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FEM and sparse linear system solving

LSurvey on lecture

Survey on lecture

» The finite element method

» Direct solvers for sparse systems
> lterative solvers for sparse systems
» Stationary iterative methods, preconditioning
» Preconditioned conjugate gradient method (PCG)
» Krylov space methods for nonsymmetric systems
GMRES, MINRES
» Preconditioning
» Multigrid (preconditioning)
» Nonsymmetric Lanczos iteration based methods
Bi-CG, QMR, CGS, BiCGstab
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FEM and sparse linear system solving

LSurvey on lecture

Outline of this lecture

1. Geometric multigrid preconditioning

» Multigrid restricted to rectangular grid. Here: square grid.
> Restricted to SPD matrices

Literature

» Y. Saad: [terative methods for sparse linear systems (2nd ed.).
SIAM, 2003.

» J. Demmel: Applied Numerical Linear Algebra. SIAM, 1997.

» H. Elman, D. Silvester, & A. Wathen. Finite elements and fast
iterative solvers. Oxford University Press, 2005. Chapter 2.
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FEM and sparse linear system solving

LPreconditioned conjugate gradient algorithm

Preconditioned conjugate gradients

» Given a system of equations
Ax = b, A e R™"is SPD. (1)

n is related to mesh width h in FE or FD, x(A) = O(1/h?).

» For large systems, we need to precondition (1) to get
reasonable iteration counts.

v

» Simple and popular preconditioners are Jacobi (diagonal),
Gauss-Seidel (GS), or IC(0) preconditioners.

» These methods tend to be slow as problem size n increases.

» But, both Jacobi and GS preconditioners are good smoothers:
they effectively damp the high-frequency modes of the errors.

» Coarse grid correction takes care about low-frequency modes.
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FEM and sparse linear system solving

LlD Poisson problem

1D Poisson problem
The FE/FD discretization of

—u"(x) = f(x),

leads to a linear system with the system matrix as below. Using the

trigonometric identity

sin(j—1)9 + sin(j+1)Y = 25sin jo) cos

gives
P -
-1 2-1
-1 2-1
-1 2-1
-1 2-1
-1 2-1

-1 2

[ sin? ]

sin 299
sin 39
sin 49
sin 59
sin 69

sin 74 |
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u(0) =u(1) =0,

=2(1—cos )

4sin

[ sind
sin 299
sin 39
sin 49
sin 59
sin 629

sin 719

OO OO OO0o

| sin 84 |
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LlD Poisson problem

1D Poisson problem (cont.)

If ¥ is such that sin(n+1)Y = 0 (here n = 7) then we have found
an eigenvalue A = 2(1—cos ) and a corresponding eigenvector.
Clearly,

B km
on+1l

U

P :>sin19k:0:>)\k:2(1—c0519k):4sin27

The corresponding eigenvectors (of T,x = Ax) are
Gk = (sin Uy, sin 20y, ... sinndy) 7.

The smallest/largest eigenvalues are

A1 = 4sin? =0O(h?), X\, =4sin?

2(n+1)
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FEM and sparse linear system solving

L2D Poisson problem

2D Poisson problem
The FE/FD discretization of

—Au(x) = f(x)in Q= (0,1, u=00n0Q

on a grid with n-by-n (interior) gridpoints leads to a matrix of the
structure given on the next slide.

6x16gid o lliiiiiiiiiIiLn
(including boundary points)
n=14 I A
grid width h = 1/15 = 1/(n+1) SEEESSISEEEREES
0= (0.1 = (0,1h)’ SIS
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FEM and sparse linear system solving

LZD Poisson problem

2D Poisson problem (cont.)

Poisson matrix stored in the natural ordering

vl
40
N Anxn:Tn®In+In®Tn
® Kronecker product
100
120
140
o 20 40 80 a0 100 120 140

-8z

The discretization in every (interior) grid point is given by

12
AUcenter — Uwest — Usouth — Ueast — Unorth = N° + feenter
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FEM and sparse linear system solving

L2D Poisson problem

2D Poisson problem (cont.)

The eigenvalues and eigenvectors are given by

9 9
Mo = AP L \(0P) g <sin2 7k 1 sin? ;) . 1<kt<n.

The corresponding eigenvectors are obtained by a tensor product of
the 1D-eigenvectors,

-
Xk = Vec <x,(<1D) (Xeng)) ) , 1<k, l<n.

Remark: Vec makes a vector from a matrix by stacking column on
top of each other.
In MATLAB this is obtained by the colon operator: a = A(:);
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FEM and sparse linear system solving

LSmocvthing

Damped Jacobi iteration
Damped Jacobi iteration is given by
Xk4+1 = Xk + wD_lrk = X + wD_l(b — Axk)

where D = diag(A). So far we considered w = 1.
The eigenvalues iy of the iteration matrix | —wD™LA for the 1D
Poisson matrix are (D = 2/)

9
M:1—§Ak —1—2wsin? 2k 1<k<n,

75

One sees that we must have 0 < w < 1 to have convergence at all.
If we want a maximal reduction of the high-order modes gy,
k=3,...,n, then we choose pz = —p;, whence w = 2/3.
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FEM and sparse linear system solving
L Smoothing

Damped Jacobi iteration (cont.)

In the 2D case, the eigenvalues 1y ¢ of the iteration matrix
| —wD A are (D = 4l)

0, 0
,U,kj:l—%)\k’g :1—w<sin2;+sin2;>, 1<k, 0 <n.

Again, 0 < w < 1 is required to have convergence.

Here, the high-order modes are those with eigenvalue Ay ¢ with
k> g or f > g

Therefore, we require that Mg,o(: Mo,g) = |ftn,n| = —ftn,n OF
1—-%=—(1-2w) whence w = 4/5.

Note: In 3D we request that pz 90 = —fin,nn- Thus w = 6/7.
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FEM and sparse linear system solving

LSmoothing

2D case: plot of gy forw =1

The eigenvalues are between +1. The eigenvalues closest to 1 (in
modulus) correspond to very smooth (k & ¢ ~ 0) and very

“rough” (k =~ ¢ =~ n) eigenfunctions. (Here, n = 15.)
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FEM and sparse linear system solving

LSmoothing

2D case: plot of iy for w =4/5

0.8
0.6+
0.4

0.2+

-02-

0.4+

.06~

.08

10 5

Eigenvalues closest to 1 (in modulus) correspond to very smooth
(k ~ £ ~ 0). The rough eigenvalues are around 1 — 2w = —3/5. In
fact, |pk| < 3/5 forall k > n/2 or £ > n/2
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FEM and sparse linear system solving

LSmoothing

lllustration of smoothing with symmetric Gauss—Seidel

» 2D Poisson equation, 21 x 21 mesh. Random initial condition.
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FEM and sparse linear system solving

I—Smoothing

Sym. Gauss—Seidel: error after 1 step
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LSmoothing

Sym. Gauss—Seidel: error after 2 steps
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FEM and sparse linear system solving

LSmoothing

Sym. Gauss—Seidel: error after 3 steps

> Notice slow overall convergence!
» Can represent smoother error on coarser grid = multigrid.
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FEM and sparse linear system solving

LCoarse grid correction

Two-grid idea

» From convergence analysis for stationary iterative solvers we
know that error and residual are reduced similarly,

eci1 = —-M1Ae, ngi=(—-AM Y.

> A well-designed smoother reduces high-frequency components
of errors/residuals.

> We try to reduce the smooth low-frequency error components
by means of a coarse grid.
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FEM and sparse linear system solving

LCoarse grid correction

Two-grids

We stick with our square n x n grid. We assume n to be odd and
set N+1=(n+1)/2.

Bx P xDxVxDxDx® x® x®

X X X X X X X X X X X X X X X X X

R X ®XxX®x®x®x®x®x® x®

X K X X X X X X X X X X X X X X X

B x®x®x®xQxQxQxQxQ . —

XX K X X X X X X X X X X X %X X X Heren_lSandN—?
BrEXBXBxBXBXBXEXE (We do not count the grid
X X X X X X X X X X X X X X X X X

R AX R XD X XxB X ®x® XX 1

X X X X X X X X X X X X X X X X X pOIntsontheboundary
@x@x8xOx9x8 O xOx8 We denote the fine grid by Q,
X x X X X X X X X X X X X X X X X

Bx®xOxOxOx®xBxO xS and the coarse grid by Q.
X X X X X X X X X X X X X X X X X

® x® x® x ® x @ x® x® x Q@ x®

X % X X X X X X X X X X X X X X X

R x® x®x®x®x®x®x Q@ x®

Note that here we also display boundary points.
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LCoarse grid correction

Prolongation
» The prolongation takes a vector from Qg and defines an
analogous vector on p,
I/J, . QH — Qh.

» The simplest way to define a prolongation operator is by linear

interpolation 12 112

i i 1./—\\ AT T 1
The values at those fine grid
points that are also coarse grid V2 4 1 )1’2
points are taken over from the
coarse grid points. 1/2< M Ly )"2
1 S —11
1/2 1/2
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FEM and sparse linear system solving

LCoarse grid correction

A typical column of I} has

The corresponding matrix this structure Compare
is nx N. with
A 1 X X

\ X x ®
\ ; X X

2
150 1 2 1
\ , 212402
1 2 1
200 \ 1 1
2 1
0 \so 1 =—12 (17 27 1)
nz = 441 4
_ 1
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FEM and sparse linear system solving

LCoarse grid correction

Restriction

» The restriction operation is the reverse of the prolongation. It
takes a vector from the fine grid Q and defines a vector on
the coarse grid Q.

» The injection operator is the simplest variant,

2h _ . h
Vij = V2i2j-

» Another common restriction operator, called full weighting
(FW), defines v,%;’ to be a weighted average of all neighboring
points.
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FEM and sparse linear system solving

LCoarse grid correction

Restriction (cont.)

[ ® ®
1116 18 /16
4 1/8 7‘\‘——’ 1/8 ®
( 1/16
116 1/8]
® Y ®
. o . v L/ \T
With these definitions the restriction becomes I = 7 (IH) .
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FEM and sparse linear system solving

LCoarse grid correction

Coarse grid problem

> At the highest level, i.e., on the finest grid, a mesh size h is
used and the problem to solve has the form

AhXh = fh.

» One of the requirements of MG techniques is that a system
similar to the one above should be solved on the coarser levels.

» One may discretize the same, e.g. PDE, on the coarser grid.

» An alternative is to directly define the coarse linear system by
a Galerkin projection, where the coarse problem is defined by

Ay =11AuR, =116,
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FEM and sparse linear system solving

LTwo-grid cycle

Two-grid cycle
xh = 2-grid cycIe(Ah,xé’, "

1. Presmooth: x .= smooth” (A, x£, ")
2. Get residual: r=fh— Apxh

3. Coarsen: rH =t

4. Solve: AydH = rH

5. Correct: xh = xh+ Ihd"

6. Postsmooth: x" .= smooth”?(Ap, x", Fh)
7. Return x”

This two-grid cycle can be written in the form
xr?ew = th(? + M-

What is the iteration matrix My, of the two-grid cycle?

(We do not care about gy, .)
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FEM and sparse linear system solving

LTwo-grid cycle

Let us first look at smoothing, that we write as

x = smooth” (A, x¥, F1).

One step of the v (stationary) iterations has the form

th+1 = th + Bh(fh — AhXJ-h) = XJ-h — BhAhXJ-h + B/-,fh

= (I — BpAn) X' + ByF", By = (I — Sp)A*.
Sh g"

The effect of v smoothing steps on the error is
h v gh
dj+1 =5 dy
Trick: We get the iteration matrix Sy, if we set £ = 0.
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FEM and sparse linear system solving

LTwo-grid cycle

We apply the same trick to the two-grid cycle to get
My = Sl — IBAIE ARSI = S TH S
The matrix in brackets,
T =1 I5A M) A,
is called coarse grid correction.
Remark: Evidently, T,:”’l,f’, =0

TH is Ap-orthogonal projector on R(/f})*

For an analysis of a multigrid method we have to investigate
(1) how the smooth error components are suppressed by T/, and
(2) how the ‘rough’ error components are smoothed by S,
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FEM and sparse linear system solving

|—Two-grid cycle

Two-grid example: 1D Poisson equation

n=33; N=(n-1)/2;

A=(p-1d(n)); I=eye(n); D=diag(diag(a));
AC=(p-1d(N))/4;

R=abs(A(:,2:2:n-1));
$J=[2:2:n-11";

% R=R(:,J); P=R;
P=R/2; R=R'/4;

o\

Prolongation, restriction

omega=2/3;
GS=(I-omegax (D\A)) ;
GCG=I-P« (AC\ (R*A));

Iteration matrix for smoother
Iteration matrix for
coarse grid correction
Iteration matrix for complete
2-grid preconditioning

G2G=GS*GCG*GS;

o o° o0 oo oP
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FEM and sparse linear system solving
L Multigrid

Recursion — Multigrid: Algorithm V-cycle
x = V-Cycle(Ap, xt, £

1. Presmooth: xP = smooth" (A, x{, F")
2. Get residual: r = fh— Apxh

3. Coarsen: rf = /,:"rh

4.1f (H == ho)

5. Solve: AydH = rH

6. Else

7. Recursion: d" = V-Cycle(Ay, 0, r")
8. Endif

9. Correct: xh = x"+ I,f’,dH

10. Postsmooth: x = smooth”2(A, x", £1)
11. Return xh
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FEM and sparse linear system solving
L Multigrid

Multigrid idea

1. Smooth error on finest grid
Highly oscillating error components (upper half of spectrum)
are strongly damped.

2. Project smoothed error on next coarser grid.
slowly oscillating error components (lower half of spectrum)
are now treated.

3. In the recursive approach: these error components are split in
two sets again:

3.1 Highly oscillating error components (on this level)
Smooth these.

3.2 Slowly oscillating error components (on this level)
Correct these on an again coarser grid.

4. Postsmooth after coarse grid correction.
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FEM and sparse linear system solving
L Multigrid

V-cycles of varying depth (# of levels)
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FEM and sparse linear system solving
L Multigrid

W-cycles of varying depth (# of levels)

In contrast to V-cycles, in W-cycles the coarse-grid correction is
called twice in a row. Step 7 of the V-cycle algorithm is executed
twice.

V
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FEM and sparse linear system solving

LSome analysis

Some analysis

Let us assume that the following two properties are satisfied:

Smoothing property:

h2 hy2 h2 h
She" |3, < lle”3, — ol Ane"[, . veh c

Approximation property:

min [[e" —Ine"|[; < pe”|3,

n
eqcey
where both @ > 0 and 8 > 0 do not depend on the mesh size h.

The smoothing property means that high frequency errors are
dampened much. (||Axe”|| = 0 for smooth errors)
The approximation property means that smooth errors are

approximated well by the coarse grid space.
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LSome analysis

Some analysis (cont.)

Theorem : Let the smoothing and approximation properties be
satisfied with @ > 0 and 8 > 0. Then a < (3, the two-level iteration
converges, and the norm of the iteration matrix is bounded by

8]
IShTH |4, < \1- 3

Proof. See Saad: [terative methods for sparse linear systems (2nd
ed.), SIAM, 2003, p. 436.
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LSome analysis

Jacobi example

» In Jacobi smoothing we have S(w) = | — wD™1A.
» We have convergence if 0 < w < 2/p(D71A).
» Now, (index h is omitted here)
IS(w)ella = (Al —wD *Ae, (I —wD *A)e)
= (Ae,e) — 2w(AD 'Ae, e) +w’(AD ' Ae, D" Ae)
= (Ae,e) — 2w(D/*Ae, D"/? Ae)
+W?((DY2ADTY?) D2 Ae, D7V/? Ae)
= (Ae,e) — ([w(2l —wD ?AD™Y?)|D"'/? Ae, D/* Ae)
< [lelfa = Aminfw (2 —wD™2ADT2)] | Ae]lp-1.

» Let p= p(DY2AD~1/2) = p(D~1A). Then 2 — wp > 0.
» So, we can set @ = w(2 — wp).
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LSome analysis

Full weighting example

In 1D, the n-by-n Poisson matrix is the (-1,2,-1) - matrix on
Slide 5 with eigenvectors

. . . ki
Xk = (sin ¥y, sin 20, ..., sin m9k)T, Vi = 1 k=1,...,n
n
To estimate [ in the approximation property
h  H|2 h2
min H — Ihe|lp < Blle’|a,

eyeQ

We set e = x, and e is the vector that interpolates e” at all
even-numbered nodes. At the odd-numbered nodes the difference is

eh

1
2 2( ", +e +1)—S|nﬂ9kfE(sm(j71)19,<+sm(j+1)19k)
)
= (1 — cos¥) sinjy = 2sin® 7/( sin jU

It is an exercise to show that § < 1/2.
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L Numerics

Numerical example

We solve —Au = f with homogeneous boundary conditions on the
square by the Finite Difference method on a m x m grid, m = 31,
m = 101.

First, we solve with PCG where the preconditioner are Jacobi,
block-Jacobi, symmetric Gauss-Seidel and 1C(0).

Jacobi Block Jacobi | Sym. GS ICCG(0)
m=31 | 0.084 (76) | 0.071 (57) | 0.050 (33) | 0.042 (28)
m=101 | 0.99 (234) | 0.86 (166) | 0.47 (84) | 0.50 (73)

Execution times (iteration count)
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L Numerics

Numerical example (cont.)

Now we solve with PCG where the preconditioner is a two-grid
solver. The smoother is either Jacobi or Gauss-Seidel. The

smoothing parameter of Jacobi is w =1 and w = 4/5. We also
tried two (11 = v» = 2) steps of Jacobi(4/5) as the smoother.

Jacobi(1) | Jacobi(4/5) | 2xJacobi(4/5) GS
m=31 | 0.036 (33) | 0.0088 (7) | 0.0077 (5) | 0.0075 (5)
m =101 | 0.91 (63) 0.10 (7) 0.083 (5) 0.083 (5)

Execution times (iteration count)
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