
Chapter 7

Vector iteration (power method)

7.1 Simple vector iteration

In this chapter we consider the simplest method to compute a single extremal eigenvalue,
called vector iteration or power method [2, 5]. Let A ∈ F

n×n. Starting with an arbitrary
initial vector x(0) ∈ F

n we form the vector sequence
{
x(k)

}∞
k=0

by defining

(7.1) x(k) := Ax(k−1), k = 1, 2, . . .

Clearly,

(7.2) x(k) := Akx(0).

The hope is that the x(k) converge to an eigenvector associated with the eigenvalue of
largest magnitude. As we are interested only in the direction but not in the length of the
eigenvector, there is no need to normalize the iterates in (7.1), well at least in theory. In
practice, x(k) may either underflow (if ‖A‖ < 1) or overflow (if ‖A‖ > 1) for large k. Thus,
one usually adds a normalization step to (7.1), leading to Algorithm 7.1.

Algorithm 7.1 Simple vector iteration (power method)

1: Choose a starting vector x(0) ∈ F
n with ‖x(0)‖ = 1.

2: k = 0.
3: repeat
4: k := k + 1;
5: y(k) := Ax(k−1);
6: µk := ‖y(k)‖;
7: x(k) := y(k)/µk;
8: until a convergence criterion is satisfied

The vectors x(k) generated by Algorithm 7.1 have all norm (length) one. That is,
{
x(k)

}∞
k=0

is a sequence on the unit sphere in F
n.

Let A = XJY ∗ be the Jordan normal form of A with Y ∗ := X−1, see Section 2.8.
Then,

(7.3) Y ∗x(k) := JY ∗x(k−1) and Y ∗x(k) := JkY ∗x(0),

respectively. If the sequence
{
x(k)

}∞
k=0

converges to x∗ then the sequence
{
y(k)

}∞
k=0

with

y(k) = Y ∗x(k) converges to y∗ = Y ∗x∗. By consequence, for the convergence analysis, we
may assume without loss of generality (w.l.o.g.) that A is a Jordan block matrix.

125



126 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

7.2 Angles between vectors

Let q1 and q2 be unit vectors, cf. Fig. 7.1. The length of the orthogonal projection of q2

q1

q2

Figure 7.1: Angle between vectors q1 and q2

on span{q1} is given by

(7.4) c := ‖q1q1
∗q2‖ = |q1

∗q2| ≤ 1.

The length of the orthogonal projection of q2 on span{q1}⊥ is

(7.5) s := ‖(I − q1q1
∗)q2‖.

As q1q
∗
1 is an orthogonal projection we have by Pythagoras’ formula that

(7.6) 1 = ‖q2‖2 = ‖q1q1
∗q2‖2 + ‖(I − q1q1

∗)q2‖2 = s2 + c2.

Alternatively, we can conclude from (7.5) that

(7.7)

s2 = ‖(I − q1q1
∗)q2‖2

= q2
∗(I− q1q1

∗)q2

= q2
∗q2 − (q2

∗q1)(q1
∗q2)

= 1− c2

So, there is a number, say, ϑ, 0 ≤ ϑ ≤ π
2 , such that c = cos ϑ and s = sinϑ. We call this

uniquely determined number ϑ the angle between the vectors q1 and q2:

ϑ = ∠(q1,q2).

The generalization to arbitrary vectors is straightforward.

Definition 7.1 The angle θ between two nonzero vectors x and y is given by

(7.8) ϑ = ∠(x,y) = arcsin

(∥∥∥∥
(
I − xx∗

‖x‖2
)

y

‖y‖

∥∥∥∥
)

= arccos

( |x∗y|
‖x‖‖y‖

)
.

When investigating the convergence behaviour of eigensolvers we usually show that
the angle between the approximating and the desired vector tends to zero as the number
of iterations increases. In fact it is more convenient to work with the sine of the angle.



7.3. CONVERGENCE ANALYSIS 127

In the formulae above we used the projections P and I−P with P = q1q1
∗. We would

have arrived at the same point if we had exchanged the roles of q1 and q2. As

‖q1q
∗
1q2‖ = ‖q2q

∗
2q1‖ = |q∗

2q1|

we get

‖(I − q1q
∗
1)q2‖ = ‖(I − q2q

∗
2)q1‖.

This immediately leads to

Lemma 7.2 sin∠(q1,q2) = ‖q1q
∗
1 − q2q

∗
2‖.

7.3 Convergence analysis

Let us now assume that A has Jordan block form,

(7.9) A =

[
λ1 0∗

0 J2

]

with eigenvalues

(7.10) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

Then, the eigenvector of A corresponding to its largest eigenvalue λ1 is e1. We will now
show that the iterates x(k) converge to e1. More precisely, we will show that the angle
∠(x(k), e1) between x(k) and e1 goes to zero with k →∞. Let

x(k) =




x
(k)
1

x
(k)
2
...

x
(k)
n




=:

(
x
(k)
1

x
(k)
2

)

with ‖x(k)‖ = 1. Then,

sinϑ(k) := sin(∠(x(k), e1)) = ‖(I − e1e
∗
1)x

(k)‖ = ‖x(k)
2 ‖ =

√√√√
n∑

i=2

|x(k)i |2.

If we omit the normalization ‖x(k)‖ = 1, which we will do for convenience, then this
becomes

sinϑ(k) := sin(∠(x(k), e1)) =
‖x(k)

2 ‖
‖x(k)‖ =

√√√√
∑n

i=2|x
(k)
i |2∑n

i=1|x
(k)
i |2

.

This means that for the convergence analysis we look at the iteration (7.1), while the
actual implementation follows closely Algorithm 7.1.

From (7.1) we have

x(k) =

(
x
(k)
1

x
(k)
2

)
=

[
λ1 0∗

0 J2

](
x
(k−1)
1

x
(k−1)
2

)
=

[
λ1 0∗

0 J2

]k(
x
(0)
1

x
(0)
2

)
.



128 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

Defining

(7.11) y(k) :=
1

λk1
x(k)

we have

y(k) =

[
1 0∗

0 1
λ1
J2

]
y(k−1).

Let us assume that y
(0)
1 = 1. Then y

(k)
1 = 1 for all k and

y
(k)
2 =

1

λ1
J2y

(k−1)
2 ,

1

λ1
J2 =




µ2 ∗
µ3 ∗

. . .
. . .

µn−1 ∗
µn



, |µk| =

|λk|
|λ1|

< 1.

For the sequel we need

Theorem 7.3 Let ||| · ||| be any matrix norm. Then

(7.12) lim
k→∞

|||Mk|||1/k = ρ(M) = max
i
|λi(M)|.

Proof. See Horn-Johnson [3], pp.297-299.

Definition 7.4 ρ(M) in (7.12) is call spectral radius of M .

Regarding the convergence of the vector iteration, Theorem 7.3 implies that for any
ε > 0 there is an integer K(ε) such that

(7.13) |||Mk|||1/k ≤ ρ(M) + ε, for all k > K(ε).

We will apply this theorem to the case M = λ−1
1 J2, the matrix norm ||| · ||| will be the

ordinary 2-norm. Thus, for any ε > 0 there is a K(ε) ∈ N with

(7.14)

∥∥∥∥∥

(
1

λ1
J2

)k∥∥∥∥∥

1/k

≤ |µ2|+ ε, ∀ k > K(ε).

We can choose ε such that
|µ2|+ ε < 1.

Then,

sin(∠(y(k), e1)) =
‖(I − e1e

∗
1)y

(k)‖
‖y(k)‖ =

‖y(k)
2 ‖

‖y(k)‖ =
‖y(k)

2 ‖√
1 + ‖y(k)

2 ‖

≤ ‖y(k)
2 ‖ ≤ ‖

1

λk1
Jk2 ‖‖y

(0)
2 ‖ ≤ (|µ2|+ ε)k‖y(0)

2 ‖.

Thus, the angle between y(k) and e1 goes to zero with a rate µ2 + ε for any positive ε.
Since x(k) is a scalar multiple of y(k) the same holds for the angle between x(k) and e1.
Since we can choose ε arbitrarily small, we have proved that

sinϑ(k) = sin(∠(x(k),u1)) ≤ c ·
∣∣∣∣
λ2
λ1

∣∣∣∣
k



7.3. CONVERGENCE ANALYSIS 129

provided that x
(0)
1 = e∗1x

(0) 6= 0.

Returning to a general matrix A ∈ F
n×n with Jordan normal form A = XJY ∗, we

employ equation (7.3). The sequence y(k) = Y ∗x(k) converges to y∗ = αe1 with α 6= 0.
Therefore, x(k) converges to a multiple of Xe1, which is an eigenvector associated with
the largest eigenvalue λ1. The condition e∗1y

(0) 6= 0 translates into

e∗1(Y
∗x(0)) = (Y e1)

∗x(0) 6= 0.

The first column of Y is a left eigenvector associated with λ1. Therefore, we have proved

Theorem 7.5 Let the eigenvalues of A ∈ F
n×n be arranged such that |λ1| > |λ2| ≥

|λ3| ≥ · · · ≥ |λn|. Let u1 and v1 be right and left eigenvectors of A corresponding to λ1,
respectively. Then, the vector sequence generated by Algorithm 7.1 converges to u1 in the
sense that

(7.15) sinϑ(k) = sin(∠(x(k),u1)) ≤ c ·
∣∣∣∣
λ2
λ1

∣∣∣∣
k

provided that v∗
1x

(0) 6= 0.

Remark 7.1. The quantity µk in Algorithm 7.1 converges to |λ1|. The true value λ1 ∈ C

can be found by comparing single components of y(k) and x(k−1). If λ1 ∈ R then only the
sign of λ1 is at stake.

Remark 7.2. The convergence of the vector iteration is faster the smaller the quotient
|λ2|/|λ1| is.
Remark 7.3. From (7.12) we see that the norm of the powers of a matrix goes to zero if all

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

||
A

k
||

k

Figure 7.2: Norms of powers of B in (7.16).

is eigenvalues are smaller than one in modulus. For small powers the norm can initially
grow considerably. In Fig. 7.2 we have plotted the norms of Bk with

(7.16) B =

[
0.9 5
0 0.9

]
.



130 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

Remark 7.4. If v∗
1x

(0) = 0 then the vector iteration converges to an eigenvector corre-
sponding to the second largest eigenvalue. In practice, rounding errors usually prevent
this behaviour of the algorithm. After a long initial phase the x(k) turn to u1.
Remark 7.5. In case that λ1 6= λ2 but |λ1| = |λ2| there may be no convergence at all. An
example is

A =

[
1 0
0 −1

]
, x(0) =

[
α
β

]
.

7.4 A numerical example

In the following Matlab script we assume that A is upper triangular and that the largest
eigenvalue (in modulus) is at position (1,1), i.e., |a1,1| > |aj,j| for all j > 1.

%Demo Simple Vector Iteration

%

n = 6;

randn(’state’,0);

A = diag([n:-1:1]) + triu(randn(n),1) % upper triangular matrix

x0 = rand(n,1); x0=x0/norm(x0) % initial vector

e = eye(n,1); % Right eigenvector corresponding to largest

% eigenvalue A(1,1)

% ----------------------------------------------------------

x=x0; ang = norm(x - e*(e’*x))

hist = [ang,nan,nan];

if ~exist(’tol’), tol = 100*eps; end

oldang = nan;

while ang > tol

x = A*x;

mue = norm(x); % This is an approximation for the

x = x/mue; % searched eigenvalue

ang = norm(x - e*(e’*x));

hist = [hist; [mue,ang,ang/oldang]];

oldang = ang;

end

Because the solution is known, we can compute the angle between iterate and true solution.
We can even use this angle in the stopping criterion. The matrix A is given by

A =

6.0000 1.1892 -0.5883 -0.0956 -0.6918 -0.3999

0 5.0000 2.1832 -0.8323 0.8580 0.6900

0 0 4.0000 0.2944 1.2540 0.8156



7.5. THE SYMMETRIC CASE 131

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

 

 

eigenvalue

angle(x
k
, u

1
)

angle/old angle

Figure 7.3: Plot of three important quantities: eigenvalue, angle between eigenvector
approximation and exact eigenvector, convergence rate of eigenvector

0 0 0 3.0000 -1.5937 0.7119

0 0 0 0 2.0000 1.2902

0 0 0 0 0 1.0000

The development of three important quantities is given in Fig. 7.3. In Fig. 7.4 the case
is depicted when the initial vector is chosen orthogonal to the left eigenvector correspond-
ing to λ1 = 6. Initially, the approximated eigenvalue is 5. Because the stopping criterion
does not hold, the iteration continues until eventually rounding errors take effect.

7.5 The symmetric case

Let us now consider the Hermitian/symmetric case. We again assume the now real eigen-
values to be arranged as in (7.10). But now the Schur decomposition of A becomes its
spectral decomposition,

(7.17) A = UΛU∗, U = [u1, . . . ,un], Λ = diag(λ1, . . . , λn).

For the convergence analysis, we assume that A is diagonal, and that

(7.18) λ1 > λ2 ≥ · · · ≥ λn ≥ 0.

Therefore, in (7.9) we have J2 = diag(λ2, . . . , λn), i.e., all Jordan blocks are 1× 1.

In contrast to the general case, in the Hermitian case we approximate the eigenvalue
by the Rayleigh quotient of x(k),

(7.19) λ(k) := x(k)∗Ax(k), ‖x(k)‖ = 1.

The symmetric algorithm is given in Algorithm 7.2.



132 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

 

 

eigenvalue

angle(x
k
, u

1
)

angle/old_angle

Figure 7.4: Plot of three important quantities: eigenvalue, angle between eigenvector
approximation and exact eigenvector, convergence rate of eigenvector. Here, the initial
vector is chosen orthogonal to the left eigenvector corresponding to the largest eigenvalue

Algorithm 7.2 Simple vector iteration for Hermitian matrices

1: Choose a starting vector x(0) ∈ F
n with ‖x(0)‖ = 1.

2: y(0) := Ax(0).
3: λ(0) := y(0)∗x(0).
4: k := 0.
5: while ‖y(k) − λ(k)x(k)‖ > tol do
6: k := k + 1;
7: x(k) := yk−1/‖yk−1‖;
8: y(k) := Ax(k);
9: λ(k) := y(k)∗x(k);

10: end while

In order to investigate the convergence of the Rayleigh quotient we work with auxiliary
vectors

(7.20) y(k) =

(
1

y
(k)
2

)
=

1

|x(k)1 |
x(k).

Notice, that any ‘reasonable’ approximation of the first eigenvector e1 has a nonzero first
component. For the Rayleigh quotients we have

ρ(y(k)) = ρ(x(k)).

Now,

(7.21) λ(k) =
y(k)∗Ay(k)

y(k)∗y(k)
=

(e1 + y
(k)
2 )∗A(e1 + y

(k)
2 )

1 + ‖y(k)
2 ‖2

=
λ1 + y

(k)
2

∗
Ay

(k)
2

1 + ‖y(k)
2 ‖2



7.5. THE SYMMETRIC CASE 133

where we used that e∗1y
(k)
2 = 0 and e∗1Ay

(k)
2 = 0. Because,

tan ϑ(k) := tan(∠(y(k), e1)) = ‖y(k)
2 ‖

and

1 + tan2(φ) =
1

1− sin2(φ)

we get from (7.21) that

(7.22) λ(k) = (λ1 + y
(k)
2

∗
Ay

(k)
2 )(1− sin2 ϑ(k)) = λ1 − λ1 sin2 ϑ(k) + y

(k)
2

∗
Ay

(k)
2 cos2 ϑ(k).

Now, since λ1 > 0,

(7.23)
0 ≤ λ1 − λ(k) = λ1 sin

2 ϑ(k) − y
(k)
2

∗
Ay

(k)
2 cos2 ϑ(k)

≤ λ1 sin2 ϑ(k) − λn‖y(k)
2 ‖2 cos2 ϑ(k) = (λ1 − λn) sin2 ϑ(k).

In summary, we have proved

Theorem 7.6 Let A be a symmetric matrix with spectral decomposition (7.17)–(7.18).
Then, the simple vector iteration of Algorithm 7.2 computes sequences

{
λ(k)

}∞
k=0

and{
x(k)

}∞
k=0

that converge linearly towards the largest eigenvalue λ1 of A and the corre-

sponding eigenvector u1 provided that the initial vector x(0) has a nonzero component in
the direction of u1, i.e., that u

∗
1x

(0) 6= 0. The convergence rates are given by

sinϑ(k) ≤
∣∣∣∣
λ2
λ1

∣∣∣∣
k

sinϑ(0), |λ1 − λ(k)| ≤ (λ1 − λn)
∣∣∣∣
λ2
λ1

∣∣∣∣
2k

sin2 ϑ(0).

where ϑ(k) = ∠(x(k),u1.

Thus, the speed of convergence is determined by the ratio of the two eigenvalues largest in
modulus and the quality of the initial guess x(0). Both sequences

{
λ(k)

}
and

{
x(k)

}
con-

verge linearly, but the decisive ratio appears squared in the bound for the approximation
error in the eigenvalue. λ1 − λn is called the spread of the spectrum of A. Its occurance
in the bound for λmax − λ(k) shows that a simple scaling of the matrix does not affect the
convergence behavior of the algorithm.

Example 7.7 Let’s compute the smallest eigenvalue and corresponding eigenvector of the
one-dimensional Poisson matrix T = Tn of Example 2.7 with n = 40. Let us assume that
we know an upper bound τ for the largest eigenvalue λn of T then the transformed matrix
τI − T has the same eigenvectors as T and eigenvalues τ − λn < τ − λn−1 < · · · < τ − λ1.
So, we apply vector iteration to compute the desired quantities.

We set τ = 4(n + 1)2/π2 a number that is easily obtained by applying Gerschgorin’s
circle theorem. We performed a Matlab experiment starting with a random vector.

>> n=40;

>> T = (4*((n+1)^2/pi^2))*eye(n) - ((n+1)^2/pi^2)*p_1d(n);

>> rand(’state’,0); x0=rand(n,1);

>> [x,lam,nit]=vit(T,x0,1e-4);

>> tau-lam

ans =

0.9995

>> nit

nit =

1968



134 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

In as many as 1968 iteration steps we arrived at an eigenvalue approximation 0.9995.
This number is correct to all digits. The difference to the eigenvalue 1 of the continuous
eigenvalue problem −u′′(x) = λu(x) is due to the discretization error. Figure 7.5 shows
the convergence history of this calculation. The straight lines show the actual angle ϑ(k)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Figure 7.5: Simple vector iteration with τI40 − T40

between x(k) and u1 (above) and the actual error λ(k)−λ1. These quantities can of course
not be computed in general. In this example we know them, see Ex. 2.7. The dotted
lines show powers of q = (τ − λ2)/(τ − λ1) that indicate the convergence rates given by
Theorem 7.6. Here, q = 0.9956. Clearly, the convergence is as predicted.

Example 7.8 We mentioned that a good initial vector can reduce the number of iteration
steps. Remember that the smallest eigenfunction is sinx, a function that is positive on
the whole interval (0, π). Let us therefore set x(0) to be the vector of all ones.

>> x0 = ones(n,1);

>> [x,lam,nit]=vit(T,x0,1e-4);

>> nit

nit =

866

This is a surprisingly high reduction in the number of iteration steps. Figure 7.6 shows
the convergence history of this calculation. Again the doted lines indicate the convergence
rates that are to be expected. The actual convergence rates are evidently much better.
How can that be?

The eigenvectors of Tn resemble the eigenfunctions sin kx of the continuous eigen-
value problem. Therefore the coefficients corresponding to eigenvectors corresponding to
eigenfunctions antisymmetric with respect to the point π/2 vanish. In particular x2 = 0.
Therefore the convergence rate is not q = (τ−λ2)/(τ −λ1) but q̂ = (τ−λ3)/(τ −λ1). This
is verified by the numbers given in Fig. 7.7 where the assymptotic corrected convergence
rates q̂ and q̂2 are indicated.

Problem 7.9 When computing the smallest eigenvalue of Tn by the simple vector iter-
ation we can find a better shift than τ above if the extremal points of the spectrum are



7.6. INVERSE VECTOR ITERATION 135

0 100 200 300 400 500 600 700 800 900
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Figure 7.6: Simple vector iteration with τI40 − T40 and starting vector (1, 1, . . . , 1)T

known. Determine σ such that σIn − Tn exhibits the optimal convergence rate. Hint: On
the one hand we would like the quotient (σ−λn−1)/(σ−λn) to be as small as possible. On
the other hand |σ−λ1|/(σ−λn) must not become to big. Hint: Equate the two quantities.

7.6 Inverse vector iteration

The previous examples have shown that the convergence of simple vector iteration is
potentially very slow. The quotient of the second largest to the largest eigenvalue are very
close to 1. We noticed this by means of a very simple and small eigenvalue problem. The
situation gets much worse if the problems are big.

We have seen in (2.28) that a polynomial in A has the same eigenvectors as A. We
therefore may try to find a polynomial that enhances the eigenvalue that we are looking
for. This approach is however not successful in the most critical case when the wanted
eigenvalue is very close to unwanted. In this situation, the shift-and-invert spectral
transformation is most appropriate. Instead of a polynomial we transform the matrix by
the rational function f(λ) = 1/(λ− σ) where σ is a so-called shift that is chosen close to
the desired eigenvalue. Simple vector iteration with the matrix (A − σI)−1 is referred to
as inverse vector iteration, see Algorithm 7.6.

Algorithm 7.3 Inverse vector iteration

1: Choose a starting vector x0 ∈ F
n and a shift σ.

2: Compute the LU factorization of A− σI: LU = P (A− σI)
3: y(0) := U−1L−1Px(0). µ(0) = y(0)∗x(0), λ(0) := σ + 1/µ(0). k := 0.
4: while ‖x(k) − y(k)/µ(k)‖ > tol‖y(k)‖ do
5: k := k + 1.
6: x(k) := yk−1/‖yk−1‖.
7: y(k) := U−1L−1Px(k).
8: µ(k) := y(k)∗x(k), λ(k) := σ + 1/µ(k).
9: end while



136 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

0 100 200 300 400 500 600 700 800 900
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Figure 7.7: Simple vector iteration with τI40 − T40 and starting vector (1, 1, . . . , 1)T

(7.24) x(k) := (A− σI)−1x(k−1) ⇐⇒ (A− σI)x(k) := x(k−1), k = 1, 2, . . .

The iteration converges towards the eigenvector with eigenvalue closest to σ. A linear
system of equations has to be solved in each iteration step. Of course only one Cholesky
or LU factorization has to be computed as the shift remains constants in all iterations.
The stopping criterion is changed into

(7.25) ‖x(k) − y(k)/µ(k)‖ ≤ tol‖y(k)‖

where we have used

Ay(k) − λ(k)y(k) = Ay(k) −
(
σ − 1

µ(k)

)
y(k) = x(k) − y(k)/µ(k)

The convergence result of Theorem 7.6 can easily be adapted to the new situation if
it is taken into account that A− σI has eigenpairs (µi,ui) with µi = 1/(σ − λi).

Theorem 7.10 Let A be symmetric positive definite with spectral decomposition (7.17).
Let λ′1, . . . , λ

′
n be a renumeration of the eigenvalues in (7.17) such that

(7.26)
1

|λ′1 − σ|
>

1

|λ′2 − σ|
≥ · · · ≥ 1

|λ′n − σ|

Then, provided that u′
1
∗x(0) 6= 0, the inverse vector iteration of Algorithm 7.6 constructs

sequences
{
λ(k)

}∞
k=0

and
{
x(k)

}∞
k=0

that converge linearly towards that eigenvalue λ′1 clos-
est to the shift σ and to the corresponding eigenvector u′

1, respectively. The bounds

sinϑ(k) ≤
∣∣∣∣
λ′1 − σ
λ′2 − σ

∣∣∣∣
k

sinϑ(0), λ(k) − λ1 ≤ δ
∣∣∣∣
λ′1 − σ
λ′2 − σ

∣∣∣∣
2k

sin2 ϑ(0).

hold with ϑ(k) = ∠(x(k),u1) and δ = spread(σ((A− σI)−1)).



7.6. INVERSE VECTOR ITERATION 137

If the shift σ approximates very well an eigenvalue of A then λ(k) − σ
λn − σ ≪ 1 and cover-

gence is very rapid.

Example 7.11 Let us now use inverse iteration to compute the smallest eigenvalue and
corresponding eigenvector of the one-dimensional Poisson matrix T = Tn of Example 2.7
with n = 40. If we assume that we know that the smallest eigenvalue λ1 is around 1 then
a shift σ = .9 is reasonable, if we want A− σI to still be positive definite. Starting with
the vector of all ones three iteration steps suffice to get the desired accuracy of tol = 10−5,
see Table 7.1.

k λ(k) − λ1 sin(ϑ(k))

1 2.0188e-02 4.1954e-03
2 1.7306e-06 5.0727e-05
3 2.5289e-10 6.2492e-07

Table 7.1: Computing the lowest eigenvalue of the one-dimensinal Poisson equation by
inverse iteration

Example 7.12 We consider the problem of computing the eigenvector corresponding to
a known eigenvalue. The matrix that we consider is one of the so-called Wilkinson matri-
ces [7, p.308]

T+
41 =




20 −1
−1 19 −1

. . .
. . .

. . .

−1 1 −1
−1 1 −1

. . .
. . .

. . .

−1 19 −1
−1 20




∈ R
41×41.

Wilkinson matrices are irreducible tridiagonal matrices that have very close eigenvalues.
T+
41 has eigenvalues

i λi
1 -1.12544152211998160773
2 0.25380581709663757595
3 0.94753436752858266612
...

...
19 9.00000000005481481935
20 9.99999999999938715689
21 10.00000000000062883032
22 11.00000000000061817218
...

...
39 19.21067864733304730862
40 20.74619418290333783261
41 20.74619418290335559618



138 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

The following Matlab code constructs the tridiagonal matrix T+
41.

n = 41;

e = ones(n,1); f = abs([-(n-1)/2:(n-1)/2]’);

T = spdiags([-e f -e], [-1:1], n, n);

lam = sort(eig(T));

Computing the 20-th and 21-st eigenvectors could be done in the following way.

>> x = (T - lam(20)*eye(n))\e;

>> y = (T - lam(21)*eye(n))\e;

>> x = x/norm(x); y = y/norm(y);

>> x’*y

ans =

-0.999884136475222

>> norm((T - lam(20)*eye(n))*x)

ans =

5.618476779585024e-12

>> norm((T - lam(21)*eye(n))*y)

ans =

2.896133474679886e-15

The computed vectors x and y are good approximations in the sense that they give small
residuals. However, the two vectors are not mutually orthogonal at all. We try to improve
orthogonality by applying a second step of inverse iteration

>> x = (T - lam(20)*eye(n))\x;

>> y = (T - lam(21)*eye(n))\y;

>> x = x/norm(x); y = y/norm(y);

>> x’*y

ans =

0.063733511702720

Things have only slightly improved. Therefore, we orthogonalize x explicitely against y.

>> x = x - y*(y’*x);

>> x’*y

ans =

1.311884628707460e-17

>> norm((T - lam(20)*eye(n))*x)

ans =

1.215384108256151e-15

>> norm((T - lam(21)*eye(n))*y)

ans =

6.350296595185394e-16

This helped. The two eigenvectors are now perpendicular to each other, and the residuals
are small.

Discussion of inverse iteration

We have seen that



7.7. THE GENERALIZED EIGENVALUE PROBLEM 139

• we can compute eigenvectors corresponding to any (simple and well separated) eigen-
value if we choose the shift properly, and that

• we have very good convergence rates, is the shift is close to an eigenvalue.

However, one may feel uncomfortable solving an ‘almost singular’ system of equations,
after all σ ≈ λk means that the condition of A−σI is very big. From the analysis of linear
systems of equations we know that this means large errors in the solution. Furtunately,
the error that is suffered from when solving with A− σI points in the right direction. To
see this, assume that the singular value decomposition of A− σI is given by

A− σI = UΣV ∗, Σ = diag(σ1, . . . , σn), with σ1 ≥ · · · ≥ σn ≥ 0.

If A − σI is ‘almost’ singular then σn ≪ 1. If even σn = 0 then (A − σI)vn = 0, i.e.,
the last right singular vector is an eigenvector of A corresponding to the eigenvalue σ (the
shift).

If σn = O(ε) then
(A− σI)z = UΣV ∗z = y.

Thus,

z = V Σ−1U∗y =

n∑

i=1

vi
u∗
iy

σi

σn≪σn−1≈ vn
u∗
ny

σn
.

The tiny σn blows up the component in direction of vn. So, the vector z points in the
desired ‘most singular’ direction.

7.7 The generalized eigenvalue problem

Applying the vector iteration (7.1) to the generalized eigenvalue problem Ax = λBx leads
to the iteration

x(k) := B−1Ax(k−1), k = 1, 2, . . .

Since the solution of a linear system is required in each iteration step, we can execute an
inverse iteration right-away,

(7.27) (A− σB)x(k) := Bx(k−1), k = 1, 2, . . .

The iteration performs an ordinary vector iteration for the eigenvalue problem

(7.28) (A− σB)−1Bx := µx, µ =
1

λ− σ .

Thus, the iteration (7.27) converges to the largest eigenvector of (7.28), i.e., the eigenvector
with eigenvalue closest to the shift σ.

7.8 Computing higher eigenvalues

In order to compute higher eigenvalues λ2, λ3, . . . , we make use of the mutual orthogonality
of the eigenvectors of symmetric matrices, see Theorem 2.14. (In the case of Schur vectors
we can proceed in a similar way.)

So, in order to be able to compute the second eigenpair (λ2,u2) we have to know
the eigenvector u1 corresponding to the lowest eigenvalue. Most probably is has been



140 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

computed previously. If this is the case we can execute an inverse iteration orthogonal to
u1.

More generally, we can compute the j-th eigenpair (λj ,uj) by inverse iteration, keep-
ing the iterated vector x(k) orthogonal to the already known or computed eigenvectors
u1, . . . ,uj−1.

Algorithm 7.4 Inverse vector iteration for computing (λj ,uj)

1: The LU factorization of A− σI: LU = P (A− σI)
and the eigenvectors u1, . . . ,uj−1 are known.

2: Choose a starting vector x(0) such that u∗
qx

(0) = 0, q < j.
3: Set k := 0.
4: while ‖x(k) − y(k)/µ(k)‖ > tol‖y(k)‖ do
5: k := k + 1;
6: x(k) := y(k−1)/‖y(k−1)‖;
7: y(k) := U−1L−1Px(k);
8: µ(k) := y(k)∗x(k), λ(k) := σ + 1/µ(k).
9: end while

In exact arithmetic, the condition u∗
1x

(0) = · · · = u∗
j−1x

(0) = 0 implies that all x(k) are
orthogonal to u1, . . . ,uj−1. In general, however, one has to expect rounding errors that
introduce components in the directions of already computed eigenvectors. Therefore, it is
necessary to enforce the orthogonality conditions during the iteration.

Assuming exact arithmetic, Theorem 7.10 immediately implies that

sin∠(x(k),xj) ≤ c1
(
λj
λj′

)k

|λ(k) − λj | ≤ c2
(
λj
λj′

)2k

where j′ is the smallest index for which λj′ > λj .

7.9 Rayleigh quotient iteration

We now assume that the matrix the eigenpairs of which we want to determine is Hermitian
(or symmetric).

We have noticed that inverse iteration is an effective way to compute eigenpairs, if a
good approximation of the desired eigenvalue is known. This approximation is used as
a shift. However, as we have seen earlier, if a good approximation of an eigenvector is
available its Rayleigh quotient gives a very good approximation of its eigenvalue.

Indeed we have the following

Lemma 7.13 Let q be any nonzero vector. The number ρ that minimizes ‖Aq − ρq‖ is
the Rayleigh quotient

(7.29) ρ =
q∗Aq
q∗q

.

Proof. Let ρ ∈ R be the Rayleigh quotient (7.29) of q 6= 0 and let τ ∈ C be any number.
Then we have

‖Aq− (ρ+ τ)q‖2 = q∗A2q− (2ρ+ τ + τ̄)q∗Aq+ |ρ+ τ |2q∗q

= q∗A2q− 2ρq∗Aq− 2Re(τ)q∗Aq+ ρ2 q∗q+ 2ρRe(τ)q∗q+ |τ |2q∗q

= q∗A2q− (q∗Aq)2

q∗q
+ |τ |2 q∗q.



7.9. RAYLEIGH QUOTIENT ITERATION 141

The last term is smallest if τ = 0.

The following algorithm 7.9 is a modification of inverse iteration. In each iteration
step the shift is modified to be the Rayleigh quotient of the most recent eigenvector
approximation. This is not a curse but a blessing [4] as we have seen in section 7.6.

Algorithm 7.5 Rayleigh quotient iteration (RQI)

1: Choose a starting vector y0 ∈ F
n with ‖y0‖ = 1 and a tolerance ε.

2: for k = 1, 2, . . . do
3: ρ(k) := y(k−1)∗Ay(k−1).
4: Solve (A− ρ(k)I)z(k) = y(k−1) for z(k).
5: σ(k) = ‖z(k)‖.
6: y(k) := z(k)/σ(k).
7: if σ(k) > 10/ε then
8: return {y(k)}
9: end if

10: end for

In step 4 of this algorithm a close to singular system of equation is solved. This results
in a very long solution whose norm is used a the convergence criterion.

The Rayleigh quotient iteration usually converges, however not always towards the
desired solution. Therefore, to investigate the convergence rate we make the following

Assumption: y(k) −−−→
k→∞

x with Ax = λx.

This assumption garantees that there is at all convergence towards a certain eigenvector
x. Let ‖x‖ = ‖y(k)‖ = 1 and let the angle between this eigenvector and its approximation
be ϕ(k) = ∠(x,y(k)). Then the assumption implies that {ϕ(k)}∞k=1 converges to zero. We
can write

y(k) = x cosϕ(k) + u(k) sinϕ(k), ‖x‖ = ‖y(k)‖ = ‖u(k)‖ = 1.

Let

ρ(k) = ρ(y(k)) =
y(k)∗Ay(k)

y(k)∗y(k)
= y(k)∗Ay(k)

be the Rayleigh quotient of yk. Then we have

λ− ρk = λ− cos2 ϕk x∗Ax︸ ︷︷ ︸
λ

− cosϕk sinϕk x∗Auk︸ ︷︷ ︸
0

− sin2 ϕku
∗
kAuk

= λ(1− cos2 ϕk)− sin2 ϕkρ(uk)

= (λ− ρ(uk)) sin2 ϕk.

We now prove the

Theorem 7.14 (Local convergence of Rayleigh quotient iteration) With the above
assumption we have

(7.30) lim
k→∞

∣∣∣∣
ϕk+1

ϕ3
k

∣∣∣∣ ≤ 1.

i.e., RQI converges cubically.



142 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

Proof. (The proof follows closely the one given by Parlett [4].) We have

zk+1 = (A− ρkI)−1yk = x cosϕk/(λ− ρk) + (A− ρkI)−1uk sinϕk

= x cosϕk/(λ− ρk)︸ ︷︷ ︸
‖zk+1‖ cosϕk+1

+uk+1 sinϕk‖(A − ρkI)−1uk‖︸ ︷︷ ︸
‖zk+1‖ sinϕk+1

,

where we set

(7.31) uk+1 := (A− ρkI)−1uk/‖(A − ρkI)−1uk‖

such that ‖uk+1‖ = 1 and u∗
k+1x = 0. Thus,

tanϕk+1 = sinϕk+1/cosϕk+1

= sinϕk ‖(A− ρkI)−1uk‖ (λ− ρk)/ cosϕk
= (λ− ρk) ‖(A − ρkI)−1uk‖ tanϕk
= (λ− ρ(uk)) ‖(A − ρkI)−1uk‖ sin2 ϕk tanϕk.

So,

(A− ρkI)−1uk = (A− ρkI)−1


∑

λi 6=λ
βixi


 =

∑

λi 6=λ

βi
λi − ρk

xi

and taking norms,

(7.32) ‖(A− ρkI)−1uk‖2 =
∑

λi 6=λ

β2i
|λi − ρk|2

≥ 1

minλi 6=λ |λi − ρk|2
∑

λi 6=λ
β2i

︸ ︷︷ ︸
‖uk‖2=1

We define the gap between the eigenvalue λ and the rest of A’s spectrum by

γ := min
λi 6=λ
|λi − λ|.

The assumption implies that there must be a k0 ∈ N such that |λ− ρk| < γ
2 for all k > k0,

and, therefore,

|λi − ρk| >
γ

2
for all λi 6= λ.

Using this in (7.32) gives

‖(A− ρkI)−1uk‖ ≤
1

minλi 6=λ |λi − ρk|
≤ 2

γ
, k > k0.

Because tanϕk ≈ sinϕk ≈ ϕk if ϕk ≪ 1 we can deduce the cubic convergence rate.
We now look at the sequence {uk}more closely. We note from (7.31) that this sequence

is obtained by “inverse iteration with variable shift ρk”. But since ρk −→ λ with a cubic
rate of convergence we can for large k assume that ρk = λ and that uk ⊥ x.

We now consider two cases, either {uk} converges, or it does not converge.

1. We assume that {uk} converges. Then the limit vector û must be an eigenvector of
A in span{x}⊥. (In general, û is an eigenvector corresponding to the eigenvalue λ̂
that is closest to λ.) Thus,

(λ− ρ(uk))‖(A − ρkI)−1uk‖ −−−→
k→∞

±|λ− λ̂| · ‖û/(λ− λ̂)‖ = ±1.



7.9. RAYLEIGH QUOTIENT ITERATION 143

2. Now we assume that {uk} does not converge. Then A has two eigenvalues of equal
distance to λ and the cluster points of the sequence {uk} are two vectors in the plane
that is spanned by two eigenvectors corresponding to these two eigenvalues λ ± δ,
αxp + βxq, where α 6= 0, β 6= 0, and α2 + β2 = 1. Their Rayleigh quotients are

ρ(αxp + βxq) = α2λp + β2λq = α2(λ± δ) + β2(λ∓ δ) = λ± δ(α2 − β2).

As k −→∞ the Rayleigh quotients of uk jump between these two values. Hence,

(λ− ρ(uk))‖(A − ρkI)−1uk‖ −→ ±δ(α2 − β2)/δ,

and, therefore, ∣∣∣∣
ϕk+1

ϕ3
k

∣∣∣∣ −−−→k→∞
|α2 − β2| < 1

Remark 7.6. Notice that we have not proved global convergence. Regarding this issue
consult the book by Parlett [4] that contains all of this and more.

RQI converges ‘almost always’. However, it is not clear in general towards which
eigenpair the iteration converges. So, it is wise to start RQI only with good starting
vectors. An alternative is to first apply inverse vector iteration and switch to Rayleigh
quotient iteration as soon as the iterate is close enough to the solution. For references on
this technique see [6, 1].
Remark 7.7. The Rayleigh quotient iteration is expensive. In every iteration step another
system of equations has to be solved, i.e., in every iteration step a matrix has to be
factorized. Therefore, RQI is usually applied only to tridiagonal matrices.

7.9.1 A numerical example

The following Matlab script demonstrates the power of Rayleigh quotient iteration. It
expects as input a matrix A, an initial vector x of length one.

% Initializations

k = 0; rho = 0; ynorm = 0;

while abs(rho)*ynorm < 1e+15,

k = k + 1; if k>20, break, end

rho = x’*A*x;

y = (A - rho*eye(size(A)))\x;

ynorm = norm(y);

x = y/ynorm;

end

We invoked this routine with the matrix

A =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



∈ R

9×9

and the initial vector x = [−4,−3, . . . , 4]T . The numbers obtained are



144 CHAPTER 7. VECTOR ITERATION (POWER METHOD)

k rho ynorm

1 0.6666666666666666 3.1717e+00

2 0.4155307724080958 2.9314e+01

3 0.3820048793104663 2.5728e+04

4 0.3819660112501632 1.7207e+13

5 0.3819660112501051 2.6854e+16

The cubic convergence is evident.

Bibliography

[1] C. Beattie and D. Fox, Localization criteria and containment for Rayleigh Quotient
iteration, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 80–93.

[2] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins
University Press, Baltimore, MD, 4th ed., 2012.

[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, 1985.

[4] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs,
NJ, 1980. (Republished by SIAM, Philadelphia, 1998.).

[5] H. R. Schwarz, Methode der finiten Elemente, Teubner, Stuttgart, 3rd ed., 1991.

[6] D. B. Szyld, Criteria for combining inverse and Rayleigh Quotient iteration, SIAM
J. Numer. Anal., 25 (1988), pp. 1369–1375.

[7] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.


