Advanced Algorithms 2024 2024

Exercise 00

Lecturer: Johannes L, Maximillian P, Bernhard H Teaching Assistant: Antti R

This problem set is about the basics that you should know from undergraduate courses on
algorithm design and analysis and probability theory. If you’re not sure whether you’re ready
for this class or not, it is a good idea to see if you can solve these problems. These exercises
shouldn’t be submitted, and there is no exercise session for the first week of the course.

1 Basic Recursions

Determine the asymptotic answers of the following recursions:

1. T(n) = 2T(n/3) + O(n).
2. T(n) = 3T(n/2) + O(n).

3. T(n) = 2T(n/2) + O(n).

4. T(n) = 2T(n/2) + O(\/n).

5. T(n) = 2T(n/2) + O(n/logn)
6. T(n) = T(Vn) + 1
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2 Estimation

You are holding a bag of balls, where each ball is either red or blue, though you cannot see
the content of the bag. Each time, you can take take out a random ball and see its color (and
potentially put it back). You want to devise a randomized test which answers whether at least
a 1/10 fraction of the balls is red or not. How many balls should you examine, to have a tester
with precision 1 4 € and certainty at least 1 — §, for given values €, > 07 In particular, if the
fraction of red balls is above (1 + €)/10, your answer should be ‘yes’, with probability at least
1—4. If the fraction of red balls is below (1 —¢)/10, your answer should be ‘no’, with probability
at least 1 — 0. In other cases where the fraction is between these two thresholds, you do not
need to provide a guarantee.
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3 Selection

Given an array of n items, devise an algorithm that using expected O(n) pairwise comparisons,
finds the k" largest element for a given k € {1,...,n}.
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4 Quicksort

Recall the Quicksort algorithm where each time you take a random element from the list (we call
this the pivot), and split the list into two parts of larger and smaller, by comparing all the other
elements with the pivot. What is the probability that the i*"-largest element and the j*-largest
element get compared with each other (ever, throughout the entire run of the algorithm)? Use
this probability to prove that the expected number of comparisons in quicksort is at most 2n Inn.
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5 Finding a Common Friend

Alice and Bob are new to a community of n people. Every day, each of Alice and Bob befriends
another random person from the population (uniformly at random, without replacement, and
independent of each other). How long does it take, in expectation, until they have a mutual
friend? An upper bound that is tight up to a constant factor would be sufficient.
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6 Rumor Spreading

Consider a population of n people, where initially one of them knows a rumor. Every day, each
person who knows the rumor contacts another random person from the whole population and
shares the rumor with him/her. What is the expected time until everyone knows the rumor?
An upper bound that is tight up to a constant factor would be sufficient.
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7 Independent Set

Consider an n-node graph with average degree d, i.e., where the graph has nd/2 edges. An
independent set in the graph is a set of vertices no two of which are adjacent.

1. (Motwani-Raghavan 5.3) Prove that the graph has an independent set with at least

n/(2d) vertices.
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2. (Turan’s Theorem) Prove that the graph has an independent set with at least n/(d+1)
vertices.
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8 Balanced Coloring

Consider a ground set B of n elements and m susbets S1,...,5, C B of this ground set. Prove
that there exists a way to color the elements red or blue such that for each of the given m sets,

the number of red and blue elements in this set differ by at most O(y/nlogm).
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