Advanced Algorithms 2024

18.11, 2024

Exercise 09

Lecturer: Bernhard Haeupler

Teaching Assistant: Jakob Nogler

1 Tree embedding in cycle

In this exercise, we consider the tree embedding for the simple case where the graph is just a cycle on *n* vertices. That is, the vertices of our graph are numbers 1, 2, ..., n and there is an edge between each *i* ($1 \le i \le n-1$) and i+1, as well as between *n* and 1. Recall that we wish to approximate the metric induced on our graph by shortest paths (that is, distance between i < j is $d_G(i, j) = \min(|j-i|, |n-j+i|)$) by a metric d_T induced by shortest paths on a weighted tree *T* with the same vertex set as in our cycle.

In the next two parts, first, we argue that we cannot hope for a good deterministic solution. Then, we show that for the case of the cycle we can achieve even a constant stretch *in expectation*.

1. Show that for any tree T with nonegative lengths of edges that satisfies $\forall i, j : d_G(i, j) \leq d_T(i, j)$, there exist two indices i, j such that $d_T(i, j) \geq (n-1) \cdot d_G(i, j)$.

Hint 1:

G radually turn T into a path wrapping clockwise or anticlockwise around the cycle.

Each change to T maintains its stretch, while the sum of edge lengths of T drops.

Hint 2:

Imagine three vertices u < v < w such that T contains an edge $\{u, w\}$

of length w - u and an edge $\{v, w\}$ of length w - v.

Change $\{u, w\}$ to $\{u, v\}$ in this particular case.

2. The tree embedding algorithm from the lecture shows that there is a distribution over trees with average stretch $O(\log n)$, i.e., for any i, j we have $\operatorname{Exp}[d_T(i, j)] \leq O(\log n) \cdot d_G(i, j)$. Show that in the case of the cycle there is actually a distribution over trees that achieves the stretch 2.

Hint:

Leaving a random edge out of the cycle gives you a path.

2 Steiner Forest

Given edge weighted graph G, and a set of pairs of terminals $(s_1, t_1), \ldots, (s_k, t_k)$, consider problem of finding minimal cost E' such that s_i, t_i are connected in G[E']. Use the tree embedding algorithm from the lecture to build $\mathcal{O}(\log n)$ approximate algorithm in expectation to this problem.

Hint:

Sample single tree T and solve the problem in T. Project solution back to G.

3 Analyze the Ball-Carving with Exponential Clocks

Consider a following process of Ball-Carving:

- every vertex v pick radius r_v according to exponential distribution, that is with probability density $\text{EXP}(x) = \beta \cdot e^{-\beta x}$ for $x \ge 0$.
- every vertex u picks as its ball-center the vertex $v = \arg \max_x (r_x d(u, x))$ (we say that $u \in B_v$)
- 1. Give a reasonable upper bound on the diameter of each B_v that holds w.h.p.
- 2. Show that for every $v \in V(G)$ and for all $u \in B_v$, all the vertices on the shortest path from u to v are also in B_v .

Hint:

If w lies on the shortest path between u and v, but $w \in B_z$, shouldn't u also be in B_z ?

3. What is the probability of two neighboring nodes u and v being in different balls, i.e., that they picked different ball centers?