets again:

3.1 Highly oscillating error components (on this level)
Smooth these.

3.2 Slowly oscillating error components (on this level)
Correct these on an again coarser grid.

4. Postsmooth after coarse grid correction.
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Multigrid

V-cycles of varying depth (# of levels)
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Multigrid

W-cycles of varying depth (# of levels)

In contrast to V-cycles, in W-cycles the coarse-grid correction is
called twice in a row. Step 7 of the V-cycle algorithm is executed
twice.
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Some analysis

Some analysis

Let us assume that the following two properties are satisfied:

Smoothing property:

‖Sheh‖2
Ah
≤ ‖eh‖2

Ah
− α‖Ahe

h‖2
D−1 ∀eh ∈ Ωh.

Approximation property:

min
eH∈ΩH

‖eh − I hHe
H‖2

D ≤ β‖eh‖2
Ah

where both α > 0 and β > 0 do not depend on the mesh size h.

The smoothing property means that high frequency errors are
dampened much. (‖Ahe

h‖ ≈ 0 for smooth errors)
The approximation property means that smooth errors are
approximated well by the coarse grid space.
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Some analysis

Some analysis (cont.)
Theorem : Let the smoothing and approximation properties be
satisfied with α > 0 and β > 0. Then α ≤ β, the two-level iteration
converges, and the norm of the iteration matrix is bounded by

‖ShTH
h ‖Ah

≤
√

1− α

β
.

Proof: See Saad: Iterative methods for sparse linear systems (2nd
ed.), SIAM, 2003, p. 436.
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Some analysis

Jacobi example

I In Jacobi smoothing we have S(ω) = I − ωD−1A.

I We have convergence if 0 < ω < 2/ρ(D−1A).
I Now, (index h is omitted here)

‖S(ω)e‖2
A = (A(I − ωD−1A)e, (I − ωD−1A)e)

= (Ae, e)− 2ω(AD−1Ae, e) + ω2(AD−1Ae,D−1Ae)

= (Ae, e)− 2ω(D−1/2Ae,D−1/2Ae)

+ ω2((D−1/2AD−1/2)D−1/2Ae,D−1/2Ae)

= (Ae, e)− ([ω(2I − ωD−1/2AD−1/2)]D−1/2Ae,D−1/2Ae)

≤ ‖e‖2
A − λmin[ω(2I − ωD−1/2AD−1/2)]‖Ae‖D−1 .

I Let ρ = ρ(D−1/2AD−1/2) = ρ(D−1A). Then 2− ωρ > 0.

I So, we can set α = ω(2− ωρ).
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Some analysis

Full weighting example

In 1D, the n-by-n Poisson matrix is the (-1,2,-1) - matrix on
Slide 5 with eigenvectors

xk = (sinϑk , sin 2ϑk , . . . , sin nϑk)T , ϑk =
kπ

n+1
k = 1, . . . , n.

To estimate β in the approximation property

min
eH∈ΩH

‖eh − I hHe
H‖2

D ≤ β‖eh‖2
Ah

We set eh = xk and eH is the vector that interpolates eh at all
even-numbered nodes. At the odd-numbered nodes the difference is

ehj −
1

2
(ehj−1 + ehj+1) = sin jϑk −

1

2
(sin(j − 1)ϑk + sin(j + 1)ϑk)

= (1− cosϑk) sin jϑk = 2 sin2 ϑk
2

sin jϑk

It is an exercise to show that β ≤ 1/2.
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Numerics

Numerical example

We solve −∆u = f with homogeneous boundary conditions on the
square by the Finite Difference method on a m ×m grid, m = 31,
m = 101.

First, we solve with PCG where the preconditioner are Jacobi,
block-Jacobi, symmetric Gauss-Seidel and IC(0).

Jacobi Block Jacobi Sym. GS ICCG(0)
m = 31 0.084 (76) 0.071 (57) 0.050 (33) 0.042 (28)
m = 101 0.99 (234) 0.86 (166) 0.47 (84) 0.50 (73)

Execution times (iteration count)
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Numerics

Numerical example (cont.)
Now we solve with PCG where the preconditioner is a two-grid
solver. The smoother is either Jacobi or Gauss-Seidel. The
smoothing parameter of Jacobi is ω = 1 and ω = 4/5. We also
tried two (ν1 = ν2 = 2) steps of Jacobi(4/5) as the smoother.

Jacobi(1) Jacobi(4/5) 2×Jacobi(4/5) GS
m = 31 0.036 (33) 0.0088 (7) 0.0077 (5) 0.0075 (5)
m = 101 0.91 (63) 0.10 (7) 0.083 (5) 0.083 (5)

Execution times (iteration count)
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