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FEM and Sparse Linear System Solving

Survey on lecture

I The finite element method
I Introduction, model problems.
I 1D problems. Piecewise polynomials in 1D.
I 2D problems. Triangulations. Piecewise polynomials in 2D.
I Variational formulations. Galerkin finite element method.
I Theory of errors/error estimation.
I Adaptive mesh refinement.
I Some problems beyond the Poisson equation.

I Direct solvers for sparse systems.

I Iterative solvers for sparse systems.
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Beyond the Poisson problem

Beyond the Poisson problem: Fluid Mechanics

I We consider some problems that are more complicated than
the Poisson equation. The problems are taken from fluid
dynamics.

I We start by reviewing the governing equations of mass and
momentum balance and derive the Navier–Stokes equations.

I To that end we consider a fluid of density ρ moving in a
three-dimensional domain Ω.

Suppose a particular small volume of fluid is at position x(t) at
time t. Its velocity is given by

u(x , t) =
dx

dt
.

Each of the components of u is a function of space x and time t.
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Beyond the Poisson problem

Beyond the Poisson problem: Fluid Mechanics (cont.)

Conservation of mass means that the rate of change of the mass in
a volume D equals the amount of fluid flowing into D across ∂D.

In mathematical terms, this means that

d

dt

∫
D
ρdx = −

∫
∂D
ρu · nds = −

∫
D

div (ρu)dx . (1)

From (1) we get
dρ

dt
+ div (ρu) = 0.

Assuming a constant density ρ, this simplifies to

div u = 0.

Physically, this means that the volume of any small fluid particle dx does not change under deformation. Such

fluids are said to be incompressible.
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Beyond the Poisson problem

Beyond the Poisson problem: Fluid Mechanics (cont.)

Conservation of momentum means that the rate of change of the
momentum of a fluid in a volume D equals the sum of the external
forces. (Newton’s law of motion)

In mathematical terms, this means that∫
D
ρ

(
∂u

∂t
+ (u · grad )u

)
dx = −

∫
∂D

pnds +

∫
D
ρ f dx , (2)

The quantity ∂u
∂t + (u · grad )u is the so-called convective

derivative expressing the change of a quantity (vector of
quantities) that is “following the fluid”. Thus, the fluid
acceleration is the convective derivative of the velocity.

In an ideal incompressible and homogeneous fluid, the only forces
are pressure p and external body forces f like gravity.
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Beyond the Poisson problem

Beyond the Poisson problem: Fluid Mechanics (cont.)
Using the equation ∫

∂D
p n ds =

∫
D

grad p dx

and taking into account that D is an arbitrary volume, we obtain
the Euler equations for an ideal incompressible homogeneous fluid,

∂u

∂t
+ (u · grad)u = −1

ρ
grad p + f , in Ω

div u = 0.

[ Remember
∫
D

∂iu · v dx +
∫
D

u · ∂iv dx =
∫
∂D

u v ni ds ]
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Beyond the Poisson problem

Beyond the Poisson problem: Fluid Mechanics (cont.)
For a “real” viscous fluid, each small volume of fluid is not only
acted on by pressure forces (normal stress) but also by tangential
or shear stresses. The Euler equations in this case have an
additional term on the right,

∂u

∂t
+ (u · grad )u = −1

ρ
grad p + ν∆u + f , in Ω

div u = 0.

I The Laplacian ∆ acts on all components of u individually.

I ν is called the kinematic viscosity.
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Beyond the Poisson problem

Navier–Stokes et al.

Navier–Stokes et al.

Assuming steady flow, the temporal derivatives vanish. Thus we
get the Navier–Stokes equations (p ← p/ρ)

−ν∆u + (u · grad )u + grad p = f , in Ω

div u = 0, in Ω.

Removing the nonlinearity (low velocity flow) gives the Stokes
equations

−ν∆u + grad p = f , div u = 0.

Another linearization replaces (u · grad )u by (w · grad )u
resulting in the convection-diffusion equation,

−ν∆u + (w · grad )u = f , div u = 0.
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Beyond the Poisson problem

Convection-diffusion equation

Convection-diffusion (or transport) equation

The weak form (of a scalar version) of the convection-diffusion
equation is

Find u ∈ H1
E (Ω) such that

ν
∫
Ω

grad u ·grad v dx +
∫
Ω

(w · grad u)v dx

=
∫
Ω

f v dx + ν
∫

∂ΩN

gN v ds, for all v ∈ H1
E0

(Ω)

If ν � 1 then characteristics of this equation is very different from
Poission equation. Nevertheless, the function spaces are the same.
Two operators:

I −ν∆ smears u proportionally to ν (diffusion)

I w ·grad transports u in the direction of w (convection)
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Beyond the Poisson problem

Convection-diffusion equation

Convection-diffusion (or transport) equation (cont.)
As earlier, we choose finite dimensional vector spaces Sh

0 ⊂ H1
E0

(Ω)

and Sh
E ⊂ H1

E (Ω) consisting of piecewise polynomials.

We choose a basis span {ϕ1, . . . , ϕn} ∈ Sh
0 that we extend by

additional functions ϕn+1, . . . , ϕn+n∂ to satisfy the Dirichlet
boundary conditions.
The matrix A corresponding to the FE discretization has elements

aij = ν(gradϕi , gradϕj) + (w · gradϕj , ϕi ).

It is nonsymmetric. Depending on the strength of the wind the
problem tends to be more convective or more diffusive, i.e., more
or less close to a Poisson problem.
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Transport Equation

Weak form of the Transport Equation

Weak form of the Transport Equation

With these notation the weak form of the transport problem is

Find u ∈ H1
E (Ω) such that

a(u, v) = `(v) for all v ∈ H1
E0

(Ω)

where the bilinear and linear forms a(·, ·) and `(·) are

a(u, v) = ν(grad u, grad v) + (w ·grad u, v)

`(v) = (f , v)

We can use piecewise linear elements, as before.
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Transport Equation

Standard Galerkin Finite Element Approximation

Standard Galerkin Finite Element Approximation

Sh
E ⊂ H1

E (Ω) is the space of continuous piecewise linear
polynomials. The discrete problem is

Find uh ∈ Sh
E such that

a(uh, v) = `(v) for all v ∈ Sh
E

The linear system for the unknown nodal values ξj of uh is

A ξ = b,

with Aij = ν(gradϕj , gradϕi ) + (w ·gradϕj , ϕi ),

bi = (f , ϕi ), i , j = 1, . . . , ni , ni = # of interior nodes
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Transport Equation

The Galerkin Least Squares Finite Element Approximation

The Galerkin Least Squares (GLS) FE Approximation

The transport equation Lu = f with L = −ν∆ + w · grad only
weakly controls the derivatives of u (cf. Benzon & Larson, Ch. 10)

Find uh ∈ Sh
E such that

asd(uh, v) = `sd(v) for all v ∈ Sh
E

where the bilinear and linear forms asd(·, ·) and `sd(·) are

asd(u, v) = a(u, v) + δ(w ·grad u,w ·grad v)

`sd(v) = (f , v) + δ(f ,w · grad v)

The term δ(w ·grad u,w ·grad v) stabilizes the numerical method
by adding diffusion proportional to δ along the streamlines. The
GLS method is also referred to as the Streamline-Diffusion (SD)
method.
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Transport Equation

Real-world application: Heat transfer in a fluid flow

Real-world application: Heat transfer in a fluid flow

Consider a heated object submerged into a channel with a flowing fluid.

Fluid is flowing from left to right round a heated circle object.

Fluid flow is unaffected by temperature and given by velocity field

wT = U∞

(
1− x2

1 − x2
2

(x2
1 + x2

2 )2
,
−2x1x2

(x2
1 + x2

2 )2

)
where U∞ = 1 is the free stream velocity of the fluid.
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Transport Equation

Real-world application: Heat transfer in a fluid flow

Heat transfer in a fluid flow: boundary conditions

I The cylinder is kept at constant temperature 1.

I The walls of the channel are insulated, no heat can flow
across them. Means the normal heat flux n · q is zero on the
walls, where q is given by Fourier’s law q = −ν grad u + wu.

I At the outflow, ignore the diffusion w , so ν n · grad u = 0.

I At the inflow, the fluid has zero temperature.

−ν∆u + w · grad u = 0, in Ω

u = 0, on Γin

u = 1, on Γcyl

−νn · grad u = 0, on Γout

n · (−νgrad u + wu) = 0, on Γwall

(3)

FEM & sparse system solving, Lecture 5, Oct 20, 2017 15/24



FEM and Sparse Linear System Solving

Transport Equation

Real-world application: Heat transfer in a fluid flow

In order to simplify the computer implementation, first
approximate the Dirichlet conditions using the Robin conditions
−νn · grad u = 106u on Γin and −νn · grad u = 106(u− 1) on Γcyl.
Multiplying the equation by test function v and integrating by
parts both the diffusive and convective terms gives

0 = ν(grad u, grad v)−ν(n ·grad u, v)L2(Γ)−(u,w ·grad v)+(n ·wu, v)L2(Γ)

= ν(grad u, grad v) + 106(u, v)L2(Γin) + 106(u − 1, v)L2(Γcyl)

− (u,w ·grad v) + (n ·wu, v)L2(Γout)
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Transport Equation

Real-world application: Heat transfer in a fluid flow

The weak form

The weak form of the Eqs.(3)

ν(grad u, grad v) + 106(u, v)L2(Γin) + 106(u, v)L2(Γcyl)

− (u,w · grad v) + (n ·wu, v)L2(Γout) = 106(1, v)L2(Γcyl), ∀v ∈ Sh
E .

Adding the least squares term δ(w · grad u,w · grad v) to the
weak form we obtain the GLS finite element approximation:

Find uh ∈ Sh
E such that

ν(grad u, grad v) + 106(u, v)L2(Γin) + 106(u, v)L2(Γcyl)

− (u,w · grad v) + (n ·wu, v)L2(Γout)

+ δ(w · grad u,w · grad v) = 106(1, v)L2(Γcy), ∀v ∈ Sh
E .
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Transport Equation

Real-world application: Heat transfer in a fluid flow

The left hand side boundary terms can be written (κu, v)L2(Γ) with

κ =


106, on Γin ∪ Γcyl

w · n, on Γout

0, elsewhere

Heat Transfer in a fluid flow: HeatFlowSolver2D.m is at
http://people.inf.ethz.ch/arbenz/FEM17/exercises/HeatFlowSolver2D.m

Contour plot of PDE solution
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Beyond the Poisson Equation

Stokes equations

Stokes equations

The weak form of the Stokes equations is

Find u ∈H1
E (Ω) and p ∈ L2(Ω) s.t.∫

Ω

gradu :grad v dx −
∫
Ω

p div v dx =
∫

ΓN

s ·v ds for all v ∈H1
E0

(Ω),∫
Ω

divu q dx = 0 for all q ∈ L2(Ω),

u = w on ∂ΩD
∂u
∂n − n p = s on ∂ΩN

Note:

gradu :grad v = grad u1 · grad v1 + grad u2 · grad v2 + grad u3 · grad v3
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Beyond the Poisson Equation

Stokes equations

Stokes equations (cont.)
In the Stokes equations we are looking for two functions at the
same time. The three components of the first (vector) function u

are in H1
E (Ω), so each of the three components of u can be

discretized by piecewise linear finite element elements.
The pressure is only in L2(Ω). Thus is requires less continuity.
Piecewise constants are an option here.

Remark: The Stokes equations can be written as a so-called
saddle point problem

inf
v∈H1

E0

sup
q∈L2(Ω)

∫
Ω

|grad v |2 dx −
∫
Ω

q div v dx −
∫
ΓN

s · v ds
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Beyond the Poisson Equation

Stokes equations

Stokes equations (cont.)
Discretizing the Stokes equations leads to a matrix problem of the
form [

A C
CT O

] [
u

p

]
=

[
f

g

]
(4)

The matrix is symmetric but indefinite. A ‘consists’ of d copies of
the Poisson matrix. C is the discrete divergence-free condition,

cij = (ψi , divϕj).

The matrix in (4) does not admit a Cholesky factorization. If A is
spd then[

A C
CT O

]
=

[
I

CTA−1 I

] [
A
−CTA−1C

] [
I A−1C

I

]
.
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Beyond the Poisson Equation

Stokes equations

Stokes equations (cont.)
I A in (4) often is spd. Then, there is a unique solution if C has

maximal rank.

I If A is singular (e.g. symmetric positive semidefinite) then (4)
has a unique solution if the intersection of the nullspace of A
and of the nullspace of CT is ‘trivial’,

N (A) ∩N (CT ) = {0}.

I For a FE discretization to be stable the inf-sup condition

min
qh 6=0

max
vh 6=0

|qhdiv vh|
‖qh‖L2(Ω)‖vh‖H1(Ω)

≥ c > 0

has to be satisfied for all h, i.e., for all triangulations Th.
This condition is also called Ladyzhenskaya-Babuška-Brezzi
(LBB) stability condition.
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Beyond the Poisson Equation

Stokes equations

Stokes equations (cont.)
I This condition is needed to show convergence of the finite

element method.

I The Q2 − Q1 discretization on rectangular grids is stable.

I The LBB condition rules out simple choices like Q1 − P0.

I Stabilization procedures are used to make the zero (2,2) block
in (4) ‘more’ negative definite.

I For details see Elman et al.
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Exercise 5

Exercise 5:

http://people.inf.ethz.ch/arbenz/FEM17/pdfs/ex5.pdf
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