
Advanced Algorithms 2024 12/10 2023

Sample Solutions 03

Lecturer: Johannes Lengler Teaching Assistant: Patryk Morawski

1 MAX-SAT

1. Consider an arbitrary boolean assignment to the variables x1, x2, . . . , xn. Furthermore,
let i ∈ [m]. For this exercise we use the following definitions:

• Lij : A random variable defined as: Lij =

{
1 if the jth literal in clause i is satisfied
0 otherwise

• Ci : A random variable defined as: Ci =

{
1 if the clause ci is satisfied
0 otherwise

• C: The weighted sum of all Ci’s: C =
∑m

k=1wk · Ck

• Di : A random variable defined as Di = 1−Ci =

{
1 if the clause ci is not satisfied
0 otherwise

• D : The weighted sum of all Di’s: D =
∑m

k=1wk ·Dk

• A1/2: An algorithm which assigns each boolean variable x the value True with
probability 1/2 and then outputs the sum of the weights of all satisfied clauses

• OPT : An algorithm which outputs the highest possible sum of weights of satisfied
clauses possible.

If we set all boolean variables x1, x2, . . . , xn to True with probability 1/2, then all literals
in each clause will be True with probability 1/2. We have for all i ∈ [m]:

Pr[Lij = 1] = Pr[Lij = 0] =
1

2
.

Assume that clause i has k ≥ 1 literals. As each clause is the OR of its literals, it is only
unsatisfied if all literals evaluate to False. Thus, the probability of clause i not being
satisfied under a random assignment is:

Pr[Di = 1] =

k∏
j=1

Pr[Lij = 0] =
1

2k
≤ 1

2
.

From this we can conclude that the probability of clause i being satisfied is:

Pr[Ci = 1] = 1− Pr[Di = 1] = 1− 1

2k
≥ 1

2
.

We are now able to compute a lower bound on the expected value of the output of
algorithm A1/2. Observe that the output of algorithm A1/2 can be expressed by the
random variable C =

∑m
k=1wk · Ck. The expected value of C is:

E[C] = E

[
m∑
k=1

wk · Ck

]
(1)
=

m∑
k=1

wk · E[Ck]
(2)
=

m∑
k=1

wk · Pr[Ck = 1]
(3)

≥ 1

2

m∑
k=1

wk,

1

where in (1) we used linearity of expectation, in (2) we used the fact that Ck is an indicator
variable and in (3) we used the approximation Pr[Ck = 1] ≥ 1

2 .
The maximum possible value which OPT could attain is when all clauses are satisfied.
For an arbitrary problem instance I we therefore have:

OPT (I) ≤
m∑
k=1

wk.

This leads to the conclusion that in expectation, algorithm A1/2 is a 1/2 approximation
of OPT :

E[A1/2(I)] = E[C] ≥ 1

2

m∑
k=1

wk ≥
1

2
OPT (I).

We now try to improve algorithm A1/2 such that it returns a 0.49 approximation of OPT
with probability at least 99%. For this we first look at the expected sum of weights of
the unsatisfied clauses of algorithm A1/2. This sum of weights can be expressed by the
random variable D =

∑m
k=1wk ·Dk. Similar to C we can calculate an upper bound of the

expected value of D:

E[D] = E

[
m∑
k=1

wk ·Dk

]
(1)
=

m∑
k=1

wk · E[Dk]
(2)
=

m∑
k=1

wk · Pr[Dk = 1]
(3)

≤ 1

2

m∑
k=1

wk,

where in (1) we used linearity of expectation, in (2) we used the fact that Dk is an indicator
variable and in (3) we used the approximation Pr[Dk = 1] ≤ 1

2 .
We now look at the probability of D being larger than 0.51 ·

∑m
k=1wk (in which case A1/2

did not produce a 0.49 approximation). For this we can use Markov’s inequality:

Pr[D ≥ 0.51 ·
m∑
k=1

wk] ≤
E[D]

0.51 ·
∑m

k=1wk
≤

∑m
k=1wk

2 · 0.51 ·
∑m

k=1wk
=

1

1.02
≤ 0.99.

To decrease this probability we amplify it by repeating algorithm A1/2 a times and re-
turning the result which yielded the highest sum of weights. For this new algorithm Aa

1/2

to fail (i.e. not returning a value which is a 0.49 approximation), all a repetitions must
return a value which is smaller than a 0.49 approximation. The probability of this event
happening is (we denote the ith run of algorithm A1/2 as D(i)):

Pr[Aa
1/2(I) ≤ 0.49 ·OPT (I)] =

a∏
i=1

Pr

[
D(i) ≥ 0.51

m∑
k=1

wk

]
≤ 0.99a.

Setting a to 459 will reduce this probability to at most 0.99459 ≈ 0.0099 < 0.01 which
is lower than 1%. Therefore, by repeating algorithm A1/2 459 times and outputting the
best result of all the runs we get a new algorithm which outputs a 0.49 approximation of
OPT with probability at least 99%.

2. Let ILP be the integer linear program which is defined in the exact same way as the
linear program in the problem description with the exception that:

∀j ∈ {1, 2, ...,m} : zj ∈ {0, 1}
∀i ∈ {1, 2, ..., n} : yi ∈ {0, 1}

2

Algorithm 1 Anr which uses randomized rounding to solve the MAX-SAT problem
1: function Anr(Input: I = formula in CNF form)
2: Transform I to its corresponding linear program form ILP
3: (y∗, z∗)← Solve linear program ILP
4: for i ∈ [n] do
5: xi ← 1 with probability y∗i (otherwise 0)
6: end for
7: Transform the problem back to a CNF instance IILP
8: return the sum of the weights of all clauses in IILP which are satisfied
9: end function

You can see clearly that the linear program in the problem description is a relaxation of
ILP (as we only changed the domain of all variables from integers to real numbers).
Let’s first explain how ILP relates to our problem of finding a boolean variable assignment
which maximizes the total weight of all satisfied clauses. Consider an arbitrary assignment
of truth values to the boolean variables x1, x2, ..., xn. We can then interpret the variables
of ILP as follows:

• yi: represents the truth value of the boolean variable xi: yi =

{
1 if xi = True

0 otherwise

• zi: represents the truth value of clause ci: zi =

{
1 if clause ci is satisfied
0 otherwise

ILP has one constraint per clause. This constraint basically restricts the integer linear
program to only set zi to 1 (i.e. marking the clause as satisfied) if at least one of its literals
is satisfied (described by the sum of all variables yj which are contained in clause i.). As
an example, let’s assume that clause i of our input CNF is:

(x1 ∨ x2 ∨ ¬x3 ∨ ¬x4 ∨ x5).

The corresponding constraint in the integer linear program would then be:

(y1 + y2 + y5) + ((1− y3) + (1− y4)) ≥ zi,

or if you define S+
i = {y1, y2, y5} and S−

i = {y3, y4}:∑
j∈S+

i

yj +
∑
j∈S−

i

yj ≥ zi.

Finally, the maximization constraint of ILP is:

maximize
m∑
j=1

wj · zj ,

which can be interpreted as the goal of maximizing the total sum of all satisfied clauses.
Let us now look at algorithm Anr which is described in algorithm 1. We are interested
in the probability that a clause i with k ≥ 1 literals (l1 ∨ l2 ∨ · · · ∨ lk) will be satisfied
by algorithm Anr. Let Ci denote the random variable which is 1 if clause i is satisfied by
algorithm Anr and 0 otherwise. Let’s first look at the probability that Ci = 0 (i.e. that
clause i will not be satisfied by algorithm Anr). The literals of clause i can be divided
into two groups. The group of literals S+

i which consist of a simple boolean variable x

3

and the literals S−
i which consist of a negated boolean variable ¬x. In order that clause

i is not satisfied, all boolean variables of literals in S+
i have to be assigned False and all

boolean variables of literals in S−
i have to be assigned True. For a literal l let yl be the

variable which corresponds to the boolean variable x of l. Because algorithm Anr assigns
1 to the boolean variable xj with probability y∗j we can express the probability of clause
i being unsatisfied as:

Pr[Ci = 0] =

∏
l∈S+

i

(1− y∗l)

 ·
∏

l∈S−
i

y∗l

 .

We will now make use of the AM-GM inequality (Arithmetic Mean - Geometric Mean)
which states that for any set of non-negative real numbers a1, a2, . . . , an it holds that:

a1 + a2 + · · ·+ an
n

≥ (a1 · a2 · · · · · an)
1
n

As the statement above is basically just a multiplication of k non-negative real numbers
we can apply this inequality in the following way:

Pr[Ci = 0] =

∏
l∈S+

i

(1− y∗l)

 ·
∏

l∈S−
i

y∗l

 =


∏

l∈S+
i

(1− y∗l)

 ·
∏

l∈S−
i

y∗l

 1
k


k

≤


1

k


∑
l∈S+

i

(1− y∗l) +
∑
l∈S−

i

y∗l

︸ ︷︷ ︸
TEMP




k

.

We will now transform the expression denoted by TEMP in the previous equation. First
note that |S+

i |+ |S
−
i | = k because, by assumption, clause i consists of k literals. Secondly,

notice that, by definition of the linear program, we have y∗j ≤ 1 for all j ∈ [n]. Thus:

k − TEMP = k −

∑
l∈S+

i

(1− y∗l) +
∑
l∈S−

i

y∗l


=

|S+
i | −

∑
l∈S+

i

(1− y∗l)

+

|S−
i | −

∑
l∈S−

i

y∗l

 =
∑
l∈S+

i

y∗l +
∑
l∈S−

i

(1− y∗l).

Returning to our previous computation of Pr[Ci = 0] we can transform this expression
now as follows:

Pr[Ci = 0] ≤
(
1

k
· TEMP

)k

=

(
1− 1 +

1

k
· TEMP

)k

=

(
1− 1

k
· k − 1

k
· (−TEMP)

)k

=

(
1− 1

k
· (k − TEMP)

)k

≤

1− 1

k
·

∑
l∈S+

i

y∗l +
∑
l∈S−

i

(1− y∗l)

k

.

4

Note, that the inner most expression is one of the constraints of our linear program from
the problem statement. As (y∗, z∗) is the optimal solution of this linear program we know
that: ∑

l∈S+
i

y∗l +
∑
l∈S−

i

(1− y∗l) ≥ z∗i .

The expression above therefore further simplifies to:

Pr[Ci = 0] ≤

1− 1

k
·

∑
l∈S+

i

y∗l +
∑
l∈S−

i

(1− y∗l)

k

≤
(
1− z∗i

k

)k

.

From this it follows that:

Pr[Ci = 1] = 1− Pr[Ci = 0] ≥ 1−
(
1− z∗i

k

)k

. (1)

Remember that our goal is to prove that:

Pr[Ci = 1] ≥

(
1−

(
1− 1

k

)k
)
· z∗i .

We are going to prove this by proceeding as follows:

a) Express the probability in (1) as a function of z∗i .
b) Prove that this function is concave on the interval [0, 1].
c) Use a property of concave functions to prove our inequality.

The proof works as follows:

a) The goal is to convert the expression in (1) as a function. For k ≥ 1, define the
function Fk(z) = 1−

(
1− z

k

)k. Notice that Fk(0) = 0.
b) To prove that Fk is concave on the interval [0, 1] for k ≥ 1 we use the following

lemma:
Lemma 1. A differentiable function f is concave on an interval [a, b] if and only if
its derivative function f ′ is monotonically decreasing on that interval.

For k ≥ 1 the derivative of Fk is:

dFk

dz

(
1−

(
1− z

k

)k)
= −k ·

(
1− z

k

)k−1
· dFk

dz

(
1− z

k

)
=
(
1− z

k

)k−1
.

To prove that this derivative is monotonically decreasing on the interval [0, 1] for all
k ≥ 1 consider the two integers 0 ≤ a < b ≤ 1:

a < b ⇒ 1− b

k
< 1− a

k
⇒

(
1− b

k

)k−1

≤
(
1− a

k

)k−1
⇒ dFk

dz
(b) ≤ dFk

dz
(a).

which concludes the proof.
c) To finally prove our inequality, we will make use of the following lemma for concave

functions:
Definition 2. A real-valued function f on an interval is said to be concave if, for
any x and y in the interval and for any α ∈ [0, 1]:

f((1− α)x+ αy) ≥ (1− α) · f(x) + α · f(y).

5

As our function Fk is concave on the interval [0, 1] for all k ≥ 1 it must therefore
hold that:

Fk(z
∗
i · 1 + (1− z∗i) · 0︸ ︷︷ ︸

= 0

) ≥ z∗i · Fk(1) + (1− z∗i) · Fk(0)︸ ︷︷ ︸
= 0

.

Applying the definition of function Fk and combining it with the probability Pr[Ci =
1] we finally get:

Pr[Ci = 1] ≥ 1−
(
1− z∗i

k

)k

≥

(
1−

(
1− 1

k

)k
)
· z∗i .

Having computed this upper bound for the probability of a random clause i being satisfied
under algorithm Anr, we can now estimate how well of an approximation algorithm Anr

provides in expectation. For this let obj(x) =
∑m

i=1wi ·xi be the objective function of the
(integer) linear program. Furthermore, let (y∗, z∗) be the optimal solution of the linear
program and OPT = (yOPT , zOPT) the optimal solution of the integer linear program.
Notice that obj(zOPT) ≤ obj(z∗) because every feasible solution of ILP is also a feasible
solution to the corresponding linear program. Furthermore, notice that the output of
algorithm Anr can be described by the random variable C =

∑m
k=1wk ·Ck. The expected

value of C can be estimated in the following way:

E[C] = E

[
m∑
k=1

wk · Ck

]
(1)
=

m∑
k=1

wk · E[Ck]
(2)
=

m∑
k=1

wk · Pr[Ck = 1]

(3)

≥

(
1−

(
1− 1

k

)k
)
·

m∑
k=1

wk · z∗k
(4)

≥
(
1− 1

e

)
·

m∑
k=1

wk · zOPT
k .

where in (1) we used linearity of expectation, in (2) we used the fact that Ck is an indicator
variable, in (3) we used the approximation of Pr[Ck = 1] which we proved previously and
in (4) we used the fact that

(
1− 1

k

)k ≤ 1
e for all k ≥ 1 and that obj(zOPT) ≤ obj(z∗).

We have therefore shown that algorithm Anr yields in expectation an
(
1− 1

e

)
approxima-

tion of the optimal result.

3. Let us now try to solve MAX-SAT by combining the algorithms from part 1 and 2. Let’s
call the algorithm from part 1 LARGE-SAT and the algorithm from part 2 SMALL-SAT. The
idea of the combined algorithm is very simple and the following one: toss a fair coin and,
depending on the outcome, choose one the two algorithms of above.
MEDIUM-SAT

b ∈R {0, 1}
if b = 0: solve MAX-SAT with LARGE-SAT.
else: solve MAX-SAT with SMALL-SAT.

Theorem 3. MEDIUM-SAT gives a 3/4-approximation for the MAX-SAT problem in ex-
pectation.

Proof. We know that the following two inequalities must hold by linearity of expectation

6

and what has been established in the previous points.

E

∑
j∈[m]

wjzj

∣∣∣∣∣b = 0

 ≥ ∑
j∈[m]

wj

(
1− 2−k

) z∗j≤1

≥
∑
j∈[m]

wj

(
1− 2−k

)
z∗j

E

∑
j∈[m]

wjzj

∣∣∣∣∣b = 1

 ≥ ∑
j∈[m]

wj

(
1−

(
1− 1

k

)k
)
z∗j

By the law of total expectation, we have that

E

∑
j∈[m]

wjzj

 = Pr[b = 0] · E

∑
j∈[m]

wjzj

∣∣∣∣∣b = 0

+ Pr[b = 1] · E

∑
j∈[m]

wjzj

∣∣∣∣∣b = 1


≥ 1

2

∑
j∈[m]

wjz
∗
j

[(
1− 2−k

)
+

(
1−

(
1− 1

k

)k
)]
≥ 1

2

∑
j∈[m]

3

2
wjz

∗
j

=
3

4
· FOPT ≥ 3

4
·OPT.

The second to last inequality comes from the fact that
(
1− 2−k

)
+
(
1−

(
1− 1

k

)k) is
monotonically non-decreasing in k and evaluates to 3

2 for k = 1, 3
2 for k = 2 and 341

216 > 3
2

for k = 3, which is already enough. This concludes the proof of the theorem.

4. Let us consider the following CNF formula

F = (x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2) .

We notice that all 4 possible assignments satisfy exactly 3 of the clauses in F , with the
known corresponding LP objective function and LP constraints

y1 + y2 ≥ z1

y1 + (1− y2) ≥ z2

(1− y1) + y2 ≥ z3

(1− y1) + (1− y2) ≥ z4

y1, y2, z1, z2 ∈ [0, 1]

This yields optimal solutions

z∗1 = z∗2 = z∗3 = z∗4 = 1

y∗1 = y∗2 =
1

2
.

Thus, F is a CNF formula such that there is a 3/4 gap between the value of the solution
of LP described in part 2 and the optimal Boolean assignment to the variables.

5. Similarly to part 2, the general strategy is to bound the probability of each clause j being
satisfied as a function of z∗j and use this to compare the expected value of our solution to
the optimum of the LP relaxation.
Recall that we set xi to 1 with probability f(yj), where f is an arbitrary function satisfying
f(y) ∈ [1 − 4−y, 4y−1]. The probability of clause j not being satisfied is (omitting the
asterisk in y∗ and z∗ for brevity)

Pr [clause j is not satisfied] =
∏
i∈S+

j

(1− f(yi)) ·
∏
i∈S−

j

(f(yi)).

7

Now we use our assumption on f to bound the probability from above, appropriately
substituting the upper or lower bound on f in each of its occurrences:

Pr [clause j is not satisfied] ≤
∏
i∈S+

j

(1− (1− 4−yi)) ·
∏
i∈S−

j

(4yi−1)

=
∏
i∈S+

j

(4−yi)) ·
∏
i∈S−

j

(4yi−1)

= 4αj

where we define αj =
∑

i∈S+
j
(−yi) +

∑
i∈S−

j
(yi − 1). Now notice that the condition from

the LP definition requires that −αj ≥ zj . Therefore we get

αj ≤ −zj
Pr [clause j is not satisfied] ≤ 4αj

≤ 4−zj

Pr [clause j is satisfied] ≥ 1− 4−zj

≥ 3

4
zj

where the last inequality comes from the fact that h(x) = 1− 4−x is a concave function,
meaning that h(x) ≥ h(0) · x + h(1) · (1 − x). We now bound the expected value of our
solution:

E

 m∑
j=1

[clause j is satisfied] · wj

 =
m∑
j=1

Pr [clause j is satisfied] · wj

≥ 3

4

m∑
j=1

zjwj

=
3

4
OPTLP

≥ 3

4
OPT.

Here OPTLP denotes the value of the optimal LP solution, whereas OPT is the optimal
solution to the MAX-SAT problem.

8

